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Abstract
For a connected graph G = (V,E) of order at least three, the mono-

phonic distance dm(u, v) is the length of a longest u− v monophonic
path in G. A u − v path of length dm(u, v) is called a u − v detour
monophonic. For subsets A and B of V , the m-monophonic distance
Dm(A,B) is defined as Dm(A,B) = max{dm(x, y) : x ∈ A, y ∈ B}.
A u − v path of length Dm(A,B) is called a A− B m-detour mono-
phonic path joining the sets A,B ⊆ V, where u ∈ A and v ∈ B. A set
S ⊆ E is called an edge-to-vertex m-detour monophonic set of G if
every vertex of G is incident with an edge of S or lies on a m-detour
monophonic path joining a pair of edges of S. The edge-to-vertex m-
detour monophonic number Dmev(G) of G is the minimum order of
its edge-to-vertex m-detour monophonic sets and any edge-to-vertex
m-detour monophonic set of order Dmev(G) is an edge-to-vertex m-
detour monophonic basis of G. Some general properties satisfied by
this parameter are studied. The edge-to-vertex m-detour monophonic
number of certain classes of graphs are determined. It is shown that
for positive integers r, d and k ≥ 4 with r < d, there exists a connected
graph G such that radm(G) = r, diamm(G) = d and Dmev(G) = k.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by p and
q, respectively. For basic graph theoretic terminology we refer to Harary
[1, 5]. For vertices x and y in a connected graph G, the distance d(x, y) is
the length of a shortest x− y path in G. An x− y path of length d(x, y) is
called an x − y geodesic. The neighborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent to v. A vertex v is an extreme
vertex if the subgraph induced by its neighbors is complete.

The detour distance D(u, v) between two vertices u and v in G is the
length of a longest u − v path in G. An u − v path of length D(u, v) is
called an u−v detour. It is known that D is a metric on the vertex set V of
G. The closed detour interval ID[x, y] consists of x, y, and all the vertices
in some x − y detour of G. For S ⊆ V, ID[S] is the union of the sets
ID[x, y] for all x, y ∈ S. A set S of vertices is a detour set if ID[S] = V, and
the minimum cardinality of a detour set is the detour number dn(G). The
concept of detour number of a graph was introduced in [2, 3] and further
studied in [3, 4].

A chord of a path P is an edge joining two non-adjacent vertices of P.
A path P is called a monophonic path if it is a chordless path. A longest
x− y monophonic path is called an x− y detour monophonic path. A set
S of vertices of a graph G is a detour monophonic set if each vertex v of G
lies on an x− y detour monophonic path for some x, y ∈ S. The minimum
cardinality of a detour monophonic set of G is the detour monophonic
number of G and is denoted by dm(G). The detour monophonic number of
a graph was introduced in [9] and further studied in [10].

For any two vertices u and v in a connected graph G, the monophonic
distance dm(u, v) from u to v is defined as the length of a longest u − v
monophonic path in G. Themonophonic eccentricity em(v) of a vertex v in
G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius, radmG
of G is radm(G) = min {em(v) : v ∈ V (G)} and the monophonic diameter,
diammG of G is diamm(G) = max {em(v) : v ∈ V (G)}. A vertex u in G is
a monophonic eccentric vertex of a vertex v in G if em(v) = dm(u, v). The
monophonic distance was introduced in [6] and further studied in [7].

For subsets A and B of V , the monophonic distance dm(A,B) is defined
as dm(A,B) = min{dm(x, y) : x ∈ A, y ∈ B}. A u − v path of length
dm(A,B) is called an A−B detour monophonic path joining the sets A,B ⊆
V, where u ∈ A and v ∈ B. A set S ⊆ E is called an edge-to-vertex detour
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monophonic set of G if every vertex of G is incident with an edge of S or
lies on a detour monophonic path joining a pair of edges of S. The edge-to-
vertex detour monophonic number dmev(G) of G is the minimum order of
its edge- to-vertex detour monophonic sets and any edge-to-vertex detour
monophonic set of order dmev(G) is an edge-to-vertex detour monophonic
basis of G. The edge-to-vertex detour monophonic number of a graph was
introduced and studied in [8].

Throughout this paper G denotes a connected graph with at least three
vertices.

2. Edge-to-vertex m-detour monophonic number

Definition 2.1. Let G = (V,E) be a connected graph with at least three
vertices. For subsets A and B of V , the m-monophonic distance Dm(A,B)
is defined as Dm(A,B) = max{dm(x, y) : x ∈ A, y ∈ B}. A u − v de-
tour monophonic path of length Dm(A,B) is called an A − B m-detour
monophonic path joining the sets A and B, where u ∈ A and v ∈ B. For
A = {u, v} and B = {z, w} with uv and zw edges, we write an A − B
m-detour monophonic path as uv − zw m-detour monophonic path, and
Dm(A,B) as Dm(uv, zw).

Example 2.2. For the graph G given in Figure 2.1, with A = {v1, v2, v3}
and B = {v6, v7}, P1 : v1, v4, v5, v6 is the only v1 − v6 detour mono-
phonic path; P2 : v1, v4, v5, v7 is the only v1 − v7 detour monophonic path;
P3 : v2, v3, v4, v5, v6 and Q1 : v2, v1, v4, v5, v6 are the only v2 − v6 detour
monophonic paths; P4 : v2, v3, v4, v5, v7 and Q2 : v2, v1, v4, v5, v7 are the
only v2 − v7 detour monophonic paths; P5 : v3, v4, v5, v6 is the only v3 − v6
detour monophonic path; P6 : v3, v4, v5, v7 is the only v3− v7 detour mono-
phonic path. Hence, dm(A,B) = 3 and Dm(A,B) = 4. Thus the mono-
phonic distance and m-monophonic distance between two subsets of the
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vertex set are different. Also, P3 : v2, v3, v4, v5, v6, Q1 : v2, v1, v4, v5, v6,
P4 : v2, v3, v4, v5, v7 and Q2 : v2, v1, v4, v5, v7 are the only four A − B m-
detour monophonic paths.

Definition 2.3. Let G = (V,E) be a connected graph with at least three
vertices. A set S ⊆ E is called an edge-to-vertex m-detour monophonic
set of G if every vertex of G is incident with an edge of S or lies on a
m-detour monophonic path joining a pair of edges of S. The edge-to-vertex
m-detour monophonic number Dmev(G) of G is the minimum cardinal-
ity of its edge-to-vertex m-detour monophonic sets and any edge-to-vertex
m-detour monophonic set of cardinality Dmev(G) is an edge-to-vertex m-
detour monophonic basis of G.

Example 2.4. For the graph G given in Figure 2.1, the v1v2 − v6v7 m-
detour monophonic paths are P3 : v2, v3, v4, v5, v6, Q1 : v2, v1, v4, v5, v6,
P4 : v2, v3, v4, v5, v7 and Q2 : v2, v1, v4, v5, v7, each of length 4 so that
Dm(v1v2, v6v7) = 4. Since every vertex of G is either an internal ver-
tex or an incident with edge of v1v2 − v6v7 m-detour monophonic paths,
S1 = {v1v2, v6v7} is an edge-to-vertex m-detour monophonic basis of G so
that Dmev(G) = 2. Also S2 = {v2v3, v6v7} is an edge-to-vertex m-detour
monophonic bases of G. Thus there can be more than one edge-to-vertex
m-detour monophonic basis for a graph.

The following proposition is clear from the fact that an edge-to-vertex
m-detour monophonic set needs at least two edges, and the set of all edges
of G is an edge-to-vertex m-detour monophonic set of G.

Proposition 2.5. For any connected graphG of size q ≥ 2, 2 ≤ Dmev(G) ≤
q.

For the star K1, q(q ≥ 2), it is clear that the set of all edges is the
unique edge-to-vertex m-detour monophonic set so that Dmev(K1,q) = q.
The set of two end-edges of a path Pn(n ≥ 3) is its unique edge-to-vertex
m-detour monophonic basis so that Dmev(Pn) = 2. Thus the bounds in
Proposition 2.5 are sharp.

Definition 2.6. An edge e in a graph G is an edge-to-vertex m-detour
monophonic edge in G if e belongs to every edge-to-vertex m-detour mono-
phonic basis of G. If G has a unique edge-to-vertex m-detour monophonic
basis S, then every edge in S is an edge-to-vertex m-detour monophonic
edge of G.
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Example 2.7. The two end-edges of a path Pn(n ≥ 3) is its unique edge-
to-vertex m-detour monophonic basis of Pn so that both the end-edges in
Pn are edge-to-vertex m-detour monophonic edges of Pn. For the graph
G given in Figure 2.2, it is easily verified that no 2-element subset of E
is an edge-to-vertex m-detour monophonic set of G. Also, it is clear that
S1 = {v1v2, v4v5, v2v3} and S2 = {v1v2, v4v5, v3v4} are the only edge-to-
vertex m-detour monophonic bases of G so that the edges v1v2, v4v5 are
the edge-to-vertex m-detour monophonic edges of G.

An edge of a connected graph G is called an extreme edge of G if one of
its ends is an extreme vertex of G.

Theorem 2.8. If v is an extreme vertex of a non-complete connected graph
G, then every edge-to-vertex m-detour monophonic set of G contains at
least one extreme edge that is incident with v.

Proof. Let v be an extreme vertex of G. Let e1, e2, . . . , ek be the edges
incident with v. Let S be any edge-to-vertex m-detour monophonic set of
G. We claim that ei ∈ S for some i(1 ≤ i ≤ k). Otherwise, ei /∈ S for any
i(1 ≤ i ≤ k). Since S is an edge-to-vertex m-detour monophonic set and
the vertex v is not incident with any element of S, v lies on a m-detour
monophonic path joining two elements, say x, y ∈ S. Let x = v1v2 and y =
vlvm. Then v 6= v1, v2, vl, vm and since G is non-complete, Dm(x, y) ≥ 2.
Let u and w be the neighbors of v on P. Then u and w are not adjacent and
so v is not an extreme vertex, which is a contradiction. Therefore, ei ∈ S
for some i(1 ≤ i ≤ k). 2
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Remark 2.9. For the graph G given in Figure 2.3, S = {v1v2, v4v5} is an
edge-to-vertex m-detour monophonic set of G, which does not contain the
extreme edge v3v5. Thus all the extreme edges of a graph need not belong
to an edge-to-vertex m-detour monophonic set of G.

In the following theorem we show that there are certain edges in a
connected graph G that are edge-to-vertex m-detour monophonic edges of
G.

Corollary 2.10. All the end-edges of a connected graph G belong to every
edge-to-vertex m-detour monophonic set of G. Also if the set S of all end-
edges of G is an edge-to-vertex m-detour monophonic set, then S is the
unique edge-to-vertex m-detour monophonic basis for G.

Proof. This follows from Theorem 2.8. If S is the set of all end-edges
of G, then by the first part of this corollary Dmev(G) ≥ |S|. Since S is
an edge-to-vertex m-detour monophonic set of G, Dmev(G) ≤ |S|. Hence
Dmev(G) = |S| and S is the unique edge-to-vertex m-detour monophonic
basis for G. 2

Corollary 2.11. If T is a tree with k end-edges, then Dmev(T ) = k.

Corollary 2.12. For any connected graphGwith k end-edges,max{2, k} ≤
Dmev(G) ≤ q.

Proof. This follows from Proposition 2.5 and Corollary 2.10. 2

For a cut-vertex v in a connected graph G and a component H of G−v,
the subgraphH and the vertex v together with all edges joining v and V (H)
is called a branch of G at v.

Marisol Martínez
figu2-3
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Theorem 2.13. Let G be a connected graph with cut-vertices and S an
edge-to-vertex m-detour monophonic set of G. Then every branch of G
contains an element of S.

Proof. Assume that there is a branch B of G at a cut-vertex v such that
B contains no element of S. Then by Corollary 2.10, B does not contain
any end-edge of G. Hence it follows that no vertex of B is an end-vertex of
G. Let u be any vertex of B (note that |V (B)| ≥ 2). Then u is not incident
with any end-edge of G and so u lies on a e − f m-detour monophonic
path P : u1, u2, . . . , u, . . . , ut where u1 is an end of e, ut is an end of f with
e, f ∈ S. Since v is a cut-vertex of G, the u1 − u and u − ut subpaths of
P both contain v and so P is not a path, which is a contradiction. Hence
every branch of G contains an element of S. 2

Corollary 2.14. Let G be a connected graph with cut-edges and S an
edge-to-vertex m-detour monophonic set of G. Then every branch of G
contains an element of S.

Corollary 2.15. Let G be a connected graph with cut-edges and S an
edge-to- vertex m-detour monophonic set of G. Then for any cut-edge e of
G, which is not an end-edge, each component of G− e contains an element
of S.

Proof. Let e = uv. Let G1 and G2 be the two components of G− e such
that u ∈ V (G1) and v ∈ V (G2). Since u and v are cut-vertices of G, the
result follows from Theorem 2.13. 2

Corollary 2.16. If G is a connected graph with k ≥ 2 end-blocks, then
Dmev(G) ≥ k.

Corollary 2.17. If G is a connected graph with a cut-vertex v and the
number of components of G− v is r, then Dmev(G) ≥ r.

Remark 2.18. By Corollary 2.16, if S is an edge-to-vertexm-detour mono-
phonic set of a graph G, then every end-block of G must contain at least
one element of S. However, it is possible that some blocks of G that are not
end-blocks must contain an element of S as well. For example, consider the
graph G given in Figure 2.2, where the cycle C3 : v2, v3, v4 is a block of G
that is not an end-block. By Corollary 2.10, every edge-to-vertex m-detour
monophonic set of G must contain v1v2 and v4v5. Since the v1v2 − v4v5
m-detour monophonic path does not contain the vertex v3, it follows that
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{v1v2, v4v5} is not an edge-to-vertex m-detour monophonic set of G. Thus
every edge-to-vertex m-detour monophonic set of G must contain at least
one of the edges v2v3 or v3v4 from the block C3.

Theorem 2.19. Let G be a connected graph with cut-edges. Then no cut-
edge which is not an end-edge in G belongs to any edge-to-vertex m-detour
monophonic basis of G.

Proof. Suppose that S is an edge-to-vertex m-detour monophonic basis
that contains a cut-edge e = uv which is not an end-edge of G. Let G1,
G2 be the two components of G − e such that u ∈ G1 and v ∈ G2. Then
by Corollary 2.15, each of G1 and G2 contains an element of S. Let S

0 =
S−{uv}. We show that S0 is an edge-to-vertexm-detour monophonic set of
G. Since S is an edge-to-vertex m-detour monophonic set of G and uv ∈ S,
let s be any vertex of G that lies on a m-detour monophonic path P joining
the edges, say xy and uv of S. We may assume that xy ∈ E(G1) and so
V (P ) ⊆ V (G1). Let P1 be the xy − uv m-detour monophonic path that
contains the vertex s and let P2 be any uv−wz m-detour monophonic path
in G, where wz ∈ E(G2)∩S. Then, since uv is a cut-edge of G, them-detour
monophonic path P1 followed by the edge uv and them-detour monophonic
path P2 is an xy−wz m-detour monophonic path which contains the vertex
s. Thus it is shown that a vertex that lies on a m-detour monophonic path
joining a pair of edges xy and uv of S also lies on a m-detour monophonic
path joining a pair of edges xy and wz of S0. Hence it follows that S0 is
an edge-to-vertex m-detour monophonic set of G. Since |S0| = |S|− 1, this
contradicts the fact that S is an edge-to-vertex m-detour monophonic basis
of G. Hence the proof is complete. 2

3. Edge-to-Vertex m-Detour Monophonic Numbers of Some
Standard Graphs

Theorem 3.1. For p even, a set S of edges of G = Kp(p ≥ 4) is an edge-
to-vertex m-detour monophonic basis of Kp if and only if S consists of p/2
independent edges.

Proof. Let S be any set of p/2 independent edges ofKp. Since each vertex
of Kp is incident with an edge of S, it follows that Dmev(G) ≤ p/2. If
Dmev(G) < p/2, then there exists an edge-to-vertex m-detour monophonic
set S0 of Kp such that |S0| < p/2. Therefore, there exists at least one vertex
v of Kp such that v is not incident with any edge of S

0. For independent
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edges e and f , Dm(e, f) = 1. Hence it follows that v is neither incident
with any edge of S0 nor lies on a m-detour monophonic path joining a pair
of edges of S0 and so S0 is not an edge-to-vertex m-detour monophonic
set of G, which is a contradiction. Thus S is an edge-to-vertex m-detour
monophonic basis of Kp.

Conversely, let S be an edge-to-vertex m-detour monophonic basis of
Kp. Let S

0 be any set of p/2 independent edges of Kp. Then, as in the first
part of this theorem, S0 is an edge-to-vertex m-detour monophonic basis
of Kp. Therefore, |S| = p/2. If S is not independent, then there exists a
vertex v of Kp such that v is not incident with any edge of S and it follows
that S is not an edge-to-vertex m-detour monophonic set of G, which is a
contradiction. Therefore, S consists of p/2 independent edges. 2

Corollary 3.2. For the complete graphKp(p ≥ 4) with p even,Dmev(Kp) =
p/2.

For any real x, dxe denotes the smallest integer greater than or equal
to x.

Theorem 3.3. For the complete graph G = Kp(p ≥ 3) with p odd,

Dmev(G) =
p+ 1

2
.

Proof. Let S be any set of
p− 1
2

independent edges of G. Then there

exists a unique vertex v which is not incident with an edge of S. Let
S1 be the union of S and an edge incident with v. Then S1 is an edge-

to-vertex m-detour monophonic set of G so that Dmev(G) <
p− 1
2

+ 1.

Now, if Dmev(G) ≤
p− 1
2
, then let S2 be an edge-to-vertex m-detour

monophonic set of G such that |S2| ≤
p− 1
2
. Then there exists a vertex

u such that u is not incident with any edge of S2. Obviously, u does not
lie on a m-detour monophonic path joining a pair of edges of S2, which
is a contradiction to S2 an edge-to-vertex m-detour monophonic set of G.

Hence Dmev(G) =
p− 1
2

+ 1 =
p+ 1

2
. 2

Corollary 3.4. For the complete graph Kp(p ≥ 3), Dmev(Kp) =

»
p

2

¼
.

Theorem 3.5. For the cycle Cp(p ≥ 3), Dmev(Cp) = 2.

Proof. It is easily seen that, any two adjacent edges of Cp is an edge-to-
vertex m-detour monophonic set of Cp so that Dmev(Cp) = 2. 2
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4. Monophonic Diameter and Edge-to-Vertexm-Detour Mono-
phonic Number

Theorem 4.1. For each pair of integers k and q with 2 ≤ k ≤ q, there
exists a connected graph G of order q + 1 and size q with Dmev(G) = k.

Proof. For 2 ≤ k ≤ q, let P be a path of order q− k+3. Then the graph
G obtained from P by adding k − 2 new vertices to P and joining them to
any cut-vertex of P is a tree of order q + 1 and size q with k end-edges.
Hence by Corollary 2.11, Dmev(G) = k. 2

Remark 4.2. If G is a connected graph of size q ≥ 2, then by Proposition
2.5, 2 ≤ Dmev(G) ≤ q. Indeed, by Theorem 4.1, for each pair k, q of
integers with 2 ≤ k ≤ q, there is a tree of size q with edge-to-vertex
m-detour monophonic number k. An improved upper bound for the edge-
to-vertex m-detour monophonic number of a graph can be given in terms
of its size q and detour monophonic diameter. For convenience, we denote
the detour monophonic diameter diamm(G) by dm itself.

Theorem 4.3. If G is a connected graph of size q and monophonic diam-
eter dm, then Dmev(G) ≤ q − dm + 2.

Proof. Let u and v be vertices of G such that dm(u, v) = dm and let
P : u = v0, v1, v2, . . . , vdm−1, vdm = v be a u−v detour monophonic path of
length dm. Let S = (E(G)− E(P )) ∪ {uv1, vdm−1v}. Then it is clear that
S is an edge-to-vertex m-detour monophonic set of G so that Dmev(G) ≤
|S| = q − dm + 2. 2

We give below a characterization theorem for trees.

Theorem 4.4. For any tree T of size q ≥ 2 and monophonic diameter dm,
Dmev(T ) = q − dm + 2 if and only if T is a caterpillar.

Proof. Let T be any tree of size q ≥ 2 and P : v0, v1, . . . , vdm−1, vdm be
a monophonic diameteral path of T. Let e1, e2, . . . , edm−1, edm be the edges
of P, where ei = vi−1vi(1 ≤ i ≤ dm), k the number of end-edges of T
and l the number of internal edges of T other than e2, . . . , edm−1. Then
k + l + dm − 2 = q. By Corollary 2.11, Dmev(T ) = k = q − dm − l + 2.
Hence Dmev(T ) = k = q− dm +2 if and only if l = 0, if and only if all the
internal edges of T lie on the monophonic diameteral path P, if and only if
T is a caterpillar. 2
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Corollary 4.5. For a wounded spider T of size q ≥ 2, Dmev(T ) = q −
dm+2 if and only if T is obtained from K1,t(t ≥ 2) by subdividing at most
two of its edges.

Proof. Since a wounded spider T is a caterpillar if and only if T is ob-
tained from K1,t(t ≥ 2) by subdividing at most two of its edges, the result
follows from Theorem 4.4. 2

For any connected graph G, radm(G) ≤ diamm(G). It is shown in
[6] that every two positive integers a and b with a ≤ b are realizable as
the monophonic radius and monophonic diameter, respectively, of some
connected graph. This theorem can also be extended so that the edge-to-
vertex m-detour monophonic number can be prescribed when radm(G) <
diamm(G).

Theorem 4.6. For positive integers r, d and k ≥ 4 with r < d, there
exists a connected graph G such that radm(G) = r, diamm(G) = d and
Dmev(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, . . . , vd+2, v1 be a cycle
of order d+2. Let G be the graph obtained by adding k − 2 new vertices
u1, u2, . . . , uk−2 to Cd+2 and joining each of the vertices
u1, u2, . . . , uk−2, v3, v4, . . . , vd+1 to the vertex v1. The graph G is shown in
Figure 4.1. It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in
G and em(v1) = 1, em(v2) = d. Then radm(G) = 1 and diamm(G) = d.
Let S = {v1u1, v1u2, . . . , v1uk−2} be the set of all pendant edges of G. By
Corollary 2.10, S is contained in every edge-to-vertexm-detour monophonic
set ofG. It is clear that S is not an edge-to-vertexm-detour monophonic set
ofG. It is also seen that S∪{e}, where e ∈ E(G)−S is not an edge-to-vertex
m-detour monophonic set of G. However, the set S0 = S ∪ {v1v2, v1vd+2}
is an edge-to-vertex m-detour monophonic set of G so that Dmev(G) = k.
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Case 2. r ≥ 2. Let C : v1, v2, . . . , vr+2, v1 be a cycle of order r + 2 and
W = K1+Cd+2 be the wheel with V (Cd+2) = {u1, u2, . . . , ud+2}. Let H be
the graph obtained from C and W by identifying v1 of C and the central
vertex K1 ofW . Now, add k−3 new vertices w1, w2, . . . , wk−3 to the graph
H and join each wi(1 ≤ i ≤ k− 3) to the vertex v1 and obtain the graph G
of Figure 4.2. It is easily verified that r ≤ em(x) ≤ d for any vertex x in G
and em(v1) = r and em(u1) = d. Thus radm(G) = r and diamm(G) = d.
Let S = {v1w1, v1w2, . . . , v1wk−3} be the set of all pendant edges of G. By
Corollary 2.10, every edge-to-vertexm-detour monophonic set ofG contains
S. It is clear that S is not an edge-to-vertex m-detour monophonic set of
G. Also, for any x, y ∈ E(H), S∪{x} and S∪{x, y} are not edge-to-vertex
m-detour monophonic sets of G. Let T = S∪{u1u2, u2u3, v2v3}. It is easily
verified that T is a minimum edge-to-vertex m-detour monophonic set of
G and so Dmev(G) = k. 2

Marisol Martínez
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Problem 4.7. For any three positive integers r, d and k ≥ 4 with r = d,
does there exist a connected graph G with radm(G) = r, diamm(G) = d
and Dmev(G) = k?
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