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Abstract

A star edge coloring of a graph G is a proper edge coloring without
bichromatic paths and cycles of length four. In this paper, we obtain
the star edge chromatic number of the corona product of path with
cycle, path with wheel, path with helm and path with gear graphs,
denoted by Pm ◦ Cn, Pm ◦Wn, Pm ◦Hn, Pm ◦Gn respectively.

Keywords : Star edge coloring, corona graph, path, cycle, wheel,
helm and gear graph.
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1. Introduction

All graphs considered in this paper are finite and simple, i.e. undirected,
loopless and without multiple edges. The Maximum degree of a graph G
is denoted by ∆.

The corona of two graphs G1 and G2 is the graph G = G1 ◦G2 formed
from one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1
is adjacent to every vertex in the ith copy of G2.

For any integer n ≥ 4, the wheel graph Wn is the n−vertex graph ob-
tained by joining a vertex v1 to each of the n−1 vertices {w1, w2, . . . wn−1}
of the cycle graph Cn−1.

The helm graph Hn is the graph obtained from an (n+1)-wheel graph
by adjoining a pendent edge at each node of the n-cycle.

The gear graph Gn, also known as a bipartite wheel graph, is a (n+1)-
wheel graph with a graph vertex added between each pair of adjacent graph
vertices of the outer cycle.

An edge coloring of graph G = (V,E) is a function C : E → N , in which
any two adjacent edges e, f ∈ E are assigned different colors. The function
C is known as the edge-coloring function. A graph G for which there exists
an edge-coloring which requires k colors is called k-edge colorable, while
such a coloring is called a k-edge coloring. The smallest number k of which
there exists a k-edge-coloring of G is called the chromatic index of a graph
G and is denoted by χ0(G).

A star edge coloring of a graph G is a proper edge coloring where at
least three distinct colors are used on the edges of every path and cycle of
length four, i.e., there is neither bichromatic path nor cycle of length four.
The minimum number of colors for which G admits a star edge coloring is
called the star edge chromatic index and it is denoted by χ0st (G).

The star edge coloring was initiated in 2008 by Liu and Deng [8], mo-
tivated by the vertex version (see [1, 3, 4, 6, 7, 10]). Dvořák, Mohar
and Šámal [5] determined upper and lower bounds for complete graphs.
L’udmila Bezegová et.al [9] discussed the star edge chromatic number of
trees and outerplanar graphs in terms of its maximum degree ∆.

Additional graph theory terminology used in this paper can be found
in [2].

In the following section, we discuss the star edge chromatic number
of path with cycle, path with wheel, path with helm and path with gear
graphs, denoted by Pm ◦ Cn, Pm ◦Wn, Pm ◦Hn, Pm ◦Gn respectively.
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2. Main Results

Theorem 2.1. For any positive integer m and n > 4, then

χ0st (Pm ◦ Cn) = ∆.

Proof. Let V (Pm) = {ui : 1 ≤ i ≤ m} and

V (Cn) = {vj : 1 ≤ j ≤ n}. Let E (Pm) = {uiui+1 : 1 ≤ i ≤ m− 1} and
E (Cn) = {vjvj+1 : 1 ≤ j ≤ n− 1} ∪ {vnv1}. By the definition of corona
graph,

V (Pm ◦ Cn) = V (Pm) ∪
m[
i=1

{vij : 1 ≤ j ≤ n} and

E (Pm ◦ Cn) = E (Pm) ∪
m[
i=1

{uivij : 1 ≤ j ≤ n} ∪
m[
i=1

{vijvij+1 : 1 ≤ j ≤ n− 1}

∪
m[
i=1

{vin−1vi1} .

Let f be a mapping from E (Pm ◦ Cn) as follows:

Case 1: If m ≥ 3.
For 1 ≤ i ≤ m,

f (uivij) = j, 1 ≤ j ≤ n− 1;(2.1)

f (vijvij+1) =

(
j + 3 (mod n) if j + 3 6≡ 0 (mod n)
n (mod n) if j + 3 ≡ 0 (modm+ n) ;

(2.2)

f (u3i−2u3i−1) = n + 1, 1 ≤ i ≤
»
m− 1
3

¼
; f (u3i−1u3i) = n + 2, 1 ≤

i ≤
∙
m− 1
3

¸
; f (u3iu3i+1) = n, 1 ≤ i ≤

»
m− 1
3

¼
; f (u3i−2v3i−2,n) =

n + 2, 1 ≤ i ≤
»
m− 1
3

¼
; f (u3i−1v3i−1,n) = n, 1 ≤ i ≤

∙
m− 1
3

¸
;

f (u3iv3i,n) = n, 1 ≤ i ≤
¹
m

3

º
.
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Case 2: If m = 2.

f (uivij) = j, 1 ≤ i ≤ m, 1 ≤ j ≤ n;(2.3)

f (u1u2) = n+ 1; and using equation (2.1) and (2.2).

Case 3: If m = 1, determine f using equation (2.1), (2.2) and (2.3).

It is easy to see that f satisfies no bichromatic 4-path. We assume that
χ0st (Pm ◦ Cn) ≤ ∆. We know that χ0st (Pm ◦ Cn) ≥ χ0 (Pm ◦ Cn) ≥ ∆, since
χ0st (Pm ◦ Cn) ≥ ∆. Therefore χ0st (Pm ◦ Cn) = ∆. 2

Theorem 2.2. For any positive integer m and n > 4, then

χ0st (Pm ◦Wn) = ∆.

Proof. Let V (Pm) = {ui : 1 ≤ i ≤ m} and
V (Wn) = {vn}∪{vj : 1 ≤ j ≤ n− 1}. LetE (Pm) = {uiui+1 : 1 ≤ i ≤ m− 1}
and E (Wn) = {vnvj : 1 ≤ j ≤ n− 1}∪{vjvj+1 : 1 ≤ j ≤ n− 2}∪{vn−1v1}.
By the definition of corona graph,

V (Pm ◦Wn) = V (Pm) ∪
m[
i=1

{vij : 1 ≤ j ≤ n} and

E (Pm ◦Wn) = E (Pm) ∪
m[
i=1

{uivij : 1 ≤ j ≤ n} ∪
m[
i=1

{vinvij : 1 ≤ j ≤ n− 1}

∪
m[
i=1

{vijvij+1 : 1 ≤ j ≤ n− 1} ∪
m[
i=1

{vin−1vi1} .

Let f be a mapping from E (Pm ◦Wn) as follows:

Case 1: If m ≥ 3.⎧⎪⎨⎪⎩
For 1 ≤ i ≤ m,
f (uivij) = j, 1 ≤ j ≤ n− 1; f (vinvij) = j + 1, 1 ≤ j ≤ n− 2;
f (vinvin−1) = 1; f (vijvij+1) = j + 3, 1 ≤ j ≤ n− 2;

(2.4)
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f (vin−1vi1) = n+2, 1 ≤ i ≤ m; f (u3i−2u3i−1) = n, 1 ≤ i ≤
»
m− 1
3

¼
;

f (u3i−1u3i) = n+ 1, 1 ≤ i ≤
∙
m− 1
3

¸
; f (u3iu3i+1) = n+ 2, 1 ≤ i ≤»

m− 1
3

¼
; f (u3i−2v3i−2n) = n + 1, 1 ≤ i ≤

»
m

3

¼
; f (u3i−1v3i−1n) =

n+ 2, 1 ≤ i ≤
∙
m

3

¸
; f (u3iv3in) = n, 1 ≤ i ≤

¹
m

3

º
.

Case 2: If m = 2.
f (u1u2) = n+ 1; f (vin−1vi1) = 3; and using equation (2.4).

Case 3: If m = 1.
f (v1n−1v11) = 3; and using equation (2.4).

Clearly the above color partitions satisfies no bichromatic 4-path. We as-
sume that χ0st (Pm ◦Wn) ≤ ∆. We know that χ0st (Pm ◦Wn) ≥ χ0 (Pm ◦Wn) ≥
∆, since χ0st (Pm◦ Wn) ≥ ∆. Therefore χ0st (Pm ◦Wn) = ∆. 2

Theorem 2.3. For any positive integer m and n > 4, then

χ0st (Pm ◦Hn) = ∆.

Proof. Let V (Pm) = {ui : 1 ≤ i ≤ m} and
V (Hn) = {vn}∪{vj : 1 ≤ j ≤ n− 1}∪

n
v0j : 1 ≤ j ≤ n− 1

o
. Let E (Pm) =

{uiui+1 : 1 ≤ i ≤ m− 1} and
E (Hn) = {vnvj : 1 ≤ j ≤ n− 1}∪

n
vjv

0
j : 1 ≤ j ≤ n− 1

o
∪{vjvj+1 : 1 ≤ j ≤ n− 2}∪

{vn−1v1}. By the definition of corona graph,

V (Pm ◦Hn) = V (Pm) ∪
m[
i=1

{vin} ∪
m[
i=1

{vij : 1 ≤ j ≤ n− 1} ∪
m[
i=1

n
v0ij : 1 ≤ j ≤ n− 1

o
,

E (Pm ◦Hn) = E (Pm) ∪
m[
i=1

{uivij : 1 ≤ j ≤ n} ∪
m[
i=1

n
uiv

0
ij : 1 ≤ j ≤ n− 1

o
∪

m[
i=1

{vinvij : 1 ≤ j ≤ n− 1} ∪
m[
i=1

n
vijv

0
ij : 1 ≤ j ≤ n− 1

o
∪

m[
i=1

{vijvi,j+1 : 1 ≤ j ≤ n− 2} ∪
m[
i=1

{vi,n−1vi1} .

Let f be a mapping from E (Pm ◦Hn) as follows:
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Case 1: If m ≥ 3.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

For 1 ≤ i ≤ m,

f (uivij) = j, 1 ≤ j ≤ n; f
³
uiv

0
j

´
= n+ j, 1 ≤ j ≤ n− 2;

f (vinvij) = j + 1, 1 ≤ i ≤ n− 2; f (vinvin−1) = 1;
f (vijvij+1) = n+ j − 1, 1 ≤ j ≤ n− 2; f (vin−1vi1) = 2n− 2;
f
³
vijv

0
ij

´
= n+ j + 1, 1 ≤ j ≤ n− 2;

(2.5)

f
³
u3i−2v03i−2,n−1

´
= 2n+1, 1 ≤ i ≤

»
m

3

¼
; f
³
u3i−1v03i−1,n−1

´
= 2n−

1, 1 ≤ i ≤
∙
m

3

¸
; f
³
u3iv

0
3i,n−1

´
= 2n, 1 ≤ i ≤

¹
m

3

º
; f
³
v3i−2,n−1v03i−2,n−1

´
=

2n, 1 ≤ i ≤
»
m

3

¼
; f

³
v3i−1,n−1v03i−1,n−1

´
= 2n + 1, 1 ≤ i ≤

∙
m

3

¸
;

f
³
v3i,n−1v03i,n−1

´
= 2n − 1, 1 ≤ i ≤

¹
m

3

º
; f (u3i−2u3i−1) = 2n, 1 ≤

i ≤
»
m− 1
3

¼
; f (u3i−1u3i) = 2n+1, 1 ≤ i ≤

¹
m− 1
3

º
; f (u3iu3i+1) =

2n− 1, 1 ≤ i ≤
»
m− 1
3

¼
.

Case 2: If m = 2.
f (u1u2) = 2n; f

³
v1,n−1v01,n−1

´
= 2n; f

³
u1v

0
1,n−1

´
= 2n+ 1; f

³
u2v

0
2,n−1

´
= 2n− 1 and using equation (2.5).

Case 3: If m = 1.
f
³
v1,n−1v01,n−1

´
= 2n; f

³
u1v

0
1,n−1

´
= 2n + 1 and using equation

(2.5).

Clearly the above color partitions satisfies no bichromatic 4-path. We
assume that χ0st (Pm ◦Hn) ≤ ∆. We know that
χ0st (Pm ◦Hn) ≥ χ0 (Pm ◦Hn) ≥ ∆, since χ0st (Pm◦ Hn) ≥ ∆. Therefore
χ0st (Pm ◦Hn) = ∆. 2

Theorem 2.4. For any positive integer m and n ≥ 5, then

χ0st (Pm ◦Gn) = ∆.
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Proof. Let V (Pm) = {ui : 1 ≤ i ≤ m} and
V (Gn) = {vn}∪{vj : 1 ≤ j ≤ n− 1}∪

n
v0j : 1 ≤ j ≤ n− 1

o
. Let E (Pm) =

{uiui+1 : 1 ≤ i ≤ m− 1} and
E (Gn) = {vnvj : 1 ≤ j ≤ n− 1}∪

n
vjv

0
j : 1 ≤ j ≤ n− 1

o
∪
n
v0jvj+1 : 1 ≤ j ≤ n− 1

o
∪©

v0n−1v1
ª
. By the definition of corona graph,

V (Pm ◦Gn) = V (Pm) ∪
m[
i=1

{vin} ∪
m[
i=1

{vij : 1 ≤ j ≤ n− 1} ∪
m[
i=1

n
v0ij : 1 ≤ j ≤ n− 1

o
,

E (Pm ◦Gn) = E (Pm) ∪
m[
i=1

{uivij : 1 ≤ j ≤ n} ∪
m[
i=1

n
uiv

0
ij : 1 ≤ j ≤ n− 1

o
∪

m[
i=1

{vinvij : 1 ≤ j ≤ n− 1} ∪
m[
i=1

n
vijv

0
ij : 1 ≤ j ≤ n− 1

o
∪

m[
i=1

n
v0ijvi,j+1 : 1 ≤ j ≤ n− 2

o
∪

m[
i=1

n
v0i,n−1vi1

o
.

Let f be a mapping from E (Pm ◦Gn) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

For 1 ≤ i ≤ m,

f (uivij) = j, 1 ≤ j ≤ n; f
³
uiv

0
ij

´
= n+ j, 1 ≤ j ≤ n− 2;

f (vinvij) = j + 1, 1 ≤ i ≤ n− 2; f (vinvin−1) = 1;
f
³
vijv

0
ij

´
= j + 2, 1 ≤ j ≤ n− 1; f

³
v0ijv

0
ij+1

´
= n+ j + 1, 1 ≤ j ≤ n− 2;

f
³
v0i,n−1vi1

´
= 2n;

(2.6)

f
³
u3i−2v03i−2,n−1

´
= 2n+1, 1 ≤ i ≤

»
m

3

¼
; f
³
u3i−1v03i−1,n−1

´
= 2n−1,

1 ≤ i ≤
∙
m

3

¸
; f

³
u3iv

0
3i,n−1

´
= 2n, 1 ≤ i ≤

¹
m

3

º
; f (u3i−2u3i−1) = 2n,

1 ≤ i ≤
»
m− 1
3

¼
; f (u3i−1u3i) = 2n+ 1, 1 ≤ i ≤

¹
m− 1
3

º
; f (u3iu3i+1) =

2n− 1, 1 ≤ i ≤
»
m− 1
3

¼
.

Clearly the above color partitions satisfies no bichromatic 4-path. We
assume that χ0st (Pm ◦Gn) ≤ ∆. We know that χ0st (Pm ◦Gn) ≥ χ0 (Pm ◦Gn) ≥
∆, since χ0st (Pm ◦Gn) ≥ ∆. Therefore χ0st (Pm ◦Gn) = ∆. 2
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