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Introduction

The theory of quivers and their representations has been an active area of
research for many years and found applications in many other branches of
Mathematics such as algebra, Lie theory, algebraic geometry, and even in
Physics. The main problem lies in the classification of the representations
of a given quiver, up to isomorphism. A theorem due to Gabriel completely
solved the problem in a very special case, for quivers of simply-laced Dynkin
type, they admit only finitely many isomorphism classes of indecomposable
representations. In general, it is very difficult to find a classification result
for arbitrary quivers.

Geometrically, the problem translates into the study of the orbit space
of a certain affine space under the action of a reductive group. However as
we shall see, simply considering the quotient obtained by classical invariant
theory does not always lead to an interesting moduli space: the quotient is
trivial for quivers without oriented cycles.

In order to get an interesting moduli space of representations of quivers,
A. King (1994) [18] introduced the notion of stability for representations of
a quiver in the same vein as the notion of stability for vector bundles due
to D. Mumford. The idea is to pick an open subset that contains enough
closed orbits, and to construct the quotient of that subset via Mumford’s
Geometric Invariant Theory (GIT). The choice of the open set depends on a
notion of stability, which has both algebraic and geometric interpretations.

The moduli spaces for vector bundles or locally free sheaves on smooth
projective curves were first constructed by Mumford (1963) [28] and Se-
shadri (1967) [36] by introducing several key ideas and the notions like,
stability, semistability and S-equivalence. These notions and constructions
were extended to higher dimensional projective varieties over arbitrary al-
gebraically closed fields [17, 21, 22]. The work of Simpson [39] and Langer
[20] accomplished the construction of moduli of sheaves over higher dimen-
sional varieties, using methods of Mumford’s Geometric Invariant Theory.
For a modern account of moduli spaces of sheaves and their construction
in higher dimensions, see [19].

In [1], Luis Álvarez-Cónsul and Alastair King have constructed the mod-
uli spaces of semistable sheaves using the representations of a Kronecker
quiver. This new approach provides an explicit closed scheme-theoretic
embedding of moduli spaces Mss

X (P ) of semistable sheaves having fixed
Hilbert polynomial P using certain determinant theta functions on such
moduli spaces. These determinant theta functions coincide with the Falt-
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ings theta functions on moduli of semistable vector bundles on smooth
projective curves. This positively answers the question of C. S. Seshadri
related to Faltings theta functions (see Section 4.1).

In [2], the authors have extended a functorial construction of [1] to the
moduli of equivariant sheaves on projective Γ-schemes, for a finite group Γ,
by introducing the Kronecker-McKay quiver.

In [5], a GIT-free construction of the moduli space of semistable parabolic
bundles over a smooth projective curve is constructed using the analo-
gous Faltings parabolic theta functions. In [3], it is proved that Faltings
parabolic theta functions can be used to give a closed scheme-theoretic
embedding of moduli of semistable parabolic bundles, using the results of
[2].

In this article, our main aim is to survey the results of the papers
[13, 40, 18, 1, 38, 5, 2, 3] by outlining the ideas rather than reproducing
the formal proofs. The literature on the topics discussed here is enormous
and the list of references given at the end of this article is by no means
complete, the author wishes to apologize for the unintentional exclusions
of missing relevant references.

The article is organized as follows: In Section 1, we recall some ba-
sic definitions and results pertaining to quivers and their representations.
In Section 2, we present the main results of [13, 40] concerning the ring
of semi-invariants of quivers. In Section 3, we briefly outline the results
of [18] regarding the construction of quiver representation using Geomet-
ric Invariant Theory. Section 4 is devoted to some applications of quiver
representations to moduli of sheaves and closely related theta functions.

1. Preliminaries

In this section, we will recall some basic concepts related to quivers and
their representations. The material of this section is mainly taken from
[4, 6, 9, 11].

Quiver representations

A quiver is just a (finite) directed graph. More precisely, a quiver is a
quadruple Q = (Q0, Q1, s, t), consisting of the finite set of vertices Q0, the
finite set of arrows Q1, the source and the target maps s, t : Q1 → Q0.
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Example 1.1.

Definition 1.2. A representation M of a quiver Q consists of a family of
k-vector spaces Mv indexed by the vertices v ∈ Q0 together with a family
of linear maps Ma:Ms(a) −→Mt(a) indexed by the arrows a ∈ Q1.

A representation M of a quiver Q is finite dimensional if so are all the
vector spaces Mv. In this case, the family

dim(M) := (dimMv)v∈Q0 ∈ Z
Q0
≥0

is the dimension vector of M .

Let M and N be two representations of a quiver Q. A morphism
φ:M −→ N is a family of k-linear maps

(φv:Mv −→ Nv)v∈Q0

such that the diagram

Ms(a)
Ma−→ Mt(a)

φs(a)

⏐⏐y ⏐⏐y φt(a)
Ns(a) −→

Na

Nt(a)

commutes for each a ∈ Q1.
We say that a morphism φ:M −→ N is an isomorphism if for each

v ∈ Q0, the linear map φv:Mv −→ Nv is an isomorphism of k-vector
spaces, and we write M ∼= N .

We denote by HomQ(M,N) the set of morphisms of representations
from M to N . In fact, we get the category of representations of a quiver Q

Marisol Martínez
ex1-1B
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over k, which we denote by Repk(Q). One can define the usual operations
like, direct sums, subrepresentations, quotients of representations in an
obvious way. It is easy to check that Repk(Q) is k-linear abelian category.

Example 1.3. Consider the loop quiver

A representation of L is a pair (V, f); where V a vector space of di-
mension n and f an endomorphism of V . By choosing a basis of V , we
can identify f with n× n matrix A. Therefore, the isomorphism classes of
n-dimensional representations of L correspond bijectively to the conjugacy
classes of n × n matrices. In particular, there are infinitely many isomor-
phism classes of representations of the loop having a prescribed dimension.

More generally, if we consider the r-loop Lr (a quiver with one vertex
and r loops), then there are infinitely many isomorphism classes of repre-
sentations of Lr having a prescribed dimension.

Example 1.4. Consider the r-arrow Kronecker quiver

A representation of Kr consists two vector spaces V,W together with r
linear maps

f1, . . . , fr:V −→W .

It is clear that when r = 1, then the the representations of dimension
vector (m,n) are classified by the rank of the n×m matrix; and hence there
are only finitely many isomorphism classes of representations of K1 having
dimension vector (m,n). While in the case of r ≥ 2, the classification of
representations of Kr upto isomorphism is quite complicated. In this case,
there are infinitely many isomorphism classes of representations of Kr with
prescribed dimension vector. It is worth to note that when r = 2, then the
classification is due to Kronecker (see [6, Theorem 4.3.2]).

The above examples motivate to ask what type of quivers admit only
finitely many isomorphism classes of representations of any prescribed di-
mension vector. A theorem due to Gabriel yields a complete description of

Marisol Martínez
ex1-3

Marisol Martínez
ex1-4
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these quivers, their underlying undirected graphs are simply-laced Dynkin
diagrams. For a more detailed account of this theorem, see [6, Sec. 4.7],
[9, Sec. 2.4].

The path algebra

Let Q be a quiver. A path p in a quiverQ is a finite sequence (a1, a2, . . . , an)
of arrows such that t(ai) = s(ai+1) for i = 1, 2, . . . , n− 1.

For a path p = (a1, a2, . . . , an), we define s(p) := s(a1) and t(p) := t(an).
For every vertex v ∈ Q0, we define a trivial path ev with s(ev) = t(ev) = v.

If p = (a1, a2, . . . , an) and q = (b1, b2, . . . , bm) are two paths such that
t(p) = s(q), then we can define the path pq by

pq := (a1, a2, . . . , an, b1, b2, . . . , bm).

We set es(p)p = p and pet(p) = p.

Definition 1.5. The associative algebra kQ is the k-vector space spanned
by all paths (including trivial paths) in Q with the multiplication defined
as follows:

p · q =
(

pq ift(p) = s(q)
0 otherwise

This associative algebra kQ is called the path algebra of a quiver Q over a
field k.

Example 1.6. Consider the loop quiver

Then, it is clear that the path algebra of L is the polynomial ring k[T ]
in one variable with coefficients in k.

More generally, the path algebra of the r-loop Lr is the non-commutative
free algebra khX1, . . . ,Xri with r generators.

Example 1.7. Consider the r-arrow Kronecker quiver

The path-algebra of the r-arrow Kronecker quiver Kr has basis

Marisol Martínez
ex1-6

Marisol Martínez
ex1-7
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ei, ej , α1, . . . , αr. Thus, kKr is the direct sum of kα1 ⊕ · · · ⊕ kαr, with
kei ⊕ kej (a subalgebra isomorphic to k × k).

In the form of matrix algebra, we can write it as

kKr =

⎛⎜⎝ k H

0 k

⎞⎟⎠
where H is an r-dimensional k-vector space. Therefore, we sometime rep-
resent the r-arrow Kronecker quiver by simply

• H−→ •

where H is the multiplicity space of arrows having dimension r as k-vector
space.

LetMod-kQ denote the category of right kQ-modules. It is well known
that the categoriesMod-kQ and Repk(Q) are equivalent [4, Theorem 1.5].
Therefore, in the following, we use the same notation for a module and the
corresponding representation.

Given v ∈ Q0, consider the representation S(v) defined by

S(v)v = k, S(v)w = 0(w ∈ Q0, v 6= w), S(v)a = 0(a ∈ Q1).

Then clearly, the representation S(v) is simple with dimension vector �v =³
(�v)w

´
, where (�v)w = 1, if v = w and (�v)w = 0, otherwise. If kQ is finite

dimensional, then all simple representations are of the above type only [9,
Proposition 1.3.1].

We say that Q has no oriented cycles if there is no non-trivial path p
such that s(p) = t(p). It is clear from the definition of path algebra that
the algebra kQ is a finite dimensional k-vector space if and only if Q has
no oriented cycles.

1.1. The geometric approach

We fix a quiver Q and a dimension vector α ∈ ZQ0≥0. Choose vector spaces
Mv of dimension αv. Then the isomorphism classes of representations of Q
with dimension vector α are in natural one-to-one correspondence with the
orbits in the representation space

R(Q,α) :=
M
a∈Q1

Homk(Ms(a),Mt(a))
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of the reductive group

GL(α) :=
Y
v∈Q0

GL(Mv)

acting by
(g · φ)a := gt(a)φag

−1
s(a),

where g = (gv)v∈Q0 ∈ GL(α) and φ = (φa)a∈Q1 ∈ R(Q,α).
Note that the one-parameter subgroup

∆ := {(tIdMv)v∈Q0 |t ∈ k∗}

of GL(α) acts trivially on R(Q,α). Thus, the action of GL(α) factors
through an action of the quotient group

PGL(α) := GL(α)/∆ .

It is clear that any point x ∈ R(Q,α) defines a representationMx of Q, and
vice versa. Moreover, two points x and y are in the same orbit of GL(α) (or,
equivalently of PGL(α)) if and only if the corresponding representations
Mx and My are isomorphic.

Given a representation M of Q with dimension vector α, we denote by
OM , the orbit of the corresponding point in R(Q,α) with respect to the
natural action of GL(α) on R(Q,α). Then,

OM = {x ∈ R(Q,α) |Mx
∼=M}

Proposition 1.8. [9, Theorem 2.3.1] Let

0 −→M 0 −→M −→M 00 −→ 0(1.1)

be an exact sequence of finite dimensional representations of Q.

1. If the sequence (1.1) is non-split, then OM 0⊕M” ⊂ OM \OM .

2. The exact sequence (1.1) splits if and only if OM = OM 0⊕M 00 .

As a consequence of the Proposition 1.8 and the Jordan-Hölder theorem
(see [6, Theorem 1.1.4]), we have

Corollary 1.9. The orbit OM is closed if and only if the representation
M is semi-simple.
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Now, consider the affine quotient of R(Q,α) by GL(α), that is,

R (Q,α) //GL (α) := Spec (I (Q,α)) ,

where I(Q,α) := k[R(Q,α)]GL(α) is the ring of GL(α)-invariant polyno-
mials on R(Q,α). By standard results from geometric invariant theory,
it follows that there is a natural bijection from the set of closed points
of the affine algebraic variety Spec(I(Q,α)) to the set of closed GL(α)-
orbits in R(Q,α). By Corollary 1.9, it follows that the affine quotient
R (Q,α) //GL (α) parametrizes semi-simple representations of dimension
vector α.

Remark 1.10. If Q has no oriented cycle, then any semi-simple represen-
tation with dimension vector α is isomorphic to

L
v∈Q0 αvS(v), see Section

1. Therefore, origin is the only point in R(Q,α) which corresponds to
semi-simple representations, and hence every orbit closure contains the ori-
gin. Hence, the moduli spaces provided by the classical invariant theory is
not interesting in this case. This is because the classical theory only picks
out closed GL(α)-orbits in R(Q,α), which correspond to semi-simple rep-
resentations. To get interesting moduli spaces of representations, A. King
has applied Mumford’s geometric invariant theory, with trivial linearization
twisted by a character χ of GL(α). We will discuss this approach in §3.

2. Derksen-Weyman-Schofield semi-invariants

In this section, we will give an outline of the main results of [13] and [40].

Given a vertex v ∈ Q0, one can define the standard indecomposable
representation P (v) by evkQ. Note that P (v)w = evkQew is the vector
space spanned by all paths from v to w. Using the decomposition 1 =P

v∈Q0 ev, we obtain the corresponding decomposition

kQ '
M
v∈Q0

P (v) .

For any representation M of Q, the evaluation map

εM :HomQ(P (v),M) −→Mv

given by f 7→ fv(ev) is a natural isomorphism. From this it follows that
P (v)(v ∈ Q0) are projective kQ-modules.
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Proposition 2.1. [9, Proposition 1.4.1] For any (right) kQ-moduleM , we
have an exact sequence of kQ-modules

0 −→
M
a∈Q1

Mes(a)⊗kP (t(a))
ξ−→

M
v∈Q0

Mev⊗kP (v)
η−→M −→ 0 .

(2.1)

The exact sequence eq-Ringel is called the standard (Ringel) resolution
of the kQ-module M ; it is a projective resolution of length at most 1.

Given any two kQ-modules M and N , consider a projective resolution

· · · −→ P2 −→ P1 −→ P0 −→M −→ 0.

By applying the functor HomQ(−, N), we obtain a complex

HomQ(P0, N) −→ HomQ(P1,N) −→ HomQ(P2, N) −→ · · ·

The ith homology group is denoted by ExtiQ(M,N), which is independent
of the choice of a projective resolution of M (see, [6, §2.4]). The space
Ext1Q(M,N) is called the space of self-extensions of M .

Using the standard resolution, one obtain the following:

Corollary 2.2. For any representations M and N of a quiver Q, the map

dMN :
Y
v∈Q0

Homk(Mv, Nv) −→
Y
a∈Q1

Homk(Ms(a), Nt(a))

given by
(uv)v∈Q0 7→ (ut(a)Ma −Naus(a))a∈Q1

has kernelHomQ(M,N) and cokernelExt1Q(M,N). Moreover, ExtjQ(M,N) =
0 for all j ≥ 2.

By considering the dimensions in the Corollary 2.2, we have

dimHomQ(M,N)−dimExt1Q(M,N) =
X
v∈Q0

αvβv−
X
a∈Q1

αs(a)βt(a),

(2.2)
where α and β are dimension vectors of M and N respec-

tively. From this, it follows that the left-hand side of eq-dim-hom-ext de-
pends only on the dimension vectors of M,N and is a bi-additive functions
of these vectors. This motivates the following:

If α, β ∈ ZQ0 , then we define the Euler form by

hα, βi =
X
v∈Q0

αvβv −
X
a∈Q1

αs(a)βt(a).(2.3)
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The ring of semi-invariants

We will now apply invariant theory to quiver representations. Let α be a
dimension vector of a quiver Q. We have the algebraic group GL(α) acting
on the representation space R(Q,α). Recall that the ring of invariants of
R(Q,α) defined as

I(Q,α) := k[R(Q,α)]GL(α)

is trivial if Q has no oriented cycles. In this case, we do not get an inter-
esting object by considering the affine quotient. Therefore, we will look at
the ring of semi-invariants.

Let χ:GL(α) −→ k∗ be a character. Such a character always looks like

g 7→
Y
v∈Q0

det(gv)
θv

where θ ∈ Γ := ZQ0 is called the weight. The character defined by the
function θ:Q0 −→ Z will be denoted by χθ. We can view weights as dual
to dimension vectors HomZ(Γ,Z) as follows: If α is a dimension vector,
then we define

θ(α) =
X
v∈Q0

θvαv .

Conversely, if σ ∈ HomZ(Γ,Z), then we define

θv = σ(ε(v)),

where ε(v) is the dimension vector given by ε(v)v = 1 and ε(v)w = 0, if
v 6= w.

Recall that a function f ∈ k[R(Q,α)] is called semi-invariant of weight
χθ if

f(g · x) = χθ(g)f(x) .

The ring of semi-invariants is defined as

SI(Q,α) := k[R(Q,α)]SL(α) =
M
θ∈Γ

SI(Q,α)χθ .

where SI(Q,α)χθ is the space of all semi-invariants of weight χθ. Note
that if SI(Q,α)χθ 6= ∅, then θ(α) = 0. To see this, consider the action of
tId ∈ GL(α). If f is a semi-invariant of weight χθ, then

f =
Y
v∈Q0

det(tIdθv)
θvf =

Y
v∈Q0

tθ(α)f .
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Hence, θ(α) = 0.
Let M and N be two representations of a quiver Q of dimension vector

α and β respectively. Let us assume that the Euler form (see Euler-form)

hα, βi = 0 .
Then the linear map

dMN :
Y
v∈Q0

Homk(Mv, Nv) −→
Y
a∈Q1

Homk(Ms(a), Nt(a))

is represented by a square matrix. We now define c(M,N) := det(dMN ). For
fixed M ∈ Repk(Q,α), we get a semi-invariant cM := c(M,−) ∈ SI(Q,β).
Similarly, for a fixed representation N of Q of dimension vector β, we get
semi-invariant cN := c(−, N) ∈ SI(Q,α). This is well-defined up to a
scalar which will be fixed once chosen a basis for the vector spaces Mv and
Nv for all v ∈ Q0. The semi-invariants c

M and cN are called Schofield
semi-invariants. One can easily check that cM has weight χθ, where

θv = hα, ε(v)i .
Recall that for any dimension vector γ, we defined

θ(γ) =
X
v∈Q0

θvγv .

In this way, we can view θ as a function on dimension vectors, and hence,
the weights and dimension vectors can be viewed as being dual to each
other. Now we have θ(ε(v)) = θv = hα, ε(v)i. In particular, we can write
θ = hα,−i. Therefore, the semi-invariant cM lies in SI(Q,β)hα,−i and the
semi-invariant cN lies in SI(Q,α)h−,βi.

Theorem 2.3. [13, 40] The ring SI(Q,β) is a k-linear span of the semi-
invariants cM , whereM runs through all representations ofQwith hdim(M), βi =
0. In particular, SI(Q,β)χθ is spanned by cM ’s, where M ∈ Repk(Q,α)
and θ = hα,−i with θ(β) = 0.

3. King’s approach

We will give a brief outline of the moduli construction of quiver represen-
tations given by A. King [18]. D. Mumford has developed the geometric
invariant theory to construct the moduli spaces of geometric objects in al-
gebraic geometry (see [25, 27, 30] for detailed account of this theory). Here,
we mainly follow the presentation of [18]. Now onwards, we assume that k
is an algebraically closed field; unless otherwise mentioned.
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Stability of quiver representations

Fix θ ∈ Γ. For a representation M of a quiver Q, we define

θ(M) :=
X
v∈Q0

θv dimMv .

Definition 3.1. We say that a representationM of a quiverQ is θ-semistable
if θ(M) = 0 and every subrepresentation M 0 ⊆M satisfies θ(M 0) ≥ 0. We
say that M is θ-stable if the only subrepresentations M 0 with θ(M 0) = 0
are M and 0.

For a general notion of semistability in an abelian category, see [33]. A
more detailed account of the algebraic aspect of stability of quiver repre-
sentations can be found in [32, §4].

Let us fix a dimension vector α. Let χθ be a character of GL(α) corre-
sponding to θ.

Definition 3.2. We say that a point x ∈ R(Q,α) is χθ-semistable if there
exists a semi-invariant f ∈ SI(Q,α)χnθ with n ≥ 1 such that f(x) 6= 0. We
say that a point x ∈ R(Q,α) is χθ-stable if x is χθ-semistable and, further
dimG·x = dimPGL(α) and the GL(α)-action on {f ∈ k[R(Q,α)] | f(x) 6=
0} is closed.

We shall denote by R(Q,α)ss the set of θ-semistable points, and by
R(Q,α)s the set of θ-stable points in R(Q,α).

The GIT quotient of R(Q,α) by GL(α) with respect to a linearization
given by the character χθ is

Mss
Q (α, θ) := Proj

µM
n≥0

SI(Q,α)χnθ

¶
.

We have a natural morphism π:R(Q,α)ss −→ Mss
Q (α, θ) which is a good

categorical quotient. In fact, the GIT quotient Mss
Q (α, θ) can be described

in terms of equivalence classes of orbits as follows:
Two points x, y ∈ R(Q,α)ss determine the same point in Mss

Q (α, θ) if
and only if

OMx ∩OMy ∩R(Q,α)ss 6= ∅ .

Since the closure of every orbit contains a unique closed orbit, it follows
that Mss

Q (α, θ) parametrizes the closed orbits in R(Q,α)ss. Note that here
we are taking orbits that are closed in R(Q,α)ss, not in R(Q,α).
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By general theory, we get a projective morphism

p:Mss
Q (α, θ) −→ R (Q,α) //GL (α)

which sends every semistable orbit OM to the unique closed orbit contained
in OM .

If Q is a quiver without oriented cycles, then R (Q,α) //GL (α) is a
point. Hence, in this case, the GIT quotient Mss

Q (α, θ) is a projective
variety.

We define
Ms

Q(α, θ) := π(R(Q,α)s).
The algebraic semistability notion (see Definition 3.1) for representa-

tions of a quiver is indeed a GIT-notion. For this, we have

Proposition 3.3. [18, Proposition 3.1] A point x ∈ R(Q,α) is χθ-semistable
(respectively χθ-stable) if and only if the corresponding representation Mx

is θ-semistable (respectively θ-stable).

Let us note that for any morphism between θ-semistable representa-
tions, the kernel, image and cokernel of the morphism are all θ-semistable
and hence the θ-semistable representations form an abelian subcategory
of kQ-Mod. Moreover, the simple objects in this subcategory are pre-
cisely the θ-stable representations. Since this category is Noetherian and
Artinian, the Jordan-Hölder theorem holds, and so we have a notion of
S-equivalence in this category. More precisely, given a θ-semistable repre-
sentation M , there exists a Jordan-Hölder filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mr =M,

such that all quotientsMi/Mi−1 are θ-stable representations. By the Jordan-
Hölder theorem, the representation

gr(M) :=
rM

i=1

Mi/Mi−1

depends only on M . The representation gr(M) is called the associated
graded representation toM in the category of θ-semistable representations.

Definition 3.4. We say that two θ-semistable representations are S-equivalent
if they have isomorphic associated graded representations in the category
of θ-semistable representations. We say that a representation M of Q is
θ-polystable if M is direct sum of θ-stable representations.
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Proposition 3.5. [18, Proposition 3.2] Let M and N be two θ-semistable
representations of a quiver Q. Then

(1) A GL(α)-orbit OM of a θ-semistable representation M is closed in
R(Q,α)ss if and only if M is θ-polystable.

(2) OM ∩ON ∩R(Q,α)ss 6= ∅ if and only if M and N are S-equivalent.

Using Propositions 3.3, 3.5, we have a more precise description of the
varieties Mss

Q (α, θ) and Ms
Q(α, θ) in terms of algebraic stability of quiver

representations (see, Definition 3.1). More precisely, the closed points of
quotient Mss

Q (α, θ) are in one-to-one correspondence with S-equivalence
classes of θ-semistable representations of Q. The closed points of an open
subset Ms

Q(α, θ) of M
ss
Q (α, θ) correspond to the isomorphism classes of θ-

stable representations of Q.

Moduli of representations

We will now describe that the variety Mss
Q (α, θ) ‘corepresents’ the appro-

priate moduli functor which justifies the use of the term ‘moduli space’ for
this variety. In the terminology introduced by Simpson [39, Section 1], a
(coarse) moduli space is a scheme which corepresents a moduli functor. We
first recall some basic definitions. Let Sch◦ be the opposite category of
schemes and Set be the category of sets. For a scheme Z, its functor of
points

Z:Sch◦ −→ Set

is given by X 7→ Hom(X,Z). By Yoneda Lemma, every natural transfor-
mation Y −→ Z is of the form f for some morphism of schemes f :Y −→ Z.

Definition 3.6. Let M:Sch◦ −→ Set be a functor, M a scheme and
ψ:M −→ M a natural transformation. We say that M corepresents M
if for each scheme Y and each natural transformation h:M −→ Y , there
exists a unique g:M −→ Y such that h = g ◦ ψ, that is the following
diagram

M

ψ

⏐⏐⏐⏐y &h

M −→g Y

commutes.
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A family of kQ-modules over a connected scheme S is a locally-free
sheaf F over S together with a k-algebra homomorphism kQ −→ End(F).
On the other hand, a family of representations of Q is a representation of
Q in the category of locally-free sheaves over S. The equivalence between
the kQ-modules and the representations of Q extends naturally to families.

Let us consider the moduli functor

Mss
Q :=Mss

Q (α, θ):Sch
◦ −→ Set

where MsssQ (S) is the set of all isomorphism classes of families over S of
θ-semistable representations with dimension vector α.

Theorem 3.7. [18, Proposition 5.2] The variety Mss
Q (α, θ) corepresents

the moduli functorMss
Q , and the closed points of M

ss
Q (α, θ) correspond to

the S-equivalence classes of θ-semistable representations of Q.

We say that a dimension vector α is a Schur root if there exists a
representation of dimension vector α with trivial endomorphism ring. The
precise criterion for the existence of θ-stable representation of a quiver Q
having dimension vector α is given by the following result (see, [34]).

Proposition 3.8. [18, Proposition 4.4] There exists some θ ∈ Γ for which
Ms

Q(α, θ) is non-empty if and only if α is a Schur root.

We say that some property is true for a general representation with di-
mension vector α if this property is independent of the point chosen in some
non-empty open subset ofR(Q,α). A dimension vector β is called a general
subvector of α if a general representation of dimension vector α has a sub-
representation of dimension vector β. In general, it is not possible to choose
θ such that general representations of all Schur roots are θ-stable. However,
the following result gives a more stronger characterization of Schur roots.

Theorem 3.9. [34, Theorem 6.1] Let α be a dimension vector for the
quiver Q, and let θα(β) := hβ, αi − hα, βi, where h, i is the Euler form
Euler-form. Then, the dimension vector α is Schur root if and only if the
general representation of dimension vector α is θα-stable.

The notion of general representation and general subvector are quite
useful in studying the birational classification of Mss

Q (α, θ) (see [34, 35] for
more details).
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Remark 3.10. The path algebra of a (finite) quiver is hereditary, i.e.,
every submodule of a projective module is projective. In fact, over an alge-
braically closed field, every finite dimensional hereditary algebra is Morita
equivalent to the path algebra of a (finite) quiver without oriented cycles.
Thus, the representations of quivers are quite useful in order to study the
representations of finite dimensional k-algebras (see [6, Chapter 4]). Let
k be an algebraically closed field. Given any finite dimensional k-algebra
Λ, there exist a quiver Q (called the quiver associated to Λ) such that
the categoryMod(Λ) is an abelian subcategory of kQ-Mod. The vertices
of Q are in one-one correspondence with the isomorphism classes of sim-
ple Λ-modules, and thus the Grothendieck group K0(Mod(Λ)) is the free
abelian group generated by Q0. Therefore, an integer-valued function θ on
Mod(Λ) is merely an element of ZQ0 , and hence determines a character of
GL(α) as discussed in Section 1.1. For a more precise account of moduli of
representations of a finite dimensional algebra, see [18, Section 4].

For further study of moduli of representations, one may consult [10,
12, 31, 35]. This list is very far from being complete, it should rather be
considered as starting points for further reading.

4. Applications

In this section, we shall briefly outline the functorial approach to construct
the moduli of sheaves using moduli of representations of a Kronecker quiver
[1].

Brief review of the constructions

D. Mumford [28] introduced the notion of semistability for vector bun-
dles on a curve, and constructed the moduli space of stable vector bun-
dles over a curve as a quasi-projective variety, by reducing the problem in
GIT. Latter, C. S. Seshadri [36] introduced the notion of S-equivalence for
semistable vector bundles, and constructed the moduli space of semistable
vector bundles to obtain a compactification of the moduli space of sta-
ble vector bundles over a curve using GIT. These concepts and techniques
have been extended to torsion-free sheaves on higher dimensional varieties
[17, 21, 22]. The advantage of restricting to semistable sheaves is that the
moduli problem is bounded. To construct a moduli space using GIT, one
need to have a boundedness result, and this is one of the complications
in extending the techniques to higher dimensional varieties. C. T. Simp-
son [39] extended the notion of semistability to ‘pure’ sheaves, and using



782 Sanjay Amrutiya

Maruyama’s boundedness result, he obtained the boundedness of semistable
sheaves over a projective scheme of finite type defined over an algebraically
closed field of characteristic zero. When the characteristic of the base field
is positive, the boundedness result for semistable sheaves is obtained by A.
Langer [20].

Let us recall the basic steps in the construction of moduli of semistable
sheaves with a fixed Hilbert polynomial P .

• The first step is to identify the isomorphism classes of semistable
sheaves with Hilbert polynomial P with orbits in certain Quot scheme
for certain action of a reductive group.

• The second step is to find a projective embedding of Quot scheme to
reduce the problem in to the GIT quotient.

C. Simpson used Grothendieck’s embedding of Quot scheme into a
Grassmannian, and constructed the moduli space of semistable sheaves
as a GIT quotient. In [1], Álvarez-Cónsul and King have combined these
two steps and embedded the moduli functor of semistable sheaves into the
moduli functor of representations of a Kronecker quiver. A substantial part
of the work in [1] is to relate the notion of stability of sheaves with the sta-
bility of the corresponding representations of this quiver. The problem of
constructing moduli space of semistable sheaves then reduced to construct
the GIT quotient of certain locally closed subscheme of a representation
space of this quiver. In the following, we will give a brief overview of this
functorial construction of moduli of semistable sheaves over a projective
variety.

Sheaves and Kronecker modules

Let (X,OX(1)) be a polarized projective variety over an algebraically closed
field k. By a sheaf on X, we mean a coherent sheaf of OX-module. Let E
be a non-zero sheaf on X. Its dimension is the dimension of the support
Supp(E) := {x ∈ X | Ex = 0} ⊂ X.

We say that E is pure if the dimension of any non-zero subsheaf F ⊂ E
equals the dimension of E . The Hilbert polynomial P (E) is given by

P (E , c) =
∞X
i=0

(−1)ihi(E(c)),

where hi(E(c)) = dimHi(X, E(c)). It is known that

P (E , c) = rcd/d! + terms of lower degree in c,
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where d is the dimension of E and r = r(E) is a positive integer. Let us
denote by Coh(X) the category of sheaves on X.

Definition 4.1. A sheaf E on X is called semistable if E is pure and, for
each nonzero subsheaf E 0 ⊂ E ,

P (E 0)
r(E 0) ≤

P (E)
r(E) .(4.1)

We say that E is stable if the above inequality is strict for all proper
subsheaves E 0 of E .

For integers m > n, consider the sheaf T = OX(−n)⊕OX(−m) and a
finite dimensional k-algebra

A =

Ã
k H
0 k

!

It is clear that A is the path algebra of the Kronecker quiver K : • H−→ •,
where H = H0(OX(m − n)) is the multiplicity space for arrows. Note
that a right A-module is a pair (V,W ) of finite dimensional k-vector spaces
together with a Kronecker module map α : V ⊗k H −→W . Let us denote
byMod-A, the category of (right) A-modules. There is an intrinsic notion
of semistability for A-modules.

Definition 4.2. An A-module M = V ⊕W is called semistable if for each
non-zero submodule M 0 = V 0 ⊕W 0 of M ,

dimV 0

dimW 0 ≤
dimV

dimW
.(4.2)

We say that M is stable if the above inequality is strict for all proper
submodules M 0 of M .

The above notion of semistability forA-modules coincide with the θ-semistability
of representations of Kronecker quiver for θ = (−b, a). Therefore, by King’s
general construction of moduli of representations of a quiver, one obtains
the moduli of semistable A-modules, which we denote by Mss

A (a, b) :=
Mss

K (α, θ), where α = (a, b) and θ = (−b, a).
For any sheaf E on X, we have the quiver representation

HomX(T,E) = H0(E(n))⊕H0(E(m))
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together with αE :H0(E(n))⊗H → H0(E(m)). We obtained a functor

Φ := HomX(T,−):Coh(X) −→Mod-A

given by E 7→ HomX(T,E). The functor Φ has a left adjoint

Φ∨ := −⊗A T :Mod-A −→ Coh(X)

which is quite useful in describing the functorial embedding of semistable
sheaves in the category of Kronecker modules. More precisely, if OX(m−n)
is regular, then the functor Φ induces a fully faithful embedding of the full
subcategory of n-regular sheaves in the category of Kronecker modules [1,
Theorem 3.4].

A functorial construction

Fix a Hilbert polynomial P . Let us consider the moduli functor
MX(P ):Sch

◦ −→ Set which assigns to each scheme S the set of all iso-
morphism classes of flat families over S of n-regular sheaves on X having
Hilbert polynomial P . There are open sub-functors Ms

X ⊂ Mss
X of MX

defined by demanding that all the sheaves in flat families are stable or
semistable, respectively. There are also sub-functors Mreg

X (n) ⊂ MX of
n-regular sheaves, for any fixed integer n. The main ingredient in the con-
struction is the careful analysis of the preservation of semistability under
the functor Φ.

Theorem 4.3. [1, Theorem 5.10, Corollary 5.11] For sufficiently largemÀ
nÀ 0, the following holds:

1. A sheaf E on X is semistable if and only if it is pure, n-regular and
the A-module Φ(E) is semistable.

2. The functor Φ preserves the S-equivalence classes, i.e., the semistable
sheave E and E 0 having Hilbert polynomial P are S-equivalent if and
only if the A-modules Φ(E) and Φ(E 0) are S-equivalent.

Therefore, the functorΦ gives a set-theoretic embedding of S-equivalence
classes of semistable sheaves with Hilbert polynomial P into S-equivalence
classes of semistable Kronecker modules with dimension vector (P (n), P (m)).

By fixing the vector spaces V and W of dimension P (n) and P (m)
respectively, we obtain the linear space R = Hom(V⊗H,W ) parametrizing
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Kronecker modules of dimension vector (P (n), P (m)), with linear action of
the reductive group G = GL(V )×GL(W ).

An important key point is that the Kronecker module M is in the im-
age of the functor Φ is locally closed condition in R ([1, Proposition 4.2]).
This enables to prove that the moduli functor Mreg

X (n) is locally isomor-
phic to the quotient functor Q/G, where Q is a locally closed G-invariant
subscheme of R (see, [1, Theorem 4.5]). This provides a key ingredient in
the construction of moduli space of semistable sheaves on X with Hilbert
polynomial P ; essentially replacing the Quot scheme in the usual construc-
tion. The open subscheme Q[ss] of Q parametrizing semistable sheaves is
a locally closed subscheme of Rss. It turn out that the moduli functor
Mss

X (P ) is locally isomorphic to the quotient functor Q
[ss]/G. Therefore,

the problem of construction of moduli scheme Mss
X (P ) which corepresent

the moduli functor Mfss reduced to the problem of existence of a good
quotient of Q[ss] by G. The moduli scheme Mss

X (P ) constructed as a good
quotient of Q[ss] by G ([1, Proposition 6.3]) is, a priori, quasi-projective.
There is morphism ϕ:Mss

X (P ) −→Mss
A (P (n), P (m)) induced by the inclu-

sion Q[ss] ⊂ Rss. If the characteristic of the filed k is zero, then ϕ is closed
scheme-theoretic embedding . In general, we may not have the same con-
clusion in characteristic p > 0. Using the valuative criterion for properness,
it is proved that Mss

X (P ) is proper [1, Proposition 6.5].

Theorem 4.4. [1, Theorem 6.4]

1. There is a projective scheme Mss
X (P ) which corepresents the moduli

functorMss
X(P ). Moreover, the closed points of M

ss
X (P ) correspond

to the S-equivalence classes of semistable sheaves with Hilbert poly-
nomial P .

2. There is an open subscheme Ms
X(P ) of M

ss
X (P ) which corepresents

the moduli functor Ms
X(P ) and whose closed points correspond to

the isomorphism classes of stable sheaves with Hilbert polynomial P .

The determinant theta functions

It is very interesting that the functorial approach to construct the mod-
uli spaces of sheaves is closely related to ‘theta functions’. In fact, us-
ing the results of [13, 35] (see Section 2), one obtains an explicit ho-
mogeneous co-ordinates on the moduli spaces Mss

A (a, b) in terms of cer-
tain Schofield semi-invariants, so called determinant theta functions. Us-
ing the adjunction between Φ and Φ∨, one obtains an explicit homoge-
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neous co-ordinates of the moduli space Mss
X (P ) as a restriction of de-

terminant theta functions through the closed scheme-theoretic embedding
Mss

X (P ) −→Mss
A (P (n), P (m)) (except in the case of characteristic p > 0).

In the following, we shall briefly outline this projective embedding of
the moduli space Mss

X (P ).

Using Theorem 2.3, one can give a characterization of the semistability
of Kronecker modules in terms of invertibility of certain maps between
projective modules. First note that P0 = Ae0 and P1 = Ae1 are two
indecomposable projective A-modules such that A = P0 ⊕ P1. If M is any
A-module, then V = HomA(P0,M), W = HomA(P1,M) (see, Section 2)
and the corresponding Kronecker module α:V ⊗H −→W is given by the
composition

HomA(P0,M)⊗H −→ HomA(P1,M),

where H = HomA(P1, P0).

A Kronecker module M of dimension vector (a, b) is semistable if and
only if there is a semi-invariant f of weight (−nb, na) such that f(M) 6= 0,
for some positive integer n (see, Proposition 3.3). Using Theorem 2.3, it
follows thatM is semi stable if and only if there exists a Kronecker module
N such that cN(M) 6= 0, where cN is a determinant semi-invariant of
weight (−nb, na). Note that the Kronecker module N is also semistable,
and hence saturated. Hence, it follows by simple computation that N has
a projective resolution of the form γ:U1 ⊗ P1 −→ U0 ⊗ P0 and cN = θγ ,
where θγ(M) := detHomA(γ,M).

Let U = (U0, U1) be a pair of finite dimensional vector spaces such
that adimU0 = bdimU1. Then for any flat family M over a scheme S
of A-module with dimension vector (a, b), we get a line bundle λU (M) :=
(detHomX(U0, V )

−1 ⊗ (detHomX(U1,W ) over S. For any map γ:U1 ⊗
P1 −→ U0 ⊗ P0, we get a global section θγ(M) of λU (M). In this way, we
have a formal line bundle λU with a global section θγ on the moduli functor
MA(a, b). Using Kempf’s descent criterion, it is proved the restriction of
this formal line bundle and section to the moduli functorMss

A (a, b) descends
to a line bundle λU (a, b) and section θγ(a, b) on the moduli space M

ss
A (a, b)

[1, Proposition 7.5].

Note that the line bundle λU (a, b) depends only on dimU0 and dimU1
upto isomorphism. Let M be the tautological family of A-modules on R.
Note that λU (M) is the G-linearized line bundle used in the construction
of GIT quotient Mss

A (a, b). Thus, the restriction of λU (M) to R
ss descends

to the quotient Mss
A (a, b) and hence, the line bundle λU(a, b) on Mss

A (a, b)
is ample. Moreover, the space of global sections of λU (a, b) is canonically
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isomorphic to the space of semi-invariants on R with weight χU [1, Propo-
sition 7.6]. By choosing sufficiently large U0, U1 and using Theorem 2.3,
we can find finitely many γ0, . . . , γK :U1 ⊗ P1 −→ U0 ⊗ P0 such that map

Θγ :M
ss
A (a, b) −→ PK ; [M ] 7→ (θγ0(M) : · · · : θγK (M))

is scheme-theoretic closed embedding [1, Theorem 7.8].
Most of the above can be carried over to the case of sheaves, using the

adjunction between Φ and Φ∨. For sufficiently large enough mn, let E be
n-regular pure sheaf of Hilbert polynomial P . Then E is semistable if and
only if there is a map δ:U1⊗OX(−m) −→ U0⊗OX(−n) such that θδ(E) :=
detHomX(δ, E) 6= 0. Given a family E over a scheme S of n-regular sheaves
with Hilbert polynomial P and a map δ:U1 ⊗OX(−m) −→ U0 ⊗OX(−n)
with P (n) dimU0 = P (m) dimU1, we get a line bundle λU (E) on S with a
section θδ(E). In this way, one obtains a formal line bundle on the moduli
functorMss

X which descends to the genuine line bundle λU (P ) on the mod-
uli space Mss

X (P ). Under the embedding ϕ:M
ss
X (P ) −→Mss

A (P (n), P (m)),
where n,m satisfy some technical conditions (see [1, Section 5.1]), we have
λU (P ) = ϕ∗λU(a, b) and a global section θδ(P ) = ϕ∗λU (P (n), P (m)).
Therefore, the line bundle λU (P ) on Mss

X (P ) is ample [1, Proposition 7.7].
Now using the adjunction between Φ and Φ∨, we have the following:

Theorem 4.5. [1, Theorem 7.10] For any Hilbert polynomial P , there ex-
ist vector spaces U0, U1 and finitely many maps δ0, . . . , δK :U1⊗OX(−m) −→
U0 ⊗OX(−n) such that the map

Θδ:M
ss
X (P ) −→ PK ; [E ] 7→ (θδ0(E) : · · · : θδK (E))

is a closed scheme-theoretic embedding in characteristic zero. In the case
of positive characteristic, it is scheme-theoretic on the stable locusMs

X(P ).

4.1. Faltings theta functions

In [16], a GIT-free construction of the moduli spaceMss
C (r, d) of semistable

vector bundles of rank r and degree d on a smooth projective curve C
defined over k is given by G. Faltings (see also [38]). The main ingredient
is the following cohomological criterion of semistability of vector bundles
on C.

Theorem 4.6. [16, 38] A vector bundle E on C is semistable if and only
if there exists a vector bundle F on C such that E ⊗ F is cohomologically
trivial, i.e., H0(C,E ⊗ F ) = 0 = H1(C,E ⊗ F )
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The above characterization of semistable vector bundles is very crucial
to give a GIT-free construction of moduli of vector bundles over a smooth
projective curve. To see this, suppose that E is a family of vector bundles
on C parametrized by a scheme S and F is a vector bundle on C. Then,

there is a 2-term complex K• : K0 d−→ K1 of vector bundles on S that
computes the cohomology of E ⊗ F locally over S. That is, the fibres of
Ker(d) and Coker(d) at each s ∈ S are isomorphic to H0(Es ⊗ F ) and
H1(Es ⊗ F ), respectively. The complex K• is not unique, but any other
complex of vector bundles with this property must be quasi-isomorphic to
K•. Since the determinant line bundles of two quasi-isomorphic complexes
are isomorphic, we have a well-defined determinant line bundle on S asso-
ciated to E ⊗ F , which we denote by D(E ⊗ F ). If χ(Es ⊗ F ) = 0 for all
s ∈ S, then the vector bundles appearing in K• have the same rank, and
hence there is a section θF canonically identified locally with det d. For
s ∈ S, observe that

θF (s) 6= 0 if and only if H0(C, Es ⊗ F ) = 0 = H1(C, Es ⊗ F ).

By Theorem 4.6, it follows that if θF (s) 6= 0, then Es is semistable.
Note that if r0 = rk(F ) and L = det(F ) are fixed, then line bundle

D(E ⊗ F ) is independent of the choice of F [38, Lemma 2.5]. Therefore,
we denote this determinant line bundle on S by simply D(r0, L, E). As F
varies with given rank and degree such that χ(E ⊗ F ) = 0, we get sections
θF of D(r, L, E). These functions, so called Faltings theta functions, are
used to give an implicit construction of the moduli space Mss

C (r, d). In the
following, we give a brief outline of this construction.

GIT-free construction

Let R(r, d) be a smooth quasi-projective variety, and let E be a family of
vector bundles of rank r and degree d on C parametrized by R(r, d) such
that

• given a semistable vector bundle E on C of rank r and degree d there
is an q ∈ R(r, d) such that E is isomorphic to Eq.

• R(r, d) has the local universal property with respect to families of
semistable vector bundles.

We refer to [36, 38] for the proof of the existence of R(r, d) having the
above properties. Let R(r, d)ss and R(r, d)ss be open subset of R(r, d)
parametrizing semistable and stable bundles in the family E . By choosing
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a vector bundle F of fixed rank and determinant such that χ(E ⊗ F ) =
0, one gets the corresponding section θF of the line bundle D(r, L, E) on
R(r, d)ss. From the discussion after Theorem 4.6, it follows that if for
q ∈ R, θF (q) 6= 0, then the corresponding vector bundle Eq is semistable.
In fact, one can find finitely many vector bundles F1, F2, . . . , FN of fixed
rank and determinant such that the sections {θF1 , θF2 , . . . , θFN} have no
base points on R(r, d)ss [38, Lemma 3.1]. In other words, it is possible to
detect all semistable vector bundles of rank r and degree d on C by finitely
many Faltings theta functions using the chomological characterization of
semistable vector bundles . Let

Θ:R(r, d)ss −→ PN

be the corresponding morphism into the projective space. Let Mss
C (r, d)

be the set of S-equivalence classes of semistable vector bundles of rank r
and degree d on C. Then the image M1 = Θ(R(r, d)

ss) is a closed in PN ,
and hence it is a projective variety (see [38, p. 182]). Let φ:R(r, d)ss −→
Mss

C (r, d) be a set-theoretic map defined by q 7→ gr(Eq). Then the map Θ
factors through φ, i.e., the following diagram

R (r, d)ss

φ

⏐⏐⏐⏐y & Θ

Mss
C (r, d)

−−→
j1 M1

commutes. Consider the normalization ι:M −→ M1 of M1 in the func-
tion filed of R(r, d)ss. Then M is normal projective variety and there is
a set-theoretic bijection j:Mss

C (r, d) −→ M [38, p. 183-186]. Therefore,
Mss

C (r, d) admits the structure of normal projective variety which corepre-
sent the moduli functor of semistable vector bundles of rank r and degree
d. This gives an implicit construction of the moduli space Mss

C (r, d). Let

ΘF :M
ss
C (r, d)

'−→M
L−→M1 /→ PN

be the corresponding morphism, which is a normalization of the image of
Θ.
C. S. Seshadri raised a question in [38, Remark 6.1] that how close this
normalization being an isomorphism. In [15], it is proved that one can find
ΘF which is a scheme-theoretic embedding on the stable locus Ms

C(r, d).
By using the above functorial approach, it turns out that the determinant
theta functions coincide with the Faltings theta functions, and hence by
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Theorem 4.5, the above map ΘF is a closed scheme-theoretic projective
embedding of Mss

C (r, d) answering positively the above question
1 (see [1,

Section 7.4] for more details).

4.2. Equivariant sheaves

In [2], the Álvarez-Cónsul and King’s construction is extended to the moduli
of equivariant sheaves on projective Γ-schemes, for a finite group Γ. In
the first step, the problem is translated into the Γ-Kronecker modules by
giving a straightforward generalisation of the results of [1]. The main new
ingredient is to translate further the problem from Γ-Kronecker modules to
the representations of an appropriate Kronecker-McKay quiver, which are
called the Kronecker-McKay modules.

Let Γ be a finite group, and let Y be a Γ-projective scheme, of finite
type over an algebraically closed field k of an arbitrary characteristic, with
a very ample invertible Γ-linearized sheaf OY (1). For a technical reason,
if the ground field is of positive characteristic, then it is assumed that the
order of the group Γ is co-prime to the characteristic of the field k.

Let F be an OY -module. Recall that a Γ-sheaf structure on F is the
following data: For any γ ∈ Γ, an isomorphism λγ:F −→ (γ−1)∗F of OY -
modules such that λγγ0 = (γ−1)∗λγ0 ◦ λγ and λ1Γ = 1F , where γ, γ0 ∈ Γ
and 1Γ is the identity element of Γ.

Let F be a Γ-sheaf on Y . A subsheaf F 0 ⊆ F is called Γ-subsheaf if
λγ(F 0) ⊆ (γ−1)∗F 0 for all γ ∈ Γ.

Let {ρ1, . . . , ρr} be all the irreducible representations of Γ. We define

Pρi (E, l) :=
∞X
j=0

(−1)j dimHomΓ

³
ρi,H

j(E(c))
´
.

We denote the r-tuple of polynomials (Pρ1 (E) , ..., Pρr (E)) by Pρ (E). Fix
r-tuple of polynomials (P1, . . . , Pr), which we denote by τP . We say that a
Γ-sheaf E is of type τP if Pρ(E) = τP .

Definition 4.7. A Γ-sheaf E is semistable if E is pure and, for each non-
zero Γ-subsheaf E0 ⊂ E, the inequality (4.1) holds. We say that a Γ-sheaf
E is stable if the inequality (4.1) is strict for all proper Γ-subsheaf E0.

A Γ-sheaf E is semistable if and only if the underlying sheaf E is
semistable in the usual sense.

1It should be mentioned here that much more is known in the curve case, namely the
strange-duality conjecture is solved by A. Marian and D. Oprea [29].
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For integersm > n, let T := OY (−n)⊕OY (−m) andH := H0(Y,OY (m−
n)). Then for any Γ-sheaf E , the space of global sections H0(E(n)) and
H0(E(m)) has a natural Γ-module structure induced from the Γ-structure
on E and OY (1). Moreover, the evaluation map αE:H

0(E(n)) ⊗k H −→
H0(E(m)) is Γ-equivariant, where H has a natural Γ-module structure.
This motivates the following:

By a Γ-Kronecker module M , we mean a pair of finite dimensional
Γ-modules (V,W ) with a Γ-equivariant map α:V ⊗k H −→W .

Let

AΓ =

⎛⎜⎝ k[Γ] k[Γ]⊗k H

0 k[Γ]

⎞⎟⎠
where H has a natural induced action of Γ.

It is easy to check that a right AΓ-module structure on M is equivalent
to a Γ-Kronecker module structure onM (see [2, Section 2]). LetMod-AΓ

denote the category of Γ-Kronecker modules. Then, there is a natural
functor

ΦΓ := HomY (T,−):CohΓ(Y ) −→Mod-AΓ .(4.3)

Let M be an AΓ-module. An AΓ-submodule M
0 ⊂M is given by k[Γ]-

subspaces V 0 ⊂ V and W 0 ⊂ W such that α(V 0 ⊗H) ⊂ W 0. There is an
intrinsic notion of semistability for AΓ-modules as follows [1, cf. p. 620].

An AΓ-module M = V ⊕ W is semistable if, for each non-zero AΓ-
submodule M 0 = V 0 ⊕W 0 of M , the inequality (4.2) holds. We say that
an AΓ-module M is stable if the inequality (4.2) is strict for all proper
AΓ-submodules M

0.

Kronecker-McKay modules

Let V,H andW be finite dimensional representations of Γ over k. We have
the following decomposition of finite dimensional representations

V =
M
i

Vi ⊗ ρi, W =
M
j

Wj ⊗ ρj and ρi ⊗H =
M
j

Hij ⊗ ρj ,

where Vi = HomΓ(ρi, V ) and Wj = HomΓ(ρj ,W ).
Now using the above decomposition and Schur’s lemma, we get the

following relation between morphisms

HomΓ(V ⊗H,W ) =
M
i,j

Hom(Vi ⊗Hij ,Wj).(4.4)
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Let I0 = I1 be the set of all irreducible representations of the group Γ.

Definition 4.8. The Kronecker-McKay quiver (associated to the Γ-module
H) is the quiver with the vertex set a disjoint union I0 t I1 and the arrow
set consists of edges with the multiplicity Hij between two vertices i ∈ I0
and j ∈ I1.

The above definition of Kronecker-McKay quiver is motivated from the
definition of McKay quiver of a group which are embedded in a linear group
[24].

Let BH denote the path algebra of this Kronecker-McKay quiver. The
right BH-modules is called Kronecker-McKay modules. Using the relation
Mckay rel between morphisms, we get the relation between Γ-Kronecker
modules and Kronecker-McKay modules. LetMod-BH be the category of
all finitely generated Kronecker-McKay modules. Then, we get a functor

Ψ:Mod-AΓ −→Mod-BH(4.5)

which is an equivalence, in fact, it is Morita equivalence [2, Section 4.1].

A functorial embedding and preservation of semistability

Now fix a type τP . Let E be an n-regular Γ-sheaf of type τP . Then ΦΓ(E) is
an AΓ-module given by (H

0(E(n)),H0(E(m)), αE). The Γ-module struc-
ture on H0(E(n)) is determined by the multiplicities of irreducible rep-
resentations in H0(E(n)). Since E is of type τP , the multiplicity of ρi
in H0(E(n)) is ai := Pi(n), i = 1, . . . , r and the multiplicity of ρj in
H0(E(m)) is bj := Pj(m), j = 1, . . . , r. Let τ represent the isomorphism
classes of Γ-modules of dimension a := P (n) and b := P (m) determined by
type τP .

Fix Γ-modules V and W of dimensions a and b, respectively. We say
that a Γ-Kronecker module α:V ⊗ H −→ W is of type τ if the pair of
Γ-modules (V,W ) is of type τ .

Note that the AΓ-modules of type τ corresponds to the Kronecker-
McKay modules of the dimension vector (a,b) := (a1, . . . , ar, b1, . . . , br).

Consider the composition of functors Φ := Ψ◦ΦΓ:CohΓ(Y ) −→Mod-BH .
The next task is to choose the appropriate notion of semistability for
Kronecker-McKay modules, so that the functor Φ preserve the notion of
semistability.

The preservation of semistability under the functor ΦΓ is a straightfor-
ward generalization of the results of [1, Section 5] (see, [2, Section 3]). The
description of the functor Ψ motivates the following:
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For a Kronecker-McKay module N := (V1, . . . , Vr,W1, . . . ,Wr), we de-
fine the slope µ(N) as follows:

µ(N) :=

rX
i=1

dimVi · dim ρi

rX
j=1

dimWj · dim ρj

.

Definition 4.9. LetN be a Kronecker-McKay module of dimension vector
(a,b). We say that N is semistable (respectively, stable) if for all non-zero
proper BH-submodules N 0 of N , we have µ(N 0) ≤ µ(N) (respectively,
µ(N 0) < µ(N)).

For sufficiently large mÀ nÀ 0, the following holds [2, Theorem 3.1,
Proposition 4.3]

1. A Γ-sheaf E on Y is semistable if and only if it is pure, n-regular and
the Kronecker-McKay module Φ(E) is semistable.

2. The functor Φ preserves the S-equivalence classes, i.e., the semistable
sheave E and E 0 having type τP are S-equivalent if and only if the
Kronecker-McKay modules Φ(E) and Φ(E 0) are S-equivalent.

Moduli functors and the representation space

Fix a type τP . Consider the moduli functorMY (τP ):Sch
◦ −→ Set which

assigns to each scheme S the set of all isomorphism classes of flat families
over S of Γ-sheaves on Y of type τP . We denote by Ms

Y (τP ) ⊆Mss
Y (τP )

open sub-functors consists of isomorphism classes of flat families over S of
stable (resp. semistable) Γ-sheaves on Y of type τP . For sufficiently large
enough integer n, the functorMss

Y (τP ) is an open sub-functor ofM
reg
Y (τP )

which is defined as a sub-functor of MY (τP ) by demanding that all the
Γ-sheaves of type τP in the flat families are n-regular.

In order to construct the moduli space of semistable Γ-sheaves of type
τP , we translate the problem into the GIT quotient of certain open subset
of a representation space of Kronecker-McKay quiver.

Let
R̃ := RBH

(a,b) =
M
i,j

Homk(Vi ⊗Hij ,Wj).(4.6)

be the representation space of Kronecker-McKay modules of a fixed dimen-
sion vector (a,b). Let GΓ :=

Q
i,j GL(Vi) × GL(Wj)/∆, where as before

∆ := {(t1, . . . , t1) | t ∈ k×}.
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Note that the isomorphism classes of Kronecker-McKay modules are
in a natural bijection with the orbits of the representation space by the
canonical left action of GΓ, that is, for g = (g0i, g1j)i,j and α = (αij)i,j ∈ R̃,

(g · α)i,j := g1j ◦ αij ◦ (g−10i ⊗ 1Hij ).

There are open subsets R̃s ⊆ R̃ss ⊆ R̃ given by the conditions that
α ∈ R̃ is stable or semistable with respect to the semistability notion defined
in the Definition 4.9.

Consider the character

χ:GΓ −→ k∗; (g0i, g1j) 7→
Y
i

det(g0i)
−b|ρi| ·

Y
j

det(g1j)
a|ρj |(4.7)

It can be easily checked that the Kronecker-McKay moduleM is semistable
in the sense of Definition 4.9 if and only if the corresponding point (αij) ∈ R̃
is χ-semistable (resp. χ-stable). Let Mss

BH
(a,b) be the good quotient of

R̃ss by GΓ and M
s
BH
(a,b) be the geometric quotient of R̃s by GΓ Using

the general theory of moduli of representations of quivers [18], we have the
moduli spacesMs

BH
(a,b) ⊆Mss

BH
(a,b) of stable and semistable Kronecker-

McKay modules of dimension vector (a,b), respectively (cf. [1, §4.8]).

Construction of moduli of equivariant sheaves

A key point is that the Kronecker-McKay module M is in the image of the
functor Φ̃ is locally closed condition in R̃ ([2, Proposition 2.4, Proposition
5.2]). This enables to prove that the moduli functor Mreg

Y (τP ) is locally
isomorphic to the quotient functor Q̃/GΓ, where Q̃ is a locally closed GΓ-

invariant subscheme of R̃ (see, [2, Theorem 5.1]). The open subscheme
Q̃[ss] of Q̃ parametrizing semistable Γ-sheaves of type τP is a locally closed
subscheme of R̃ss. It turn out that the moduli functor Mss

Y (τP ) is lo-
cally isomorphic to the quotient functor Q̃[ss]/GΓ. Therefore, the problem
of construction of moduli scheme Mss

Y (τP ) which corepresent the moduli
functorMss

Y (τP ) reduced to the problem of existence of a good quotient of
Q̃[ss] by GΓ. The moduli schemeM

ss
Y (τP ) is constructed as a good quotient

of Q̃[ss] by GΓ ([2, Proposition 5.3]) is, a priori, quasi-projective. There is
morphism φ:Mss

Y (τP ) −→Mss
BH
(a,b) induced by the inclusion Q̃[ss] ⊂ R̃ss.

Using the valuative criterion for properness, it is proved that Mss
Y (τP ) is

proper [2, Proposition 5.4].
As in the non-equivariant case, we have the explicit description of the

projective embedding of the moduli spaceMss
Y (τP ) into the projective space
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using certain determinant theta functions. For more detailed account of
this, we refer to [2, Section 6]. The main result is as follows:

Theorem 4.10. [2, Theorem 6.3] For any type τP , we can find a Γ-modules
U0, U1 (satisfying certain condition) and finitely many Γ-equivariant maps

δ0, . . . , δN :U1 ⊗OY (m) −→ U0 ⊗OY (−n)

such that the map

Θδ:M
ss
Y (P, τP ) −→ PN : [E] 7→ (θδ0(E): · · · : θδN (E))(4.8)

is a closed scheme-theoretic embedding in characteristic zero, while in char-
acteristic p, it is scheme-theoretic on the stable locus.

4.3. Parabolic bundles

The notion of parabolic structure on vector bundles over a compact Rie-
mann surface was first introduced by C. S. Seshadri and their moduli were
constucted by V. B. Mehta and C. S. Seshari [26]. Since then the parabolic
bundles and their moduli spaces have been studied quite extensively by
several Mathematicians. The notion of parabolic bundles and several other
related notions and techniques have been generalized from curves to higher
dimensional varieties by Maruyama and Yokogawa [23]. In the following,
we will restrict ourselves to describe some results concerning to Faltings
parabolic theta functions on curves using the results of §4.2.

Let C be a smooth projective curve defined over the field C of complex
numbers. Let P = x1+x2+· · ·+xl be a divisor of C. A parabolic bundle E∗
on C with parabolic structure over P is a vector bundle E on C equipped
with a weighted flag of the fibre over each point x ∈ P . More precisely,
a parabolic bundle E∗ on C with parabolic structure over P is a vector
bundle E on C together with the following data:

(a) for each x ∈ P , a strictly decreasing flag

F •E(x) : E(x) = F 1E(x) ⊃ F 2E(x) ⊃ · · · ⊃ F kxE(x) ⊃ F kx+1E(x) = 0,

where E(x) denote the fibre of E over x. The integer kx is called the
length of the flag F •E(x).

(b) for each x ∈ P , a sequence of real numbers 0 ≤ αx1 < αx2 < · · · <
αxkx < 1, called the weights associated to the flag F

•E(x).
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Let E∗ = (E,F iE(x), αxi )x∈P be a parabolic bundle on C. Let

rxi = dimF iE(x)− dimF i+1E(x) .

The sequence (αx1 , α
x
2 , . . . , α

x
kx
) is called the type of the flag F •E(x), and

rxi is called the multiplicity of the weight α
x
i . By a fixed parabolic type τp,

we mean a fixed flag type and weights.
We have the notion of parabolic degree defined as follows:

pdeg(E) = deg(E) +
X
x∈P

kxX
i=1

rxi α
x
i ,

where deg(E) denotes the topological degree of E.
The parabolic slope, denoted by pµ(E∗), is defined by

pµ(E∗) =
pdeg(E)

rank(E)

Thus, we have the notion of semistability for parabolic bundles on C [26].
Recall that any subbundle F of E has the structure of parabolic bundle
uniquely determined by that of E. We say that a parabolic vector bundle
E∗ semistable (respectively, stable) if for every proper subbundle F of the
vector bundle E, we have

pµ(F∗) ≤ pµ(E∗)(respectively,pµ(F∗) < pµ(E∗)).

For a fixed parabolic type τp (with rational weights), let N0 be a pos-
itive integer such that all parabolic weights are integral multiple of 1/N0.
Then there is an algebraic Galois covering p: eC −→ C with Galois group Γ
such that the category of all Γ-equivariant vector bundles over Y is equiv-
alent to the category of all parabolic vector bundles on C with parabolic
structure over P with all the weights are integral multiple of 1/N0 [26, 8].
For a Γ-equivariant vector E0 on eC, let E∗ := (p∗E0)Γ be the corresponding
parabolic bundle on C with natural parabolic structure. Then, we have

pdeg(E) =
degE0

N0
.(4.9)

Remark 4.11. Let h:Y −→ C be an algebraic Galois covering with Galois
group G. Let E be a G-equivariant bundle on Y of rank r, and y ∈ Y .
Then E is defined locally at y by a representation of the isotropy group Gy,
which is determined uniquely upto isomorphism of representations of Gy.
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If y1, y2 ∈ Y such that h(y1) = h(y2), then the isotropy groups Gy1 and Gy2

are conjugate subgroups of G. Hence, a G-equivariant bundle E on Y is
defined locally at y1 and y2 by a conjugate representations of Gy1 . Choose
a point x̃i of Y over each ramification point xi in C of a covering h. Let τ
represents the isomorphism classes of representations (i:Gx̃i −→ GL(r,C).

We say that a G-equivariant bundle E is locally of type τ , if at each
x̃i, the vector bundle E is locally Gx̃i-isomorphic to the Gx̃i-equivariant
bundle defined by (i.

By fixing a local type τ , the parabolic type τp gets automatically fixed
and vice-versa, by rigidity.

A cohomological criterion for a parabolic vector bundle on a curve to be
semistable is proved in [7]. To state the result precisely, let V 0 := OeC⊗kk[Γ]
be the trivial vector bundle on eC. Then V 0 is naturally a Γ-bundle on eC.
Let V∗ be the parabolic vector bundle over C associated to V 0.

Theorem 4.12. [7, Theorem 2.1] A parabolic vector bundle E∗ over C is
semistable if and only if there is a parabolic vector bundle F∗ such that

Hi(C,E∗ ⊗ F∗ ⊗ V∗)0) = 0

for all i, where (E∗ ⊗ F∗ ⊗ V∗)0 is the underlying vector bundle of the
parabolic tensor product E∗ ⊗ F∗ ⊗ V∗ on C.

Let E∗ be a family of parabolic bundles of parabolic type τp on C
parametrized by a scheme S. As a consequence of the above criterion,
the semistable parabolic bundles in the family E∗ can be detected by the
non-vanishing of certain determinant functions, so called Faltings parabolic
theta functions. More precisely, if F∗ is a parabolic bundle on C, then there
is a line bundle D(E∗, F∗, V∗) on S defined as the determinant line bundle of
a 2-term complex P ; • : P 0 p−→ P 1 of vector bundles on S which computes
the cohomology of (E∗⊗F∗⊗V∗)0 locally over S. If χ((E∗⊗F∗⊗V∗)0) = 0,
there is a section θF∗ on S which can be locally identified with det p over
S (cf. §4.1, [3, 5]). For s ∈ S, using Theorem 4.12, it follows that if
θF∗(s) 6= 0, then the parabolic bundle E∗s is semistable.

As in the usual vector bundle case, the above characterization of semistable
parabolic bundles can be used to give a GIT-free construction of the mod-
uli space of semistable parabolic bundles over C. Let us briefly review this
construction.

Recall that there is a smooth quasi-projective variety R(r, d) and a fam-
ily E of vector bundles of rank r and degree d on C parametrized by R(r, d)
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such that underlying vector bundles of all semistable parabolic bundles of
parabolic type τp and degree d occur in this family [26, p. 226] (see §4.1).
Let F (E) be the flag variety of type determined by τp on C ×R(r, d). Let

eR := F (E)|P×R(r,d)

be the restriction of the flag variety F (E) to P × R(r, d), and denote by
π: eR −→ R(r, d) the canonical projection. Let eE∗ := (IdC × π)∗E be the
family of parabolic bundles of parabolic type τp on C parametrized by eR
obtained by pulling back the family E of vector bundles of rank r and
degree d on C parametrized by R(r, d). Let eRss be the set of all points
q ∈ eR such that the corresponding parabolic bundle eE∗q is semistable. It
is proved in [5] that it is possible to find finitely many parabolic bundles
F0∗ , F1∗ , . . . , FN∗ which detect all semistable parabolic bundles of parabolic
type τp and degree d. In other words, the sections {θF0∗ , θF1∗ , . . . , θFN∗}
have no base points in eRss. Hence, they define a morphism

eΘ: eRss −→ PN .

Let Mss
C (τp) be the set of S-equivalence classes of semistable parabolic

vector bundles of parabolic type τp and degree d on C. Then the imagedM1 := eΘ( eRss) is a closed in PN , and hence it is a projective variety (see
[5, p. 447]). Let

ϕ: eRss −→Mss
C (τp)

be a set-theoretic map defined by q 7→ gr(Eq). Then, the map eΘ factors
through ϕ [5, Lemma 4.5].

Let η: cM −→ dM1 be the normalization of dM1 in the function filed ofeRss. There is a set-theoretic bijection κ:Mss
C (τp) −→ cM [5, p. 447-448].

Hence, we get the structure of normal projective variety on Mss
C (τp). The

corresponding morphism on the moduli space

ΘF∗ :M
ss
C (τp)

'−→ cM η−→dM1 /→ PN

is a normalization of the image dM1.
Let MsseC (τ) be the moduli space of semistable Γ-bundles on eC of local

type τ and degree N0d
0, where d0 is determined by (4.9) for a fixed parabolic

type τp (cf. [37], [2]).
By using Seshadri-Biswas correspondence [8], it follows that a set-

theoretic map
ψ:MsseC (τ) −→Mss

C (τp)(4.10)
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defined by [E0] 7→ [E∗], where E∗ = p∗(E0)Γ with natural parabolic struc-
ture, is an isomorphism of schemes.

In [3], using the isomorphism ψ in (4.10), it is proved that the determi-
nant theta functions on MsseC (τ) (see Theorem 4.10) coincide with certain

Faltings parabolic theta functions which gives an implicit construction of
the moduli space Mss

C (τp). Consequently, it follows that the the morphism
ΘF∗ :M

ss
C (τp) −→ PN is a closed scheme-theoretic embedding (see [3] for

more details).

Some questions

It would be interesting to investigate whether one can find an appropriate
quiver (which does not depend on the Galois covering p: eC −→ C and a
Galois group Γ) so that its moduli of representations can be used to give
a functorial construction of the moduli of semistable parabolic bundles on
smooth projective curves or more generally on arbitrary projective varieties.

In view of the Theorem 4.5, Theorem 4.10 and analogous result for
parabolic bundles, this functorial approach may be useful in studying the
projective normality of such moduli spaces.

The birational classification of moduli spaces of representations of quiv-
ers is studied in [31] in which the problem is reduced to the fundamental
problem of simultaneous conjugacy of tuples of square matrices. This may
be useful in studying the rationality problem of certain moduli spaces of
bundles or sheaves.
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