Proyecciones Journal of Mathematics Vol. 37, N° 3, pp. 547-564, September 2018. Universidad Católica del Norte Antofagasta - Chile

Some new triple sequence spaces over n-normed space

Tanweer Jalal
National Institute of Technology, India
and
Ishfaq Ahmad Malik
National Institute of Technology, India
Received: November 2017. Accepted: April 2018

Abstract

Triple sequence spaces were introduced by Sahiner et al. [27, 28]. The main objective of this paper is to define some new classes of triple sequences over n-normed space by means of Museiak-Orlicz function and difference operators. We also study some algebraic and topological properties of these new sequence spaces.

2010 Mathematics Subject Classification: 40C05, 46A45, 46E30.

Keywords: Triple sequence spaces, Paranormed spaces, n-normed spaces, Musielak-Orlicz function.

1. Introduction

By w''' we shall denote the class of all complex triple sequence $\langle a_{ijk} \rangle$, where $i, j, k \in \mathbb{N}$, the set of positive integers. Then, w''' is a linear space under the coordinate wise addition and scalar multiplication.

A triple sequence can be represented by a matrix, in case of double sequences we write in the form of a square. In case of triple sequence it will be in the form of a box in three dimensions. The different types of notions of triple sequence was introduced and investigated initially by Sahiner et al. [27, 28], Esi [7], Esi and Catalbas [8], Esi and Savas [9], Datta [2], Debnath [3] and many others.

The concept of 2-normed spaces was initially developed by Gähler [11], in the mid of 1960's while that of n-normed spaces was studied by Misiak [21]. Since then many authors have studied n-normed spaces and obtained various results, see Gunawan ([12, 13]) and Gunawan and Mashadi [14].

Kizmaz [19] introduced the notion of difference sequence spaces as follows $Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$

for

$$Z = \ell_{\infty}$$
, c and c_0 , $\Delta(x) = x_k - x_{k+1}$, $\Delta^0(x) = x_k$.

The study was further generalized by Et and Colak [10] by introducing the spaces $\ell_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$.

The difference operator on triple sequence is defined as

$$\Delta x_{mnk} = x_{mnk} - x_{(m+1)nk}$$
$$-x_{m(n+1)k} - x_{mn(k+1)} + x_{(m+1)(n+1)k}$$
$$+x_{(m+1)n(k+1)} + x_{m(n+1)(k+1)} - x_{(m+1)(n+1)(k+1)}.$$

2. Definitions and preliminaries

Definition 2.1. [27] A triple sequence $\langle a_{ijk} \rangle$ is said to be convergent to L in Pringsheim's sense if for every $\epsilon > 0$, there exists $N(\epsilon) \in \mathbb{N}$ such that

$$|a_{ijk} - L| < \epsilon$$
 whenever $i \ge N, j \ge N, k \ge N$

and is written as $\lim_{i,j,k\to\infty} a_{ijk} = L$.

Note: A triple sequence is convergent in Pringsheim's sense may not be bounded [27].

Definition 2.2. [27] A triple sequence $\langle a_{ijk} \rangle$ is said to be Cauchy sequence if for every $\epsilon > 0$, there exists $N(\epsilon) \in \mathbb{N}$ such that

$$|a_{ijk} - a_{lmn}| < \epsilon$$
 whenever $i \ge l \ge N, j \ge m \ge N, k \ge n \ge N$

Definition 2.3. [27] A triple sequence $\langle a_{ijk} \rangle$ is said to be bounded if there exists M > 0, such that $|a_{ijk}| < M$ for all $i, j, k \in \mathbb{N}$.

Definition 2.4. [2]A Triple sequence space Y is said to be Solid if $\langle \alpha_{ijk} a_{ijk} \rangle \in Y$ whenever $\langle a_{ijk} \rangle \in Y$ and for all triple sequences $\langle \alpha_{ijk} \rangle$ of scalars with $|\alpha_{ijk}| \leq 1$, for all $i, j, k \in \mathbb{N}$.

Definition 2.5. [2] A Triple sequence space Y is said to be monotone if it contains the canonical pre-images of all its step spaces.

Note: A sequence space is solid implies that it is monotone.

Definition 2.6. [18],[24]

(Orlicz function and Musielak-Orlicz function)

An Orlicz function is a function $M: [0,\infty) \to [0,\infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function M is replaced by $M(x+y) \leq M(x) + M(y)$; then this function is called modulus function.

Lindenstrauss and Tzafriri [20] used the idea of Orlicz function to construct Orlicz sequence space:

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \quad \text{ for some } \rho > 0 \right\}$$

The space ℓ_M with the norm:

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p \ (1 \le p < \infty)$, the space ℓ_M coincide with the classical sequence space $\ell_p(p \ge 1)$.

A sequence $f = (f_{mnk})$ of Orlicz function is called a Musielak-Orlicz function. A sequence $g = (g_{mnk})$ defined by

$$g_{mnk}(v) = \sup\{|v|u - (f_{mnk})(u) : u \ge 0\} \ m, n, k = 1, 2, 3, \cdots$$

is called the complementary function of a Musielak-Orlicz function f. For a given Musielak-Orlicz function f, the Musielak-Orlicz sequence space t_f is defined as follows:

$$t_f = \left\{ x \in w''' : I_f(|x_{mnk}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty \right\}$$

where I_f is a convex modulus function defined by:

$$I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{mnk} (|x_{mnk}|)^{\frac{1}{m+n+k}}, \qquad x = (x_{mnk}) \in t_f.$$

Orlicz function M satisfies Δ_2 -condition if and only if for any constant L > 1 there exists a constant K(L) such that $M(Lu) \leq K(L)M(u)$ for all values of $u \geq 0$. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t)dt$$

Where η is known as the kernel of M, is right differentiable for $t \geq 0$, $\eta(0) = 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

Definition 2.7 (n-Normed Space). Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{R} of reals of dimension d, where $2 \leq d \leq n$. A real valued function $\|\cdot, ..., \cdot\|$ on X^n satisfying the following four conditions:

(1) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent in X;

- (2) $||x_1, x_2, ..., x_n||$ is invariant under permutation;
- (3) $\|\alpha x_1, x_2, ..., x_n\| = |\alpha| \|x_1, x_2, ..., x_n\|$ for any $\alpha \in \mathbf{R}$;

$$(4) ||x_1 + x_1', x_2, ..., x_n|| \le ||x_1, x_2, ..., x_n|| + ||x_1', x_2, ..., x_n||;$$

is called an *n*-norm on X and $(X, \|\cdot, ..., \cdot\|)$ is called an *n*-normed space over the field \mathbf{R} .

For example $(\mathbf{R}^n, \| \cdot, ..., \cdot \|_E)$ where

 $||x_1, x_2, ..., x_n||_E$ = the volume of the n – dimensional parallelopiped spanned by the vectors $x_1, x_2, ..., x_n$

which can also be written as

$$||x_1, x_2, ..., x_n||_E = |\det(x_{ij})|$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbf{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, \|\cdot, \dots, \cdot\|)$ be an n-normed space of dimension $2 \le n \le d$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $\|\cdot, \dots, \cdot\|_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, ..., x_{n-1}||_{\infty} = \max\{||x_1, x_2, ..., x_{n-1}, a_i|| : i = 1, 2, ..., n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, ..., a_n\}$.

A sequence (x_k) in a n-normed space $(X, \|\cdot, ..., \cdot\|)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, ..., z_{n-1}|| = 0 \quad \text{for every} \quad z_1, ..., z_{n-1} \in X.$$

A sequence (x_k) in a n-normed space $(X, \|\cdot, ..., \cdot\|)$ is said to be Cauchy if

$$\lim_{k, n \to \infty} ||x_k - x_p, z_1, ..., z_{n-1}|| = 0 \quad \text{for every} \quad z_1, ..., z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space. The n-normed space has been studied in stretch ([1], [4], [5], [6], [21], [22], [23]).

Definition 2.8. [30] (Paranormed Space)

Let X be a linear metric space. A function $p: X \to \mathbf{R}$ is called paranorm, if

- (1) $p(x) \ge 0$, for all $x \in X$
- (2) p(-x) = p(x), for all $x \in X$
- (3) $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$
- (4) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm. For further reference on paranormed space ([15-17], [25], [26]).

If $p = (p_{ijk})$ is a triple sequence of positive real numbers with

$$0 \le p_{ijk} \le \sup p_{ijk} = G, K = \max(1, 2^{G-1})$$

Then

$$(2.1) |a_{ijk} + b_{ijk}|^{p_{ijk}} \le K\{|a_{ijk}|^{p_{ijk}} + |b_{ijk}|^{p_{ijk}}\}$$

for all i, j, k and triple sequences $a_{ijk}, b_{ijk} \in \mathbf{C}$. Also $|a|^{p_{ijk}} \leq \max(1, |a|^G)$ for all $a \in \mathbf{C}$.

3. Construction of triple *n*-normed sequence spaces

Now we introduce the new class of triple sequence spaces using Orlicz functions and difference operator on n- normed space, if M is an Orlicz function and $p=\langle p_{ijk}\rangle$ is a triple sequence of strictly positive real numbers and $(X,\|\cdot,...,\cdot\|)$ is a real linear n-normed space we define the following classes of sequences:

$$W'''(M, \Delta, p, \|\cdot, ..., \cdot\|) = \{\langle a_{ijk} \rangle \in w''' : \lim_{l,m,n} \frac{1}{l_{mn}} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(M\left(\left\| \frac{\Delta a_{ijk} - L}{\rho}, z_{1}, \cdots, z_{n-1} \right\| \right) \right)^{P_{ijk}} = 0,$$

for each
$$z_1, \dots, z_{n-1} \in X$$
, for some $\rho > 0$ and $L > 0$, $W_0'''(M, \Delta, p, ||\cdot, ..., \cdot||) = \{\langle a_{ijk} \rangle \in w''' : \lim_{l,m,n} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(M \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right)^{p_{ijk}} = 0,$

for each $z_1, \dots, z_{n-1} \in X$, for some $\rho > 0$, and

$$W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|) = \{\langle a_{ijk} \rangle \in w''' : \sup_{l,m,n} \sum_{z_1, \dots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum$$

$$\left(M\left(\left\|\frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right)^{p_{ijk}} < \infty,$$

for some $\rho > 0$,

Some Special Cases

(i). If we take
$$p = (p_{ijk}) = 1$$
, we get $W'''(M, \Delta, ||\cdot, ..., \cdot||) = \{\langle a_{ijk} \rangle \in w''' : \lim_{l,m,n} \frac{1}{lmn} \}$

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(M \left(\left\| \frac{\Delta a_{ijk} - L}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right) = 0,$$

for each
$$z_1, \dots, z_{n-1} \in X$$
, for some $\rho > 0$ and $L > 0$, $W_0'''(M, \Delta, \|\cdot, \dots, \cdot\|) = \{\langle a_{ijk} \rangle \in w''' : \lim_{l,m,n} \frac{1}{lmn}\}$

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(M \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right) = 0,$$

for each $z_1, \dots, z_{n-1} \in X$, for some $\rho > 0$,

and

$$W_{\infty}^{\prime\prime\prime}(M,\Delta,\|\cdot,...,\cdot\|) = \{\langle a_{ijk}\rangle \in w^{\prime\prime\prime} : \sup_{l,m,n} \sum_{z_1,\dots,z_{n-1}\in X} \frac{1}{lmn} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \sum_{i=1}^n \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{i=1}^n \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{k=1}^n$$

$$\left(M\left(\left\|\frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right) < \infty,$$

for some $\rho > 0$,

(ii). If we take M(x) = x, we get

$$W'''(\Delta, p, \|\cdot, ..., \cdot\|) = \{\langle a_{ijk} \rangle \in w''' : \\ \lim_{l,m,n} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(\left\| \frac{\Delta a_{ijk} - L}{\rho}, z_1, \dots, z_{n-1} \right\| \right)^{p_{ijk}} = 0,$$

for each $z_1, \dots, z_{n-1} \in X$, for some $\rho > 0$ and L > 0,

$$W_0'''(\Delta, p, \|\cdot, ..., \cdot\|) = \{\langle a_{ijk} \rangle \in w''' : \lim_{l,m,n} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right)^{p_{ijk}} = 0,$$
for each $z_1, \cdots, z_{n-1} \in X$, for some $\rho > 0\}$,
and
$$W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$$

$$= \{\langle a_{ijk} \rangle \in w''' : \sup_{l,m,n} \frac{1}{z_1, ..., z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right)^{p_{ijk}} < \infty,$$

$$\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right)^{p_{ijk}} < \infty,$$

for some $\rho > 0$,

Theorem 3.1. Let M be an Orlicz function and $p = (p_{ijk})$ be bounded triple sequence of strictly positive real numbers. Then the classes of sequences $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|), W_0'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ and $W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ are linear spaces over the field of real numbers \mathbf{R} .

Proof. Let $\langle a_{ijk} \rangle, \langle b_{ijk} \rangle \in W_{\infty}^{""}(M, \Delta, p, \|\cdot, ..., \cdot\|)$ and $\alpha, \beta \in \mathbf{R}$. Then there exist positive real numbers ρ_1, ρ_2 such that

$$\sup_{\substack{l,m,n\\z_1,\dots,z_{n-1}\in X}} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho_1}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} < \infty,$$

for some $\rho_1 > 0$

and

$$\sup_{\substack{l,m,n\\z_1,\dots,z_{m-1}\in X}} \frac{1}{lmn} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho_2}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} < \infty,$$

for some $\rho_2 > 0$.

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$, then since $\|\cdot, ..., \cdot\|$ is a *n*-norm on X and M is non-decreasing, convex and so by using inequality (2.1), we have

$$\begin{split} &\sup_{l,m,n} \ z_{1}, \cdots, z_{n-1} \in X} \\ &\frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M \left(\left\| \frac{\Delta[\alpha a_{ijk} + \beta b_{ijk}]}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &\leq \sup_{l,m,n} \sum_{z_{1}, \cdots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M \left(\left\| \frac{\Delta \alpha a_{ijk}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &+ \left\| \frac{\Delta \beta b_{ijk}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\|^{p_{ijk}} \\ &\leq K \sup_{l,m,n} \sum_{z_{1}, \cdots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{1}{2^{p_{ijk}}} \left[M \left(\left\| \frac{\Delta [a_{ijk}]}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &+ K \sup_{l,m,n} \sum_{z_{1}, \cdots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{1}{2^{p_{ijk}}} \left[M \left(\left\| \frac{\Delta [b_{ijk}]}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &\leq K \sup_{l,m,n} \sum_{z_{1}, \cdots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M \left(\left\| \frac{\Delta [a_{ijk}]}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &+ K \sup_{l,m,n} \sum_{z_{1}, \cdots, z_{n-1} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M \left(\left\| \frac{\Delta [b_{ijk}]}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\ &< \infty. \end{split}$$

Thus we have $\alpha\langle a_{ijk}\rangle + \beta\langle b_{ijk}\rangle \in W_{\infty}'''(M,\Delta,p,\|\cdot,...,\cdot\|)$. Hence $W_{\infty}'''(M,\Delta,p,\|\cdot,...,\cdot\|)$ is a linear space. Similarly it can be shown that $W'''(M,\Delta,p,\|\cdot,...,\cdot\|)$, $W_0'''(M,\Delta,p,\|\cdot,...,\cdot\|)$ are linear spaces over the field of reals \mathbf{R} . \square

Theorem 3.2. Let M be an Orlicz function and $p = (p_{ijk})$ be bounded triple sequence of strictly positive real numbers. The sequence spaces $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|), W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ and $W'''_{\infty}(M, \Delta, p, \|\cdot, ..., \cdot\|)$ are paranormed spaces, paranormed by

$$g(\langle a_{ijk} \rangle) = \sup_{i} |a_{i11}| + \sup_{j} |a_{1j1}| + \sup_{k} |a_{11k}|$$

$$+\inf \left\{ \rho^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} \sum_{z_1,\dots,z_{n-1} \in X} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \le 1 \right\}$$

$$Where \ H = \max(1,G), \ G = \sup_{i,j,k} p_{ijk}.$$

Proof. Clearly g(0) = 0 and $g(-\langle a_{ijk} \rangle) = g(\langle a_{ijk} \rangle)$. Let $\langle a_{ijk} \rangle, \langle b_{ijk} \rangle \in W_{\infty}^{""}(M, \Delta, p, ||\cdot, ..., \cdot||)$. The there exists some $\rho_1, \rho_2 > 0$ such that

$$\sup_{\substack{l,m,n\\z_1,\cdots,z_{n-1}\in X}} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1.$$

and

$$\sup_{\substack{l,m,n\\z_1,\cdots,z_{n-1}\in X}} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \le 1.$$

Let $\rho = \rho_1 + \rho_2$, then by using Minkowski's inequality , we have

$$\begin{split} \sup_{l,m,n} z_{1}, & \dots, z_{n-1} \in X \\ \left[M \left(\left\| \frac{\Delta a_{ijk} + \Delta b_{ijk}}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \\ & \leq \left(\frac{\rho_{1}}{\rho_{1} + \rho_{2}} \right) \sup_{l,m,n} z_{1}, \dots, z_{n-1} \in X \left[M \left(\left\| \frac{\Delta a_{ijk}}{\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \\ & + \left(\frac{\rho_{2}}{\rho_{1} + \rho_{2}} \right) \sup_{l,m,n} z_{1}, \dots, z_{n-1} \in X \left[M \left(\left\| \frac{\Delta b_{ijk}}{\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1. \end{split}$$

Now

$$\begin{split} &g(\langle a_{ijk}\rangle + \langle b_{ijk}\rangle) \\ &= \sup_{i} |a_{i11} + b_{i11}| + \sup_{j} |a_{1j1} + b_{1j1}| + \sup_{k} |a_{11k} + b_{11k}| \\ &+ \inf \left\{ \left(\rho_{1} + \rho_{2} \right)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} |z_{1}, \dots, z_{n-1} \in X \right. \\ &\left[M \left(\left\| \frac{\Delta a_{ijk} + \Delta b_{ijk}}{\rho_{1} + \rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1 \\ &\leq \sup_{i} |a_{i11}| + \sup_{i} |b_{i11}| + \sup_{j} |a_{1j1}| + \sup_{j} |b_{1j1}| + \sup_{k} |a_{11k}| + \sup_{k} |b_{11k}| \\ &+ \inf \left\{ \left(\rho_{1} \right)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} |z_{1}, \dots, z_{n-1} \in X \right. \\ &\left[M \left(\left\| \frac{\Delta a_{ijk} + \Delta b_{ijk}}{\rho_{1}}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1 \\ &+ \inf \left\{ \left(\rho_{2} \right)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} |z_{1}, \dots, z_{n-1} \in X \right. \\ &\left[M \left(\left\| \frac{\Delta a_{ijk} + \Delta b_{ijk}}{\rho_{2}}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1 \\ &= g(\langle a_{ijk} \rangle) + g(\langle b_{ijk} \rangle). \end{split}$$

Let $\lambda \in \mathbf{C}$ then the continuity of the product follows from the following inequality

$$g(\lambda\langle a_{ijk}\rangle) = \sup_{i} |\lambda a_{i11}| + \sup_{j} |\lambda a_{1j1}| + \sup_{k} |\lambda a_{11k}|$$

$$+ \inf \left\{ (\rho)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} \sum_{z_1,\cdots,z_{n-1} \in X} \left[M\left(\left\| \frac{\Delta \lambda a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1 \right\}$$

$$= |\lambda| (\sup_{i} |a_{i11}| + \sup_{j} |a_{1j1}| + \sup_{k} |a_{11k}|)$$

$$+ \inf \left\{ (|\lambda|r)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} \sum_{z_1,\cdots,z_{n-1} \in X} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{\frac{p_{ijk}}{H}} \leq 1 \right\}.$$
Where $\frac{1}{r} = \frac{|\lambda|}{\rho}$.
This completes the proof of the theorem. \square

Theorem 3.3. Let M be an Orlicz function and $p = (p_{ijk})$ be bounded triple sequence of strictly positive real numbers. The sequence spaces $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$, $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ and $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ are complete paranormed spaces, under the paranorm defined by g.

Proof. Let $\langle a_{ijk}^s \rangle$ be a Cauchy sequence in $W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$. Then $g(\langle a_{ijk}^s - a_{ijk}^t \rangle) \to 0$ as $s, t \to \infty$. For a given $\epsilon > 0$, choose r > 0 and $x_0 > 0$ be such that $\frac{\epsilon}{rx_0} > 0$ and $M\left(\frac{rx_0}{2}\right) \ge 1$. Now $g(\langle a_{ijk}^s - a_{ijk}^t \rangle) \to 0$ as $s, t \to \infty$ implies that there exists $m_0 \in \mathbf{N}$ such that

$$g(\langle a_{ijk}^s - a_{ijk}^t \rangle) < \frac{\epsilon}{rx_0} \text{ for all } s, t \ge m_0.$$

Thus, we have

$$\begin{aligned} &\sup_{i} \\ |a_{i11}^s - a_{i11}^t| + \sup_{j} |a_{1j1}^s - a_{1j1}^t| + \sup_{k} |a_{11k}^s - a_{11k}^t| \\ &+ \inf \left\{ \left(\rho \right)^{\frac{p_{ijk}}{H}} > 0 : \sup_{l,m,n} \Big|_{z_1,\cdots,z_{n-1} \in X} \right. \end{aligned}$$

$$\left[M\left(\left\|\frac{\Delta a_{ijk}^s - \Delta a_{ijk}^t}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{\frac{p_{ijk}}{H}} \le 1$$

$$<\frac{\epsilon}{rx_0}$$
. (3.1)

This shows that $\langle a_{i11}^s \rangle$, $\langle a_{1j1}^s \rangle$ and $\langle a_{11k}^s \rangle$ are Cauchy sequences of real numbers. As the set of real numbers is complete so there exists real numbers $a_{i11}, a_{1j1}, a_{11k}$ such that

$$\lim_{s \to \infty} a_{i11}^s = a_{i11} \ , \ \lim_{s \to \infty} a_{1j1}^s = a_{1j1} \ , \ \lim_{s \to \infty} a_{11k}^s = a_{11k}.$$

Then from (3.1) we have

$$\left(\left\|\frac{\Delta a_{ijk}^{s} - \Delta a_{ijk}^{t}}{\rho}, z_{1}, \cdots, z_{n-1}\right\|\right) \leq 1$$

$$\Rightarrow \sup_{i,j,k} \left[M\left(\left\|\frac{\Delta a_{ijk}^{s} - \Delta a_{ijk}^{t}}{\rho}, z_{1}, \cdots, z_{n-1}\right\|\right)\right] \leq 1 \leq M\left(\frac{rx_{0}}{2}\right)$$

$$\Rightarrow \frac{\left\|(\Delta a_{ijk}^{s} - \Delta a_{ijk}^{t}), z_{1}, \cdots, z_{n-1}\right\|}{g\left(\langle a_{ijk}^{s} - a_{ijk}^{t}\rangle\right)} \leq \frac{rx_{0}}{2}$$

$$\Rightarrow \left\|(\Delta a_{ijk}^{s} - \Delta a_{ijk}^{t}), z_{1}, \cdots, z_{n-1}\right\| < \frac{rx_{0}}{2} \cdot \frac{\epsilon}{rx_{0}} = \frac{\epsilon}{2}.$$

This implies that $\langle \Delta a_{ijk}^s \rangle$ is a Cauchy sequence of real numbers. Let $\lim_{s\to\infty} \Delta a_{ijk}^s = y_{ijk}$ for all $i,j,k\in\mathbb{N}$. Now

$$\Delta a_{111}^s = a_{111}^s - a_{112}^s - a_{121}^s - a_{211}^s + a_{122}^s + a_{212}^s + a_{221}^s - a_{222}^s.$$

$$\lim_{s \to \infty} a_{222}^s$$

$$= \lim_{s \to \infty} [a_{111}^s - a_{112}^s - a_{121}^s - a_{211}^s + a_{122}^s + a_{212}^s + a_{221}^s - \Delta a_{111}^s]$$

$$= a_{111} - a_{112} - a_{121} - a_{211} + a_{122} + a_{212} + a_{221} - y_{111}.$$

Thus $\lim_{s\to\infty} a_{222}^s$ exists. Proceeding in this way we conclude that $\lim_{s\to\infty} a_{ijk}^s$ exists. Using the continuity of M, we have

$$\lim_{t \to \infty} \sup_{\substack{i,j,k \\ z_1, \dots, z_{n-1}}} \left[M \left(\left\| \frac{\Delta a_{ijk}^s - \Delta a_{ijk}^t}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right] \le 1.$$

Let $s \geq m_0$, then taking infimum of such ρ 's we have $g(\langle a_{ijk}^s - a_{ijk}^t \rangle) < \epsilon$. Thus $\langle a_{ijk}^s - a_{ijk} \rangle \in W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$. By linearity of the space $W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ we have $\langle a_{ijk} \rangle \in W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$. Hence $W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ is complete. \square

Theorem 3.4. Let M be an Orlicz function and $p = (p_{ijk})$ be bounded triple sequence of strictly positive real numbers. Then

(i)
$$W'''(M, \Delta, p, \|\cdot, ..., \cdot\|) \subset W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$$

$$(ii) \ W_0'''(M,\Delta,p,\|\cdot,...,\cdot\|) \subset W_\infty'''(M,\Delta,p,\|\cdot,...,\cdot\|)$$

Proof. The proof is easy so we omit it. \Box

Theorem 3.5. Let M be an Orlicz function and $p = (p_{ijk})$ be bounded triple sequence of strictly positive real numbers. Then the following relation holds

(i) If
$$0 < \inf p_{ijk} \le p_{ijk} < 1$$
, then $W'''(M, \Delta, p, \|\cdot, ..., \cdot\|) \subseteq W'''(M, \Delta, \|\cdot, ..., \cdot\|)$

(ii) If
$$0 < p_{ijk} \le \sup p_{ijk} < \infty$$
, then $W'''(M, \Delta, \|\cdot, ..., \cdot\|) \subseteq W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$

Proof. (i) Let $\langle a_{ijk} \rangle \in W'''(M, \Delta, p, ||\cdot, ..., \cdot||)$; since $0 < \inf\{p_{ijk}\} \le p_{ijk} < 1$, we have

$$\sup_{l,m,n} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]$$

$$\leq \sup\nolimits_{l,m,n_{z_1,\cdots,z_{n-1}\in X}} \tfrac{1}{lmn} \sum\nolimits_{i=1}^{l} \sum\nolimits_{j=1}^{m} \sum\nolimits_{k=1}^{n}$$

$$\left[M\left(\left\|\frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1}\right\|\right)\right]^{p_{ijk}}$$
 and hence $\langle a_{ijk} \rangle \in W'''(M, \Delta, \|\cdot, ..., \cdot\|)$.

(ii) Let $p_{ijk} > 1$ for each (ijk) and $\sup_{i,j,k} p_{ijk} < \infty$. Let $\langle a_{ijk} \rangle \in W'''(M, \Delta, \|\cdot, ..., \cdot\|)$. Then, for each $0, \epsilon < 1$, there exists a positive integer **N** such that

$$\sup_{\substack{l,m,n\\ z_1,\dots,z_{n-1}\in X}} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right] \le \epsilon < 1,$$

for all $m, n \geq \mathbf{N}$. Since

$$\sup_{l,m,n_{z_1,\dots,z_{n-1}} \in X} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}}$$

$$\leq \sup_{l,m,n_{z_1},\cdots,z_{n-1}\in X} \frac{1}{lmn} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]$$
 Hence $\langle a_{ijk} \rangle \in W'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ which completes the proof. \square

Theorem 3.6. Let M_1 and M_2 be Orlicz functions, then we have

$$W_{\infty}^{\prime\prime\prime}(M_1, \Delta, p, \|\cdot, ..., \cdot\|)$$

$$\cap W_{\infty}^{\prime\prime\prime}(M_2, \Delta, p, \|\cdot, ..., \cdot\|)$$

$$\subseteq W_{\infty}^{\prime\prime\prime}(M_1+M_2,\Delta,p,\|\cdot,...,\cdot\|)$$

Proof. Let $\langle a_{ijk} \rangle \in W_{\infty}^{""}(M_1, \Delta, p, \|\cdot, ..., \cdot\|) \cap W_{\infty}^{""}(M_2, \Delta, p, \|\cdot, ..., \cdot\|)$. Then

$$\sup_{\substack{l,m,n\\z_1,\cdots,z_{n-1}\in X}} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M_1\left(\left\| \frac{\Delta a_{ijk}}{\rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}} < \infty, \quad \text{for some } \rho_1 > 0$$

and

$$\sup_{\substack{l,m,n\\z_1,\dots,z_{n-1}\in X}} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M_2\left(\left\| \frac{\Delta a_{ijk}}{\rho_2}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} < \infty, \quad \text{for some } \rho_1 > 0$$

Let $\rho = \max\{\rho_1, \rho_2\}$. The result follows from the inequality

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[(M_1 + M_2) \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\
= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M_1 \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) + M_2 \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\
\leq K \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M_1 \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \\
+ K \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M_1 \left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} \right]$$

Theorem 3.7. The sequence space $W_{\infty}'''(M, \Delta, p, \|\cdot, ..., \cdot\|)$ is solid.

Proof. Let $\langle a_{ijk} \rangle \in W_{\infty}'''(M, \Delta, p, ||\cdot, ..., \cdot||)$, that is

$$\sup_{\substack{l,m,n\\z_{1},\dots,z_{n-1}\in X}} \frac{1}{lmn} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}} < \infty$$

Let (α_{ijk}) be a triple sequence of scalars such that $|\alpha_{ijk}| \leq 1$ for all $i, j, k \in \mathbb{N}$.

Then we get

$$\sup_{l,m,n_{z_1,\dots,z_{n-1}\in X}} \frac{1}{lmn}$$

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \left[M\left(\left\| \frac{\Delta \alpha_{ijk} a_{ijk}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_{ijk}}$$

 $\leq \sup_{l,m,n_{z_1},\cdots,z_{n-1}\in X} \frac{1}{lmn} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n \left[M\left(\left\| \frac{\Delta a_{ijk}}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_{ijk}}$ and this completes the proof. \square

Theorem 3.8. The sequence space $W'''_{\infty}(M, \Delta, p, \|\cdot, ..., \cdot\|)$ is monotone.

Proof. The result is obvious. \Box

Acknowledgement:

The authors are thankful to the reviewers for their valuable suggestions and comments which improved the presentation of the paper.

References

- [1] A. Alotaibi, M. Mursaleen and S. K. Sharma, Double sequence spaces over *n*-normed spaces defined by a sequence of orlicz functions, Jou. Ineq. Appl., **216**, 2014:216, (2014).
- [2] A. J. Datta, A. Esi and B.C. Tripathy, Statistically convergent triple sequence space defined by orlicz function, Jou. Math. Anal., 4, pp. 16-22, (2013).
- [3] S. Debnath, B.C. Sarma Das, Some generalized triple sequence spaces of real numbers, Jou. Nonl. Anal. and Opt., 6, pp. 71-79, (2015).
- [4] H. Dutta, An application of lacunary summability method to *n*-norm, Int. Jou. Appl. Math. Sat., **15** (D09), pp. 89-97, (2009).
- [5] H. Dutta, On sequence spaces with elements in a sequence of real linear *n*-normed spaces, Appl. Math. Lett., **33**(9), pp. 1109-113, (2010).
- [6] H. Dutta, On some *n*-normed linear space valued difference sequence, Jou. Franklin Inst., **348**, pp. 2876-2883, (2011).
- [7] A. Esi, On some triple almost lacunary sequence spaces defined by orlicz functions, Research and Reviews: Discrete Mathematical structures 1, pp. 16-25, (2014).
- [8] A. Esi, M.N. Catalbas, Almost convergence of triple sequences, G. Jou. Math. Anal., 2, pp. 6-10, (2014).
- [9] A. Esi, E. Savas, On lacunary statically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9, pp. 2529-2534, (2015).
- [10] M. Et, R. Colak, On generalized difference sequence spaces, Soochow Jou. Math., 21, 4, pp. 377-386, (1995).

- [11] S. Gähler, Linear 2-normietre rume, Math. Nachr., **28**, pp. 1-43, (1965).
- [12] H. Gunawan, On n-inner product, n-norms, and the cauchy-Schwartz Inequality, Sci. Math. Jap., **5**, pp. 47-54, (2001).
- [13] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Austral. Math. Soc., **64**, pp. 137-147, (2001).
- [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. Jou. Math. Sci., **27**, pp. 631-639, (2001).
- [15] T. Jalal, Some new I-convergent sequence spaces defined by using a sequence of modulus functions in n-normed spaces, Int. Jou. Math. Archive, **5** (9), pp. 202-209, (2014).
- [16] T. Jalal, On generalized A-difference sequence spaces defined by ideal convergence on a real n-normed space through lacunary sequences, Bull. Cal. Math. Soc., 106 (6), pp. 415-426 (2014).
- [17] T. Jalal, Some new I-lacunary generalized difference sequence spaces defined in n-normed spaces, Springer Proc. Math. Stat., 171, pp. 249-258, (2016).
- [18] P.K. Kamthan, M. Gupta, Sequence spaces and series 1st Edn., M. Dekker, New York, ISBN 0-8247-1224-2, pp. 298-300, (1981).
- [19] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1), pp. 169-176, (1981).
- [20] J. Lindenstrauss, L. Tzafriri, On orlicz sequence spaces, Israel J. Math., 10, pp. 379-390, (1971).
- [21] A. Misiak, n-Inner product spaces, Math. Nachr., 140, pp. 299-319, (1989).
- [22] M. Mursaleen, K. Raj and S. K. Sharma, Some spaces of differences and lacunary statistical convergence in *n*-normed space defined by sequence of orlicz functions, Miskolc Mathematical Notes, **16**(1), pp. 283-304, (2015).
- [23] M. Mursaleen, S. K. Sharma and A. Kilicman, Sequence spaces defined by musielak-orlicz function over *n*-normed spaces, Abs. and Appl. Anal. Vol. 2013, ID **364743**, (2013).

- [24] J. Musielak, Orlicz spaces and modular spaces, 1st Edn., Springer, New York, ISBN 3-5401-2706-2, pp. 33-112, (1983).
- [25] K. Raj, A.K. Sharma and S.K. Sharma, A sequence space defined by musielak-orlicz functions, Int. Jou. Pure Appl. Math., 67, pp. 472-484, (2011).
- [26] K. Raj, A.K. Sharma and S.K. Sharma, Some new sequence spaces defined by a sequence of modulus functions in n-normed spaces, Int. Jou. Math. Sci. Engg. Appl., 5, pp. 395-403, (2011).
- [27] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk Jou. Appl. Math., 8, pp. 49-55, (2007).
- [28] A. Sahiner, B.C. Tripathy, Some I related properties of triple sequences, Selcuk Jou. Appl. Math., 9, pp. 9-18, (2008).
- [29] E. Savas, On some new sequence spaces in 2-normed spaces using ideal convergence and an orlicz function, Jou. Ineq. Appl., Vol. 2010, ID 482392, (2010).
- [30] A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, ISBN-0-07-070180-6, (1978).

Tanweer Jalal

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar-190006, Jammu and Kashmir, India e-mail tjalal@nitsri.net

and

Ishfaq Ahmad Malik

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar-190006, Jammu and Kashmir, India

e-mail: ishfaq_2phd15@nitsri.net