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Abstract

The smallest non-associative Osborn loop is of order 16. Attempts
in the past to construct higher orders have been very difficult. In this
paper, some examples of finite Osborn loops of order 4n, n = 4, 6, 8,
9, 12, 16 and 18 were presented. The orders of certain elements of
the examples were considered. The nuclei of two of the examples were
also obtained and these were used to establish the classification of these
Osborn loops up to isomorphism. Moreover, the central properties of
these examples were examined and were all found to be having a trivial
center and no non-trivial normal subloop. Therefore, these examples
of Osborn loops are simple Osborn loops.
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1. Introduction

Osborn loop is more or less recent and only few examples are available.
Whenever there are examples of a structure then it is always of interest
to researchers to know how many of such examples are distinct or non-
isomorphic. Therefore, classification of algebraic examples, up to isomor-
phism, is imperative. The Bol and Moufang loops have been classified
extensively, but Osborn loops are yet to attain that status-compare ([30]).
This work is aimed at classifying up to isomorphism some examples of finite
Osborn loops of order 4n. By a loop G(+) we shall mean a non-empty set G
together with a binary operation (-) such that the following properties hold:
(i) given a,b € G the equations a -z = b,y -a = b have unique solutions x, y
respectively, in G (ii) G(-) possesses an identity element, i.e. there exists
e € Gsuchthat e-x =x-e =z for all x € G ([32]). An overview of loop
theory can be found in Jaiyéola [18].

Definition 1.1. A loop is called an Osborn loop [31, 4] if it obeys any of
the following:

(1.1) (aM\y) - 2z = x(yz - )
(1.2) z(yz-x)= (v -yEy) - zzVa,yz€G

where E, = RyRyr = (LoL})™' = R,L,R;'L;"

Among the class of Bol-Moufang type of loops is the Bol loop.
Definition 1.2. A loop L is called a Bol loop if:
(1.3) (xy-2)y =z(yz-y) for all z,y,z € L

Strictly speaking, (1.3) defines a right Bol loop. A left Bol-loop (L, -)
is defined as:

Definition 1.3.
(1.4) x(y-xz) = (zv-yz)z for all z,y,z € L

A Bol loop commonly refers to a left or right Bol loop. The loop that
satisfies both (1.3) and (1.4) is called a Moufang loop [7, 8]. Therefore, the
necessary and sufficient condition for a loop to be a Moufang loop is that



Classification of Osborn loops of order 4n 33

the loop is both a left Bol loop and right Bol loop ([9]). The smallest order
for which a non-associative finite Bol loop exist is 8. There are exactly
six Bol loops of order 8 that are not associative ([34]). These loops were
classified by Burn [6]. Solarin and Sharma [35] determined and classified
all Bol loops of order 12 that are not associative. Purtill [33] has shown
that Moufang loops of orders pgr and p?q where p, ¢ and r are distinct
odd primes with p < ¢ < r are groups (See [2]). It is to be noted that a
Moufang loop is a variety of Osborn loops. Some of the earliest examples of
Osborn loops were constructed by Huthnance [10] in 1968. Other examples
are presented in Kinyon [10] and Isere et al. [12, 13]. Some recent studies
on this class of loops are by Isere [11], Adeniran and Isere [3], Isere et al.
[14, 15, 16], Jaiyéola [17, 20, 22, 23], Jaiyéola and Adéniran [24, 25, 26, 28],
Jaiyéold et al. [29, 23]. The application of some identities in universal
Osborn loops to cryptography were reported in Jaiyéold [19, 21], Jaiyéola
and Adéniran [27].
Bruck [5] defined the following as important subloops of a loop (L, ).

Definition 1.4. Let (L,-) be a loop. The left nucleus of L is defined as
Nyx(L,)={a€L:ax-y=a-zyV z,y € L}.

The right nucleus of L is defined as
N,(L,-)={a€eLl:y-za=yx-aVz,ye L}

The middle nucleus of L is defined as
N,(L,)={a€Ll:ya-z=y-axVx,yec L}

The nucleus of L is defined as

N(L,-) = NA(L,-) N N,(L,-) " N,(L,").

Artzy [1] has proved that N, = N, holds more generally in any right
inverse property loop.

Definition 1.5. The centrum of L is defined as
C(L,)={a€L:ar=xzaV x €L}
The center of L is defined as

Z(L,") = N(L, )N C(L, ).
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Remark 1.1. It is to be noted that the centrum of a loop is not necessarily
a subloop of the loop. However, some authors have found special Bol loops
in which their centrum (commutant) are subloops.

Definition 1.6. A subloop N of a loop (L,-) is said to be normal in (L, -)
if

N = Nz, z(yN) = (zyN), N(zy) = (Nz)y, V z,y € (L,-)

Definition 1.7. A loop QQ that has only the trivial subloops as the only
normal subloops of ) is called a simple loop.

In the next section, some examples of finite Osborn loops of order 4n,
n =4, 6, 8,9, 12, 16 and 18, as presented in Isere et al. [12, 13] will
be revisited with the intention of examining their central properties and
to show whether or not they are distinct, non-isomorphic Osborn loops.
The orders of certain elements of the examples will also be considered.
Whenever there is a tie, the nuclei of the examples will be obtained and
these will be used to establish the classification of these Osborn loops up
to isomorphism.

2. Main Results

2.1. Osborn Loops of order 4n

Example 2.1. Let I(-) = Ca, x Oy, I = {(2%,9°),0 < a <2n—1,0 <
B < 1} such that the binary operation (-) is defined as follows:

(2.1) (2% e) - (2°,y") = (a**, ")
(2.2) (a%,y%) - (2° ) = (" **, %)
(2.3) (2%, y) - (2%, 9°) = (%1, y**P) if a = 0(mod 2),b = 0(mod 2)

(2.4) = (ma+b+“b2, y°*P) if a = 0(mod 2),b = 1(mod 2)

(J:b+c,y5) (2% y*) = (:Ua+b+c,ya+5) if a = 0(mod 2),b = 0(mod 2)
(2.5)
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(z"F,40) - (2%, y®) = (a:a+b+c+ab2,ya+5) if a = 0(mod 2),b = 1(mod 2)
(2.6)

Then I(-) is an Osborn loop of order 4n, where n = 4,6 and 12.

Remark 2.1. These are non-associative Osborn loops of orders 16, 24 and
48. This is interesting since up to now the smallest Osborn loop constructed
is of order 16.

Example 2.2. Let I(:) = Cy, x Cy, T = {(2®,9°),0 < a <2n—-1,0 <
B < 1} such that the binary operation (-) is defined as follows:

(2.7) (a%€) - (2", y%) = (2"**,y%)

(2.8) (2%,y%) - (2% e) = (=7, y®)
(x“,ya)(xb,yﬁ) = (xa%,yo”rﬁ) if a=0(mod 2),b=0(mod 2)
(2.10) = (2973 2+ if a = 0(mod 2),b = 1(mod 2)

(2%,y*)-(2",9%) = (a*T,y***P)if a = 1(mod 2),b=1(mod 2)
(2.11)

(2%, 47) - (a%,y°) = (@7, y°H) if a = 0(mod 2),b = 0(mod 2)
(2.12)

(2%, %) (2%, y®) = (473F¢ 420 i f 4 = 0( mod 2),b=1(mod 2)
(2.13)

(274, 5547)- (2%, ) = (2392, @t 347) i1 4 = 1(mod 2),b = 1(mod 2)
(2.14)
Then I(-) is an Osborn loop of order 4n, where n = 6,9, and 18.
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Remark 2.2. These examples of Osborn loops are of orders 24, 36 and 72.
We have a peak order of 72.

Example 2.3. Let I(-) = Co, x Co, I = {(2®,9%),0 < a <2n—1,0 <
B < 1} such that the binary operation (-) is defined as follows:

(2.15) (2% e) - (2",9%) = (2*,47)

(2.16) (%) - (€)= (2", y)

(z%,y*)-(z°,9%) = (2271, 9°*P) if a = 0(mod 2),b = 0( mod 2)
(2.17)

(2.18) = (227, y**P) if a = 0(mod 2),b = 1(mod 2)

(2%, y®)-(2®,y”) = (* 7%, y*P)if a=1( mod 2),b=1(mod 2)
(2.19)

(«¢,%) - (2%, y*) = (2707, y°F0) i f a = 0(mod 2),b = 0(mod 2)
(2.20)

(«4,%) - (2% y®) = (27T, y°F0) if a = 0(mod 2),b = 1(mod 2)
(2.21)

(mb“, yBJW)‘(a:“, y*) = (xc*a*b, yo‘*BJW) if a=1(mod 2),b=1(mod 2)
(2.22)

(2%, y57). (2, 5%) = (a2, yP+1=%) if o = 1(mod 2),b= 0(mod 2)
(2.23)
Then I(-) is an Osborn loop of order 4n, where n = 6, 9 and 18.

Remark 2.3. These examples of Osborn loops are of orders 24, 36 and 72.
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Example 2.4. Let I(-) = Co, x Co, I = {(2®,9%),0 < a <2n—1,0 <

B < 1} such that the binary operation (-) is defined as follows:

(2.24) (2% ¢) - (z",37) = (2"**,37)

(2.25) (2%, y%) - (2" ) = (2" **, %)

(2%, y*)-(2%,9%) = (2971, 9°*P) if a = 0(mod 2),b = 0( mod 2)
(2.26)

(2.27) = (2% y*™P) if a = 0(mod 2),b= 1(mod 2)

(2.28) (2%, 4%) - (z*, %) = (2% y®) if a = 1(mod 2),b = 1(mod 2)

(@"7¢,9°) - (2,y®) = (", y*") if @ = 0(mod 2),b = 0(mod 2)
(2.29)

(27, 5)-(2%, 5%) = (@, y°%) if a = 0( mod 2),b=1(mod 2)
(2.30)

(2,7 (2%, y%) = (2™ ) if a = 1(mod 2),b=1(mod 2)
(2.31)

(@7, y7) - (2%, y*) = @™, y7T) if a = 1(mod 2),b = 0(mod 2)
(2.32)
Then I(-) is an Osborn loop of order 4n, where n = 4,8 and 16.

Remark 2.4. These examples of Osborn loops are of orders 24, 32 and
64. In all, we have Osborn loops of orders 16, 24, 32, 36, 48, 64 and 72,
as against the only Osborn loop of order 16 that was constructed prior to
our work by [30]. For the proof of all these examples as Osborn loops,
see references [12] and [13]. But, the challenge is, are these all distinct
examples? In other words, are they non-isomorphic Osborn loops? This is

the focus of this paper.
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2.2. Classification up to Isomorphism

Two loops shall be considered non-isomorphic if they contain different num-
ber of elements of the same order. Whenever, two loops contain the same
number of elements, we shall go further to consider the order of elements
in their left nucleus. If these coincide in both cases, we shall consider
commutative patterns of both loops.

Theorem 2.1. The four examples stated above are non-isomorphic Os-
born loops.

Proof:
Let us consider the number of elements of order 2 in each example.
(i) Example 2.1 Elements of order 2 are given by
(x",e)? = (e, e)
(2%, y*)2 = (e,e) if a = 0(mod 2) = (2204 429)

(2.33) = (e,e) if a = 1(mod 2)

The only possible solution to the equation (2.33) is a case of a = 0
ie. (e,y*). Therefore, (e,y*) and (z",e) are the 2 elements of order 2 in
Example 2.1.

(ii) Example 2.2 Elements of order 2 are given by
(x",e)? = (e, e)
(2%,y*)? = (e, e) if a = 0(mod 2)

(2.34) = (2%, %) = (e, €) if a = 1(mod 2)

The only possible solution to the equation (2.34) are a = 0 and a = n
whether 7 is even or odd. i.e.(z?",¢e) = (e,e) and (z*",e) = (222 ¢) =
(e,e). Therefore, (e,y%) , (z",e) and (2", y“) are the 3 elements of order 2
in Example 2.2.

(iii) Example 2.3 Elements of order 2 are given by
(x",e)% = (e, )
(2%, y*)? = (e, e) if a = 0(mod 2)

(2.35) = (297, y**) = (e, e) if a = 1(mod 2)

The only possible solution to the equation (2.35) are a = 0, a = n
and (z%y*) V a = 1(mod 2), hence, there are n + 3 elements of order
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2 in Example 2.3, which are (e,y®) , (z",e) , (z% y*) and n number of
(%, y%) V a =1(mod 2).

(iv) Example 2.4 Elements of order 2 are given by
(x",e)* = (e, e)
(2%, y*)? = (e, e) if a = 0(mod 2)

(2.36) = (2%,9%Y) = (e,e) if a = 1(mod 2)

The only possible solution to the equation (2.36) is a = 0 i.e. (e,y®).
Therefore, (e,y*) and (z",e) are the two elements of order 2 in Exam-
ple 2.4. From the above, isomorphism is only possible in the set {(4), (iv)}.

Now let us consider elements of order 4. For Example 2.1 and Exam-
ple 2.4, we obtain:

(1) (@"?,e)* = (2™, ¢) = (e,¢)
(2) (@"2,y*)* = (2", ¢) = (e,¢)
(3) (e,y™)* = (ese)

Hence, Example 2.1 and Example 2.4 contain 3 elements of order 4 (an-
other tie).

To show that Example 2.1 and Example 2.4 are non-isomorphic, let us
consider the order of elements in their nuclei.

First in Example 2.1, let us consider the left nucleus.
Let z = (2%, y%),y = (2%,9%),u = (2%,9°), then considering the definition
of left nucleus, by computation, it becomes

uzr -y = ($“+b+d+(“+d)b2,ya+ﬁ+5), if b = 1(mod 2)
Uy = (:B“+b+d+ab2,y°‘+6+5), if b = 1(mod 2).
Therefore, u ¢ Ny(I,-).

Now, let us consider Ny(I,-) in Example 2.4:
By computation we have:

uz -y = (x2F y2 P if b = 1(mod 2)
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w-zy = (x94T if b = 1(mod 2).
Therefore, u € Ny(1,-).

Since Ny(I,-) — {e} = 0 in Example 2.1 and Ny(I,-) — {e} # 0 in
Example 2.4, then the Osborn loops in Example 2.1 and Example 2.4 are
non-isomorphic. The proof is complete.

3. Central Properties of the Examples

Theorem 3.1. The four examples above have trivial centers.

Proof:

(i) Example 2.1 Let z = (2%,9%),y = (2%,9%),u = (2¢,%°), then from
section 2, u ¢ Ny(I,-). Examining the right nucleus, by computation,
we have:

z-yu = (x4 tB0) if b = 1(mod 2)
TY - u = (:c“+b+d+“b2,ya+6+5), if b = 1(mod 2).

Therefore, u ¢ N,(I,-).
Then, considering the definition of middle nucleus, by computation,
it becomes

xT-uy = (xa+b+d+bzd, yotA9) if b = 1(mod 2)
gu -y = (zTOHEFDY JatB0) i = 1(mod 2).
Therefore, u ¢ N, (,-). Thus, v ¢ N(I,").
Remark 3.1. Example 2.1 has trivial subloops

Let us now consider the centrum. Let y = (2%, %), u = (2?,4°), then
considering the definition of the centrum, by computation, it becomes

uy = (:B“+b+b2d,y5+5), if b = 1(mod 2)
yu = (274, yP+0) if b= 1(mod 2).

Therefore, u ¢ C(1,-). Then, u ¢ Z(1,-)
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(ii) Example 2.2 Let us consider the left nucleus; the right nucleus and,
the middle nucleus:

ux -y = (@30 yatBEy Hif h = 1(mod 2)
w-xy = (@30 ot Lif h = 1(mod 2).

Therefore, u € Ny(I,-).

Let us now consider the right nucleus. Let z = (22, 3%),y = (z%,v%),u =
(z?, %), then considering the definition of right nucleus, by compu-
tation, it becomes

z-yu = (@0 2T i b = 1(mod 2)

zy - u = (@30 atBE) if h = 1(mod 2).
Therefore, v ¢ N,(I,-). Finally, let consider the middle nucleus.

zu -y = (@30 atBE0) if h = 1(mod 2)

z-uy = (@30 ot if h = 1(mod 2).

Therefore, v € N,(I,-). Thus, u ¢ N(I,-) in Example 2.2.

Remark 3.2. Example 2.2 has non-trivial N\(I,-) and N,(I,-) as
subloops.

Next, we examine the centrum C(I,-). Consider:

yu = (274, y5+9), if b= 1(mod 2)
uy = (239,450 if b= 1(mod 2).
Thus, u ¢ C(I,-). Therefore, Z(1,-) =0, i.e. u ¢ Z(1,").

(iii) Example 2.3 First, we check for Ny (I, ). Consider:

w-xy = (%70 @) i b = 1(mod 2)
ug -y = (%70 o) i b = 1(mod 2).
Thus, v € Nx(I,-). Next, we check N,(I,-).
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Consider:

z-uy = (2270 42+ if b = 1(mod 2)
ug -y = (%70 o) Hif b = 1(mod 2).
Thus, u € N, (1, ).
Next, we check N,(I,-). Consider:

zy - u = (@70 2T i b = 1(mod 2)

z-yu = (@0 o) i b = 1(mod 2).

Thus, u ¢ N,(I,-). Hence, u ¢ N(I,-) in Example 2.3.

Remark 3.3. Example 2.3 has non-trivial N\(I,-) and N,(I,-) as
subloops.

Now, we check the centrum C(I,-). Consider:

uy = (2470, 4P+, if b= 1(mod 2)
yu = (24, yP+%), if b= 1(mod 2).
Thus, u ¢ C(I,-). Therefore, u ¢ Z(I,-).
Finally, we examine Example 2.4

(iv) Example 2.4 From section 2, u € N)([,-). Next, we check N,(Z,-).

Consider:

z - uy = (2% y2 ) if b = 1(mod 2)
uz -y = (22, 420 if b = 1(mod 2).
Thus, u € N, (I, ).
Next, we check N,([,-). Consider:

zy-u = (227 y2 P if b = 1(mod 2)
x-yu = (@0 o) i b = 1(mod 2).

Thus, u ¢ N,(I,-). Hence, u ¢ N(I,-) in Example 2.4.
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Remark 3.4. Example 2.4 has non-trivial N\(I,-) and N,(I,-) as
subloops.

Now, we check the centrum C(I,-). Consider:

uy = (x4,y°*?), if b= 1(mod 2)
yu = (24, ¢yP+%), if b= 1(mod 2).
Thus, v ¢ C(I,-). Therefore, u ¢ Z(I,-).

From the foregoing, every element (2¢,%°) € (I,-) does not associate
completely nor commute with every other element of (7, -) under the same
condition. Hence, the proof follows.

Corollary 3.1. The four examples above have no non-trivial normal subloops.

Proof:
The proof follows from Theorem 3.1

4. Conclusion

This work presented a method of classifying descriptive examples of Osborn
loops of order 4n. These examples of Osborn loops considered, do not have
their nuclei coincide. Artzy has proved that N, = N, holds more generally
in any right inverse property loop. But in these examples, N, # N,.
Therefore, the analysis confirms that Osborn loops are not right-inverse
property loops. Consequently, the above examples are not Bol loops and
are not Moufang. Since they have no non-trivial normal subloops, then,
it follows that they are a simple Osborn loops. It is to be noted also that
constructing a loop from an indirect product of two cyclic groups gives rise
to a cyclic simple loop.

References

[1] R. Artzy, On loops with special property, Proc. Amer. Math. Soc. 6,
pp. 448-453, (1995).



44

2]

[3]

A. O. Isere, J. O. Adéniran and T. G. Jaiyéold

A. M. Asiru, A study of the classification of finite Bol loops, Ph. D
thesis university of Agriculture, Abeokuta, (2008).

J. O. Adeniran and A. O. Isere, Nuclear Automorphisms of a class of
Osborn Loops, Journal of the Nigerian Association of Mathematical
Physics. Vol. 22, pp. 5-8, (2012).

A. S. Basarab and A. 1. Belioglo, UAI Osborn loops, Quasigroups and
loops, Mat. Issled. 51, 8-16, (1979).

R. H. Bruck, A survey of binary systems, Springer-Verlag, Berlin-
Gottingen-Heidelberg, 185 pp., (1966).

R. P. Burn, Finite Bol loops, Math. Camb. Phil. Soc. 84, pp. 377-385,
(1978).

O. Chein and E. G. Goodaire, Moufang loops with a unique mnon-
identity commutator (associator, square), J. Alg. 130, pp. 369-384,
(1990).

O. Chein and E. G. Goodaire, Code loops are RA2 loops, J. Alg. 130,
pp. 385-387, (1990).

O. Chein and H. O. Pflugfelder, The smallest Moufang Loop Archiv
Der Mathematik. Vol. 22, pp. 573-576, (1971).

E. D. Huthnance Jr.(1968), A theory of generalised Moufang loops,
Ph.D. thesis, Georgia Institute of Technology, (1968).

A. O. Isere, Construction and Classification of Finite Non-Universal
Osborn loops of Order 4n, Ph.D. thesis, Federal University of Agricul-
ture, Abeokuta, (2014).

A. O. Isere, J. O. Adeniran and A. R. T. Solarin, Somes Fxamples of
Finite Osborn Loops, Journal of Nigerian Mathematical Society, Vol.
31, 91-106, (2012).

A. O. Isere, S. A. Akinleye and J. O. Adeniran, On Osborn Loops of
order 4n, Acta Universitatis Apulensis. Vol. 37, 31-44, (2014).

A. O. Isere, J. O. Adeniran and T. G. Jaiyeola, Generalized Osborn
Loops of Order 4n, Acta Universitatis Apulensis Maths. Inform. Vol.
43, 19-31, (2015).



[15]

[22]

[23]

Classification of Osborn loops of order 4n 45

A. O. Isere, J. O. Adeniran and T. G. Jaiyeola, Holomorphy of Osborn
Loops, Analele Universitatii de Vest, Timisoara. Seria Matematica -
Informatica. LIIT , 2, pp. 81- 98, (2015).

A. O. Isere, J. O. Adeniran and A. A. A. Agboola, Representations of
Finite Osborn Loops, Journal of Nigerian Mathematical Society, Vol.
35(2), pp. 381-389, (2016).

T. G. Jaiyeola, The study of the universality of Osborn loops, Ph. D.
thesis, University of Agriculture, Abeokuta, (2008).

T. G. Jaiyeola, A study of new concepts in smarandache quasigroups
and loops, ProQuest Information and Learning(ILQ), Ann Arbor,
USA, 127 pp., (2009)

T. G. Jaiyéola, On three cryptographic identities in left universal Os-
born loops, Journal of Discrete Mathematical Sciences and Cryptogra-
phy, Vol. 14, No. 1, pp. 33-50, (2011).

T. G. Jaiyéola, Osborn loops and their universality, Scientific Annals
of ”ALIL Cuza” University of Iasi., Vol. 58, No. 2, pp. 437452, (2012).

T. G. Jaiyéola, On two cryptographic identities in universal Osborn
loops, Journal of Discrete Mathematical Sciences and Cryptography,
Vol. 16, No. 2-3, pp. 95-116, (2013).

T. G. Jaiyéola, New identities in universal Osborn loops II, Algebras,
Groups and Geometries, Vol. 30, No. 1, pp. 111-126, (2013).

T. G. Jaiyéola, On some simplicial complexes of universal Osborn
loops, Analele Universitatii De Vest Din Timisoara, Seria Matematica-
Informatica, Vol. 52, No.1, pp. 65-79. DOI: 10.2478 /awutm-2014-0005,
(2014).

T. G. Jaiyéola and J. O. Adénfran, Not every Osborn loop is universal,
Acta Mathematica Academiae Paedagogiace Nyregyhziensis, Vol. 25,
No. 2, pp. 189-190, (2009).

T. G. Jaiyéold and J. O. Adéniran, New identities in universal Osborn
loops, Quasigroups and Related Systems, Vol. 17, No. 1, pp. 55-76,
(2009).



46

[26]

[27]

[28]

[29]

A. O. Isere, J. O. Adéniran and T. G. Jaiyéold

T. G. Jaiyéola and J. O. Adéniran, Loops that are isomorphic to their
Osborn loop isotopes(G-Osborn loops), Octogon Mathematical Maga-
zine, Vol. 19, No. 2, pp. 328-348, (2011).

T. G. Jaiyéold and J. O. Adéniran, On another two cryptographic iden-
tities in universal Osborn loops, Surveys in Mathematics and its Ap-
plications, Vol. 5, 17-34, (2010).

T. G. Jaiyéola and J. O. Adéniran, A new characterization of Osborn-
Buchsteiner loops, Quasigroups And Related Systems, Vol. 20, No. 2,
pp. 233-238, (2012).

T. G. Jaiyéola , J. O. Adéniran and A. R. T. Sdldrin, Some necessary
conditions for the existence of a finite Osborn loop with trivial nucleus,
Algebras, Groups and Geometries, Vol. 28, No. 4, pp. 363-380, (2011).

M. K. Kinyon, A survey of Osborn loops, Milehigh conference on loops,
quasigroups and non-associative systems, University of Denver, Den-
ver, Colorado, (2005).

J. M. Osborn, Loops with the weak inverse property, Pac. J. Math. 10,
pp. 295-304, (1961).

H. O. Pflugfelder, Quasigroups and loops: Introduction, Sigma series
in Pure Math. 7, Heldermann Verlag, Berlin, 147 pp, (1990).

M. Purtill,On Moufang loops of order the product of three primes, J.
Algebra, 112 : pp. 122-128, (1988).

A. R. T. Solarin and B. L. Sharma, Some Examples of Bol Loops,
Acta Universitatis Carolinae-Mathematica et Physics. 25, 1, pp. 59-
68, (1983)

A. R. T. Solarin and B. L. Sharma, Bol Loop of order 12, An, Smitt.
Univ. "Al I ciza”, Tasi Sect I a Mat (NS) 29, 69-80, (1983).



Classification of Osborn loops of order 4n

Abednego O. Isere

Department of Mathematics,
Faculty of Physical Sciences,
Ambrose Alli University,

Ekpoma 310001,

Nigeria

e-mail : isereao@aauekpoma.edu.ng

J. O. Adéniran

Department of Mathematics
Federal University of Agriculture
Abeokuta 110101

Nigeria

e-mail : adeniranoj@funaab.edu.ng

and

T. G. Jaiyéola

Department of Mathematics
Obafemi Awolowo University
Ile Tfe 220005

Nigeria

e-mail : tjayeola@oauife.edu.ng

47



