Edge-to-vertex m-detour monophonic number of a graph *

A. P. Santhakumaran
Hindustan Institute of Technology and Sciences, India
P. Titus
Anna University, India
and
K. Ganesamoorthy
Coimbatore Institute of Technology, India
Received: April 2017. Accepted: April 2018

Abstract

For a connected graph $G=(V, E)$ of order at least three, the monophonic distance $d_{m}(u, v)$ is the length of a longest $u-v$ monophonic path in G. A $u-v$ path of length $d_{m}(u, v)$ is called a $u-v$ detour monophonic. For subsets A and B of V, the m-monophonic distance $D_{m}(A, B)$ is defined as $D_{m}(A, B)=\max \left\{d_{m}(x, y): x \in A, y \in B\right\}$. $A u-v$ path of length $D_{m}(A, B)$ is called a $A-B$ m-detour monophonic path joining the sets $A, B \subseteq V$, where $u \in A$ and $v \in B$. A set $S \subseteq E$ is called an edge-to-vertex m-detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a m-detour monophonic path joining a pair of edges of S. The edge-to-vertex m detour monophonic number $\operatorname{Dm}_{e v}(G)$ of G is the minimum order of its edge-to-vertex m-detour monophonic sets and any edge-to-vertex m-detour monophonic set of order $D m_{e v}(G)$ is an edge-to-vertex mdetour monophonic basis of G. Some general properties satisfied by this parameter are studied. The edge-to-vertex m-detour monophonic number of certain classes of graphs are determined. It is shown that for positive integers r, d and $k \geq 4$ with $r<d$, there exists a connected graph G such that $\operatorname{rad}_{m}(G)=r, \operatorname{diam}_{m}(G)=d$ and $D m_{e v}(G)=k$.

Key Words : monophonic distance, m-detour monophonic path, edge-to-vertex m-detour monophonic set, edge-to-vertex m-detour monophonic basis, edge-to-vertex m-detour monophonic number.
AMS Subject Classification : 05C12.

[^0]
1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to Harary $[1,5]$. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent to v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

The detour distance $D(u, v)$ between two vertices u and v in G is the length of a longest $u-v$ path in G. An $u-v$ path of length $D(u, v)$ is called an $u-v$ detour. It is known that D is a metric on the vertex set V of G. The closed detour interval $I_{D}[x, y]$ consists of x, y, and all the vertices in some $x-y$ detour of G. For $S \subseteq V, I_{D}[S]$ is the union of the sets $I_{D}[x, y]$ for all $x, y \in S$. A set S of vertices is a detour set if $I_{D}[S]=V$, and the minimum cardinality of a detour set is the detour number $d n(G)$. The concept of detour number of a graph was introduced in $[2,3]$ and further studied in [3, 4].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A set S of vertices of a graph G is a detour monophonic set if each vertex v of G lies on an $x-y$ detour monophonic path for some $x, y \in S$. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by $d m(G)$. The detour monophonic number of a graph was introduced in [9] and further studied in [10].

For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of a longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=\max \left\{d_{m}(v, u): u \in V(G)\right\}$. The monophonic radius, $\operatorname{rad}_{m} G$ of G is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$ and the monophonic diameter, $\operatorname{diam}_{m} G$ of G is $\operatorname{diam}_{m}(G)=\max \left\{e_{m}(v): v \in V(G)\right\}$. A vertex u in G is a monophonic eccentric vertex of a vertex v in G if $e_{m}(v)=d_{m}(u, v)$. The monophonic distance was introduced in [6] and further studied in [7].

For subsets A and B of V, the monophonic distance $d_{m}(A, B)$ is defined as $d_{m}(A, B)=\min \left\{d_{m}(x, y): x \in A, y \in B\right\}$. A $u-v$ path of length $d_{m}(A, B)$ is called an $A-B$ detour monophonic path joining the sets $A, B \subseteq$ V, where $u \in A$ and $v \in B$. A set $S \subseteq E$ is called an edge-to-vertex detour
monophonic set of G if every vertex of G is incident with an edge of S or lies on a detour monophonic path joining a pair of edges of S. The edge-tovertex detour monophonic number $d m_{\text {ev }}(G)$ of G is the minimum order of its edge- to-vertex detour monophonic sets and any edge-to-vertex detour monophonic set of order $d m_{e v}(G)$ is an edge-to-vertex detour monophonic basis of G. The edge-to-vertex detour monophonic number of a graph was introduced and studied in [8].

Throughout this paper G denotes a connected graph with at least three vertices.

2. Edge-to-vertex m-detour monophonic number

Definition 2.1. Let $G=(V, E)$ be a connected graph with at least three vertices. For subsets A and B of V, the m-monophonic distance $D_{m}(A, B)$ is defined as $D_{m}(A, B)=\max \left\{d_{m}(x, y): x \in A, y \in B\right\}$. A $u-v$ detour monophonic path of length $D_{m}(A, B)$ is called an $A-B$ m-detour monophonic path joining the sets A and B, where $u \in A$ and $v \in B$. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ m-detour monophonic path as $u v-z w m$-detour monophonic path, and $D_{m}(A, B)$ as $D_{m}(u v, z w)$.

Figure 2.1: G

Example 2.2. For the graph G given in Figure 2.1, with $A=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $B=\left\{v_{6}, v_{7}\right\}, P_{1}: v_{1}, v_{4}, v_{5}, v_{6}$ is the only $v_{1}-v_{6}$ detour monophonic path; $P_{2}: v_{1}, v_{4}, v_{5}, v_{7}$ is the only $v_{1}-v_{7}$ detour monophonic path; $P_{3}: v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ and $Q_{1}: v_{2}, v_{1}, v_{4}, v_{5}, v_{6}$ are the only $v_{2}-v_{6}$ detour monophonic paths; $P_{4}: v_{2}, v_{3}, v_{4}, v_{5}, v_{7}$ and $Q_{2}: v_{2}, v_{1}, v_{4}, v_{5}, v_{7}$ are the only $v_{2}-v_{7}$ detour monophonic paths; $P_{5}: v_{3}, v_{4}, v_{5}, v_{6}$ is the only $v_{3}-v_{6}$ detour monophonic path; $P_{6}: v_{3}, v_{4}, v_{5}, v_{7}$ is the only $v_{3}-v_{7}$ detour monophonic path. Hence, $d_{m}(A, B)=3$ and $D_{m}(A, B)=4$. Thus the monophonic distance and m-monophonic distance between two subsets of the
vertex set are different. Also, $P_{3}: v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, Q_{1}: v_{2}, v_{1}, v_{4}, v_{5}, v_{6}$, $P_{4}: v_{2}, v_{3}, v_{4}, v_{5}, v_{7}$ and $Q_{2}: v_{2}, v_{1}, v_{4}, v_{5}, v_{7}$ are the only four $A-B m$ detour monophonic paths.

Definition 2.3. Let $G=(V, E)$ be a connected graph with at least three vertices. A set $S \subseteq E$ is called an edge-to-vertex m-detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a m-detour monophonic path joining a pair of edges of S. The edge-to-vertex m-detour monophonic number $\operatorname{Dm}_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex m-detour monophonic sets and any edge-to-vertex m-detour monophonic set of cardinality $\operatorname{Dm}_{e v}(G)$ is an edge-to-vertex m detour monophonic basis of G.

Example 2.4. For the graph G given in Figure 2.1, the $v_{1} v_{2}-v_{6} v_{7} m$ detour monophonic paths are $P_{3}: v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, Q_{1}: v_{2}, v_{1}, v_{4}, v_{5}, v_{6}$, $P_{4}: v_{2}, v_{3}, v_{4}, v_{5}, v_{7}$ and $Q_{2}: v_{2}, v_{1}, v_{4}, v_{5}, v_{7}$, each of length 4 so that $D_{m}\left(v_{1} v_{2}, v_{6} v_{7}\right)=4$. Since every vertex of G is either an internal vertex or an incident with edge of $v_{1} v_{2}-v_{6} v_{7} m$-detour monophonic paths, $S_{1}=\left\{v_{1} v_{2}, v_{6} v_{7}\right\}$ is an edge-to-vertex m-detour monophonic basis of G so that $D m_{e v}(G)=2$. Also $S_{2}=\left\{v_{2} v_{3}, v_{6} v_{7}\right\}$ is an edge-to-vertex m-detour monophonic bases of G. Thus there can be more than one edge-to-vertex m-detour monophonic basis for a graph.

The following proposition is clear from the fact that an edge-to-vertex m-detour monophonic set needs at least two edges, and the set of all edges of G is an edge-to-vertex m-detour monophonic set of G.

Proposition 2.5. For any connected graph G of size $q \geq 2,2 \leq D m_{e v}(G) \leq$ q.

For the star $K_{1}, q(q \geq 2)$, it is clear that the set of all edges is the unique edge-to-vertex m-detour monophonic set so that $D m_{e v}\left(K_{1, q}\right)=q$. The set of two end-edges of a path $P_{n}(n \geq 3)$ is its unique edge-to-vertex m-detour monophonic basis so that $D m_{e v}\left(P_{n}\right)=2$. Thus the bounds in Proposition 2.5 are sharp.

Definition 2.6. An edge e in a graph G is an edge-to-vertex m-detour monophonic edge in G if e belongs to every edge-to-vertex m-detour monophonic basis of G. If G has a unique edge-to-vertex m-detour monophonic basis S, then every edge in S is an edge-to-vertex m-detour monophonic edge of G.

Figure 2.2: G

Example 2.7. The two end-edges of a path $P_{n}(n \geq 3)$ is its unique edge-to-vertex m-detour monophonic basis of P_{n} so that both the end-edges in P_{n} are edge-to-vertex m-detour monophonic edges of P_{n}. For the graph G given in Figure 2.2, it is easily verified that no 2-element subset of E is an edge-to-vertex m-detour monophonic set of G. Also, it is clear that $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{2} v_{3}\right\}$ and $S_{2}=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{3} v_{4}\right\}$ are the only edge-tovertex m-detour monophonic bases of G so that the edges $v_{1} v_{2}, v_{4} v_{5}$ are the edge-to-vertex m-detour monophonic edges of G.

An edge of a connected graph G is called an extreme edge of G if one of its ends is an extreme vertex of G.

Theorem 2.8. If v is an extreme vertex of a non-complete connected graph G, then every edge-to-vertex m-detour monophonic set of G contains at least one extreme edge that is incident with v.

Proof. Let v be an extreme vertex of G. Let $e_{1}, e_{2}, \ldots, e_{k}$ be the edges incident with v. Let S be any edge-to-vertex m-detour monophonic set of G. We claim that $e_{i} \in S$ for some $i(1 \leq i \leq k)$. Otherwise, $e_{i} \notin S$ for any $i(1 \leq i \leq k)$. Since S is an edge-to-vertex m-detour monophonic set and the vertex v is not incident with any element of S, v lies on a m-detour monophonic path joining two elements, say $x, y \in S$. Let $x=v_{1} v_{2}$ and $y=$ $v_{l} v_{m}$. Then $v \neq v_{1}, v_{2}, v_{l}, v_{m}$ and since G is non-complete, $D_{m}(x, y) \geq 2$. Let u and w be the neighbors of v on P. Then u and w are not adjacent and so v is not an extreme vertex, which is a contradiction. Therefore, $e_{i} \in S$ for some $i(1 \leq i \leq k)$.

Figure 2.3: G

Remark 2.9. For the graph G given in Figure 2.3, $S=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is an edge-to-vertex m-detour monophonic set of G, which does not contain the extreme edge $v_{3} v_{5}$. Thus all the extreme edges of a graph need not belong to an edge-to-vertex m-detour monophonic set of G.

In the following theorem we show that there are certain edges in a connected graph G that are edge-to-vertex m-detour monophonic edges of G.

Corollary 2.10. All the end-edges of a connected graph G belong to every edge-to-vertex m-detour monophonic set of G. Also if the set S of all endedges of G is an edge-to-vertex m-detour monophonic set, then S is the unique edge-to-vertex m-detour monophonic basis for G.

Proof. This follows from Theorem 2.8. If S is the set of all end-edges of G, then by the first part of this corollary $D m_{e v}(G) \geq|S|$. Since S is an edge-to-vertex m-detour monophonic set of $G, D m_{e v}(G) \leq|S|$. Hence $D m_{e v}(G)=|S|$ and S is the unique edge-to-vertex m-detour monophonic basis for G.

Corollary 2.11. If T is a tree with k end-edges, then $D m_{e v}(T)=k$.
Corollary 2.12. For any connected graph G with k end-edges, $\max \{2, k\} \leq$ $D m_{e v}(G) \leq q$.

Proof. This follows from Proposition 2.5 and Corollary 2.10.
For a cut-vertex v in a connected graph G and a component H of $G-v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v.

Theorem 2.13. Let G be a connected graph with cut-vertices and S an edge-to-vertex m-detour monophonic set of G. Then every branch of G contains an element of S.

Proof. Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Corollary $2.10, B$ does not contain any end-edge of G. Hence it follows that no vertex of B is an end-vertex of G. Let u be any vertex of B (note that $|V(B)| \geq 2$). Then u is not incident with any end-edge of G and so u lies on a $e-f m$-detour monophonic path $P: u_{1}, u_{2}, \ldots, u, \ldots, u_{t}$ where u_{1} is an end of e, u_{t} is an end of f with $e, f \in S$. Since v is a cut-vertex of G, the $u_{1}-u$ and $u-u_{t}$ subpaths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of S.

Corollary 2.14. Let G be a connected graph with cut-edges and S an edge-to-vertex m-detour monophonic set of G. Then every branch of G contains an element of S.

Corollary 2.15. Let G be a connected graph with cut-edges and S an edge-to- vertex m-detour monophonic set of G. Then for any cut-edge e of G, which is not an end-edge, each component of $G-e$ contains an element of S.

Proof. Let $e=u v$. Let G_{1} and G_{2} be the two components of $G-e$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Since u and v are cut-vertices of G, the result follows from Theorem 2.13.

Corollary 2.16. If G is a connected graph with $k \geq 2$ end-blocks, then $D m_{e v}(G) \geq k$.

Corollary 2.17. If G is a connected graph with a cut-vertex v and the number of components of $G-v$ is r, then $\operatorname{Dm}_{e v}(G) \geq r$.

Remark 2.18. By Corollary 2.16, if S is an edge-to-vertex m-detour monophonic set of a graph G, then every end-block of G must contain at least one element of S. However, it is possible that some blocks of G that are not end-blocks must contain an element of S as well. For example, consider the graph G given in Figure 2.2, where the cycle $C_{3}: v_{2}, v_{3}, v_{4}$ is a block of G that is not an end-block. By Corollary 2.10, every edge-to-vertex m-detour monophonic set of G must contain $v_{1} v_{2}$ and $v_{4} v_{5}$. Since the $v_{1} v_{2}-v_{4} v_{5}$ m-detour monophonic path does not contain the vertex v_{3}, it follows that
$\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is not an edge-to-vertex m-detour monophonic set of G. Thus every edge-to-vertex m-detour monophonic set of G must contain at least one of the edges $v_{2} v_{3}$ or $v_{3} v_{4}$ from the block C_{3}.

Theorem 2.19. Let G be a connected graph with cut-edges. Then no cutedge which is not an end-edge in G belongs to any edge-to-vertex m-detour monophonic basis of G.

Proof. Suppose that S is an edge-to-vertex m-detour monophonic basis that contains a cut-edge $e=u v$ which is not an end-edge of G. Let G_{1}, G_{2} be the two components of $G-e$ such that $u \in G_{1}$ and $v \in G_{2}$. Then by Corollary 2.15, each of G_{1} and G_{2} contains an element of S. Let $S^{\prime}=$ $S-\{u v\}$. We show that S^{\prime} is an edge-to-vertex m-detour monophonic set of G. Since S is an edge-to-vertex m-detour monophonic set of G and $u v \in S$, let s be any vertex of G that lies on a m-detour monophonic path P joining the edges, say $x y$ and $u v$ of S. We may assume that $x y \in E\left(G_{1}\right)$ and so $V(P) \subseteq V\left(G_{1}\right)$. Let P_{1} be the $x y-u v m$-detour monophonic path that contains the vertex s and let P_{2} be any $u v-w z m$-detour monophonic path in G, where $w z \in E\left(G_{2}\right) \cap S$. Then, since $u v$ is a cut-edge of G, the m-detour monophonic path P_{1} followed by the edge $u v$ and the m-detour monophonic path P_{2} is an $x y-w z m$-detour monophonic path which contains the vertex s. Thus it is shown that a vertex that lies on a m-detour monophonic path joining a pair of edges $x y$ and $u v$ of S also lies on a m-detour monophonic path joining a pair of edges $x y$ and $w z$ of S^{\prime}. Hence it follows that S^{\prime} is an edge-to-vertex m-detour monophonic set of G. Since $\left|S^{\prime}\right|=|S|-1$, this contradicts the fact that S is an edge-to-vertex m-detour monophonic basis of G. Hence the proof is complete.

3. Edge-to-Vertex m-Detour Monophonic Numbers of Some Standard Graphs

Theorem 3.1. For p even, a set S of edges of $G=K_{p}(p \geq 4)$ is an edge-to-vertex m-detour monophonic basis of K_{p} if and only if S consists of $p / 2$ independent edges.

Proof. Let S be any set of $p / 2$ independent edges of K_{p}. Since each vertex of K_{p} is incident with an edge of S, it follows that $D m_{e v}(G) \leq p / 2$. If $D m_{e v}(G)<p / 2$, then there exists an edge-to-vertex m-detour monophonic set $S^{\prime \prime}$ of K_{p} such that $\left|S^{\prime}\right|<p / 2$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. For independent
edges e and $f, D_{m}(e, f)=1$. Hence it follows that v is neither incident with any edge of S^{\prime} nor lies on a m-detour monophonic path joining a pair of edges of S^{\prime} and so S^{\prime} is not an edge-to-vertex m-detour monophonic set of G, which is a contradiction. Thus S is an edge-to-vertex m-detour monophonic basis of K_{p}.

Conversely, let S be an edge-to-vertex m-detour monophonic basis of K_{p}. Let S^{\prime} be any set of $p / 2$ independent edges of K_{p}. Then, as in the first part of this theorem, S^{\prime} is an edge-to-vertex m-detour monophonic basis of K_{p}. Therefore, $|S|=p / 2$. If S is not independent, then there exists a vertex v of K_{p} such that v is not incident with any edge of S and it follows that S is not an edge-to-vertex m-detour monophonic set of G, which is a contradiction. Therefore, S consists of $p / 2$ independent edges.
Corollary 3.2. For the complete graph $K_{p}(p \geq 4)$ with p even, $D m_{e v}\left(K_{p}\right)=$ $p / 2$.

For any real $x,\lceil x\rceil$ denotes the smallest integer greater than or equal to x.

Theorem 3.3. For the complete graph $G=K_{p}(p \geq 3)$ with p odd, $D m_{e v}(G)=\frac{p+1}{2}$.
Proof. Let S be any set of $\frac{p-1}{2}$ independent edges of G. Then there exists a unique vertex v which is not incident with an edge of S. Let S_{1} be the union of S and an edge incident with v. Then S_{1} is an edge-to-vertex m-detour monophonic set of G so that $D m_{e v}(G)<\frac{p-1}{2}+1$. Now, if $D m_{e v}(G) \leq \frac{p-1}{2}$, then let S_{2} be an edge-to-vertex m-detour monophonic set of G such that $\left|S_{2}\right| \leq \frac{p-1}{2}$. Then there exists a vertex u such that u is not incident with any edge of S_{2}. Obviously, u does not lie on a m-detour monophonic path joining a pair of edges of S_{2}, which is a contradiction to S_{2} an edge-to-vertex m-detour monophonic set of G. Hence $\operatorname{Dm}_{e v}(G)=\frac{p-1}{2}+1=\frac{p+1}{2}$.
Corollary 3.4. For the complete graph $K_{p}(p \geq 3)$, $D m_{e v}\left(K_{p}\right)=\left\lceil\frac{p}{2}\right\rceil$.
Theorem 3.5. For the cycle $C_{p}(p \geq 3), D m_{e v}\left(C_{p}\right)=2$.
Proof. It is easily seen that, any two adjacent edges of C_{p} is an edge-tovertex m-detour monophonic set of C_{p} so that $D m_{e v}\left(C_{p}\right)=2$.

4. Monophonic Diameter and Edge-to-Vertex m-Detour Monophonic Number

Theorem 4.1. For each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q+1$ and size q with $D m_{e v}(G)=k$.

Proof. For $2 \leq k \leq q$, let P be a path of order $q-k+3$. Then the graph G obtained from P by adding $k-2$ new vertices to P and joining them to any cut-vertex of P is a tree of order $q+1$ and size q with k end-edges. Hence by Corollary 2.11, $D m_{e v}(G)=k$.

Remark 4.2. If G is a connected graph of size $q \geq 2$, then by Proposition $2.5,2 \leq D m_{e v}(G) \leq q$. Indeed, by Theorem 4.1, for each pair k, q of integers with $2 \leq k \leq q$, there is a tree of size q with edge-to-vertex m-detour monophonic number k. An improved upper bound for the edge-to-vertex m-detour monophonic number of a graph can be given in terms of its size q and detour monophonic diameter. For convenience, we denote the detour monophonic diameter $\operatorname{diam}_{m}(G)$ by d_{m} itself.

Theorem 4.3. If G is a connected graph of size q and monophonic diameter d_{m}, then $D m_{e v}(G) \leq q-d_{m}+2$.

Proof. Let u and v be vertices of G such that $d_{m}(u, v)=d_{m}$ and let $P: u=v_{0}, v_{1}, v_{2}, \ldots, v_{d_{m}-1}, v_{d_{m}}=v$ be a $u-v$ detour monophonic path of length d_{m}. Let $S=(E(G)-E(P)) \cup\left\{u v_{1}, v_{d_{m}-1} v\right\}$. Then it is clear that S is an edge-to-vertex m-detour monophonic set of G so that $D m_{e v}(G) \leq$ $|S|=q-d_{m}+2$.

We give below a characterization theorem for trees.
Theorem 4.4. For any tree T of size $q \geq 2$ and monophonic diameter d_{m}, $D m_{e v}(T)=q-d_{m}+2$ if and only if T is a caterpillar.

Proof. Let T be any tree of size $q \geq 2$ and $P: v_{0}, v_{1}, \ldots, v_{d_{m}-1}, v_{d_{m}}$ be a monophonic diameteral path of T. Let $e_{1}, e_{2}, \ldots, e_{d_{m}-1}, e_{d_{m}}$ be the edges of P, where $e_{i}=v_{i-1} v_{i}\left(1 \leq i \leq d_{m}\right), k$ the number of end-edges of T and l the number of internal edges of T other than $e_{2}, \ldots, e_{d_{m}-1}$. Then $k+l+d_{m}-2=q$. By Corollary $2.11, D m_{e v}(T)=k=q-d_{m}-l+2$. Hence $D m_{e v}(T)=k=q-d_{m}+2$ if and only if $l=0$, if and only if all the internal edges of T lie on the monophonic diameteral path P, if and only if T is a caterpillar.

Corollary 4.5. For a wounded spider T of size $q \geq 2, \operatorname{Dm}_{e v}(T)=q-$ $d_{m}+2$ if and only if T is obtained from $K_{1, t}(t \geq 2)$ by subdividing at most two of its edges.

Proof. Since a wounded spider T is a caterpillar if and only if T is obtained from $K_{1, t}(t \geq 2)$ by subdividing at most two of its edges, the result follows from Theorem 4.4.

For any connected graph $G, \operatorname{rad}_{m}(G) \leq \operatorname{diam}_{m}(G)$. It is shown in [6] that every two positive integers a and b with $a \leq b$ are realizable as the monophonic radius and monophonic diameter, respectively, of some connected graph. This theorem can also be extended so that the edge-tovertex m-detour monophonic number can be prescribed when $\operatorname{rad}_{m}(G)<$ $\operatorname{diam}_{m}(G)$.

Theorem 4.6. For positive integers r, d and $k \geq 4$ with $r<d$, there exists a connected graph G such that $\operatorname{rad}_{m}(G)=r, \operatorname{diam}_{m}(G)=d$ and $D m_{e v}(G)=k$.

Proof. We prove this theorem by considering two cases.
Case 1. $r=1$. Then $d \geq 2$. Let $C_{d+2}: v_{1}, v_{2}, \ldots, v_{d+2}, v_{1}$ be a cycle of order $d+2$. Let G be the graph obtained by adding $k-2$ new vertices $u_{1}, u_{2}, \ldots, u_{k-2}$ to C_{d+2} and joining each of the vertices
$u_{1}, u_{2}, \ldots, u_{k-2}, v_{3}, v_{4}, \ldots, v_{d+1}$ to the vertex v_{1}. The graph G is shown in Figure 4.1. It is easily verified that $1 \leq e_{m}(x) \leq d$ for any vertex x in G and $e_{m}\left(v_{1}\right)=1, e_{m}\left(v_{2}\right)=d$. Then $\operatorname{rad}_{m}(G)=1$ and $\operatorname{diam}_{m}(G)=d$. Let $S=\left\{v_{1} u_{1}, v_{1} u_{2}, \ldots, v_{1} u_{k-2}\right\}$ be the set of all pendant edges of G. By Corollary $2.10, S$ is contained in every edge-to-vertex m-detour monophonic set of G. It is clear that S is not an edge-to-vertex m-detour monophonic set of G. It is also seen that $S \cup\{e\}$, where $e \in E(G)-S$ is not an edge-to-vertex m-detour monophonic set of G. However, the set $S^{\prime}=S \cup\left\{v_{1} v_{2}, v_{1} v_{d+2}\right\}$ is an edge-to-vertex m-detour monophonic set of G so that $D m_{e v}(G)=k$.

Figure 4.1: G

Case 2. $r \geq 2$. Let $C: v_{1}, v_{2}, \ldots, v_{r+2}, v_{1}$ be a cycle of order $r+2$ and $W=K_{1}+C_{d+2}$ be the wheel with $V\left(C_{d+2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{d+2}\right\}$. Let H be the graph obtained from C and W by identifying v_{1} of C and the central vertex K_{1} of W. Now, add $k-3$ new vertices $w_{1}, w_{2}, \ldots, w_{k-3}$ to the graph H and join each $w_{i}(1 \leq i \leq k-3)$ to the vertex v_{1} and obtain the graph G of Figure 4.2. It is easily verified that $r \leq e_{m}(x) \leq d$ for any vertex x in G and $e_{m}\left(v_{1}\right)=r$ and $e_{m}\left(u_{1}\right)=d$. Thus $\operatorname{rad}_{m}(G)=r$ and $\operatorname{diam}_{m}(G)=d$. Let $S=\left\{v_{1} w_{1}, v_{1} w_{2}, \ldots, v_{1} w_{k-3}\right\}$ be the set of all pendant edges of G. By Corollary 2.10, every edge-to-vertex m-detour monophonic set of G contains S. It is clear that S is not an edge-to-vertex m-detour monophonic set of G. Also, for any $x, y \in E(H), S \cup\{x\}$ and $S \cup\{x, y\}$ are not edge-to-vertex m-detour monophonic sets of G. Let $T=S \cup\left\{u_{1} u_{2}, u_{2} u_{3}, v_{2} v_{3}\right\}$. It is easily verified that T is a minimum edge-to-vertex m-detour monophonic set of G and so $D m_{e v}(G)=k$.

Figure 4.2: G

Problem 4.7. For any three positive integers r, d and $k \geq 4$ with $r=d$, does there exist a connected graph G with $\operatorname{rad}_{m}(G)=r, \operatorname{diam}_{m}(G)=d$ and $D m_{e v}(G)=k$?

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53, pp. 75-94, (2005).
[3] G. Chartrand, G. L. Johns, and P. Zhang, The Detour Number of a Graph, Utilitas Mathematica 64, pp. 97-113, (2003).
[4] G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria 72, pp. 3-15, (2004).
[5] F. Harary, Graph Theory, Addison-Wesley, (1969).
[6] A. P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2, pp. 159-169, (2011).
[7] A. P. Santhakumaran and P. Titus, A Note on Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, DOI: 10.1142/S1793830912500188, Vol.4, No. 2, (2012).
[8] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, Edge-toVertex Detour Monophonic Number of a Graph, Romanian Journal of Mathematics and Computer Science, Vol.4, No.1, pp. 180-188, (2014).
[9] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput. 83, pp. 179-188, (2013).
[10] P. Titus and K. Ganesamoorthy, On the Detour Monophonic Number of a Graph, Ars Combinatoria, 129, pp. 33-42, (2016).

A. P. Santhakumaran

Department of Mathematics
Hindustan Institute of Technology and Science
Chennai - 603 103,
India
e-mail : apskumar1953@gmail.com

P. Titus

Department of Mathematics, University College of Engineering Nagercoil Anna University, Tirunelveli Region
Nagercoil - 629 004, India
e-mail: titusvino@yahoo.com
and

K. Ganesamoorthy

Department of Mathematics, Coimbatore Institute of Technology
Government Aided Autonomous Institution
Coimbatore - 641 014,
India
e-mail: kvgm_2005@yahoo.co.in

[^0]: *Research work supported by NBHM Project No. NBHM/R.P.29/2015/Fresh/157.

