Proyecciones Journal of Mathematics Vol. 37, N^o 2, pp. 213-221, June 2018. Universidad Católica del Norte Antofagasta - Chile

Saturations of submodules with respect to subsets of a ring

Javad Bagheri Harehdashti University of Birjand, Irán and Hosein Fazaeli Moghimi University of Birjand, Irán Received : Februay 2017. Accepted : March 2018

Abstract

Let R be a commutative ring with identity and M a unital Rmodule. For any submodule N of M and non-empty subset T of R, let $S_T^M(N) = \{m \in M : rm \in N \text{ for some } r \in R \setminus T\}$. In this article we study conditions under which $S_T^M(N)$ is a submodule of M and investigate when it is a union of prime submodules.

Subjclass : 13C99 (MSC date is wrong: these are MSC 2010). Primary: 91A46,

Keywords : Saturation, Prime submodule.

1. Introduction

Let R be a ring, M be an R-module and N be a submodule of M. The saturation of N with respect to $p \in Spec(R)$ is the contraction of N_p in M and designated by $S_p(N)$. It is known that $S_p(N) = \{x \in M : sx \in N$ for some $s \in R \setminus p\}$. It is shown that $S_p(N)$ is a p-prime submodule of M if and only if $(S_p(N) : M) = p$ [2, Theorem 2.3]. Moreover, if Mis a finitely generated R-module and N a proper submodule of M such that p = (N : M), then $S_p(N)$ is a prime submodule of M [2, Corollary 3.4]. In particular, if N = pM and $p \supseteq Ann(M)$, then $S_p(N)$ is a prime submodule of M ([2, Corollary 3.8] or by combining [3, Theorem 2.1] and [3, Proposition 3.8]). In this paper, we replace the ideal p by an arbitrary subset T of R and investigate the properties of $S_T^M(N) = \{m \in M : rm \in N$ for some $r \in R \setminus T\}$, in particular considering when it is a submodule of M. We show that if M is a Noetherian module and N is a submodule of M with $(N : M) \subseteq T$, then $S_T(N)$ is a union of prime submodules of the form $(N :_M r)$ for some $r \in R \setminus T$.

2. Saturation of submodules

In this note all rings are commutative rings with identity and all modules are unital. For a submodule N of M, by (N : M) we mean the ideal $\{r \in R : rM \subseteq N\}$ of R. Also, if there is no ambiguity we write $S_T(N)$ instead of $S_T^M(N)$.

The first few results gather together some basic properties of saturation.

Proposition 2.1. Let R be a ring and, T_1 and T_2 be subsets of R. For an R-module M and submodules N, K of M with $N \subseteq K$, we have;

- (1) $N \subseteq S_T(N)$.
- (2) $(N:M) \subseteq S_T(N:M) \subseteq (S_T(N):M).$
- (3) If $S_T(K)$ is a submodule of M, then $S_T(\frac{K}{N}) = \frac{S_T(K)}{N}$.
- (4) $S_T(N) \subseteq S_T(K)$.
- (5) $S_{T_1}(S_{T_2}(N)) = S_{T_2}(S_{T_1}(N))$. Moreover, if $T_1 \subseteq T_2$, then $S_{T_1}(N) \supseteq S_{T_2}(N)$.

Proof. Clear. \Box Let $T = \{0\}$ and N = 0. Then $S_T(N) = \{x \in M : rx = 0 \text{ for some } r \in R \setminus \{0\}\}$ is the set of all torsion elements of M. If R is an integral domain, $S_T(M)$ will be a submodule of M but this is not true in general. For example, let $R = M = \mathbb{Z}_6$. Then $\overline{2}, \overline{3} \in S_0(0)$ but $\overline{3} - \overline{2} \notin S_0(0)$ since $\overline{1} \notin S_0(0)$.

Lemma 2.2. Let R be a ring and M be an R-module. Let N be a submodule of M and T be a subset of R such that (N : M)T. Then $S_T(N) = M$. However, the converse is not true in general.

Proof. Let $r \in (N : M) \setminus T$. Then $rM \subseteq N$ with $r \in R \setminus T$ and hence $M \subseteq S_T(N)$. For the last part, it suffices to take $M = \mathbf{Q}$, $R = N = \mathbf{Z}$ and $T = \{0\}$. \Box If (N : M)T, then $(R \setminus T) \cap (N : M) \neq \emptyset$ and hence $S_T(N) = M$. So this will not give us any information. Therefore we always assume that $(N : M) \subseteq T$.

Lemma 2.3. Let R be a ring, M be an R-module and N be a submodule of M. Then $S_T(N)$ is a submodule of M if and only if it is closed under addition.

Proof. Clear. \Box

Proposition 2.4. Let R be a valuation ring and M be an R-module. Then $S_T(N)$ is a submodule of M for any submodule N of M.

Proof. Let N be a submodule of M and $m_1, m_2 \in S_T(N)$. Then there exist $r_1, r_2 \in R \setminus T$ such that $r_1m_1, r_2m_2 \in N$. Since the ideals of R are totally ordered by inclusion, we may assume that $(r_1) \subseteq (r_2)$. Thus $r_1 = rr_2$ for some $r \in R$ and hence $r_1(m_1 + m_2) = rr_2(m_1 + m_2) \in N$, that is $m_1 + m_2 \in S_T(N)$. By Lemma 2.3, we have the result. \Box Let M be an R-module. A proper submodule P of M is called a prime or p-prime submodule of M, if for $r \in R$ and $m \in M, rm \in P$ implies that $r \in p = (P : M)$ or $m \in P$.

Proposition 2.5. Let N be a proper submodule of M and T = (N : M). Suppose that $S_T(N)$ is a proper submodule of M. Then

- (1) $S_T(N)$ is a prime submodule of M.
- (2) T is a prime ideal of R if and only if $S_T(S_T(N)) = S_T(N)$.

Proof. (1) Let $rm \in S_T(N)$ and $m \notin S_T(N)$. Then there exists $r' \in R \setminus T$ such that $r'(rm) \in N$. Since $m \notin S_T(N)$, $(r'r)m \in N$ implies that $r'r \in T = (N : M)$. Thus $r'(rM) \subseteq N$ and hence $rM \subseteq S_T(N)$. Therefore $r \in (S_T(N) : M)$ and hence $S_T(N)$ is a prime submodule of M.

(2) (\Rightarrow) Let *T* be a prime ideal of *R*. By Proposition 2.1, $S_T(N) \subseteq S_T(S_T(N))$. Let $m \in S_T(S_T(N))$. Then there exist $r, r' \in R \setminus T$ such that $r'rm \in N$. Since *T* is assumed to be prime, $r'r \notin T$ and hence $m \in S_T(N)$. Thus we have $S_T(S_T(N)) \subseteq S_T(N)$. (\Leftarrow) Suppose that *T* is not a prime ideal of *R*. Since $(N : M) \subseteq (S_T(N) : M)$ and $S_T(N)$, by (1), is a prime submodule of *M*, we have $(N : M) \subset (S_T(N) : M)$. Thus we have $(S_T(N) : M)T$ and hence by Lemma 2.2, $S_T(S_T(N)) = M$. Therefore $S_T(S_T(N)) \neq S_T(N)$. \Box

Proposition 2.6. Let P be a prime submodule of M and T be a subset of R such that $S_T(P) \neq M$. Then $S_T(P) = P$.

Proof. Let $m \in S_T(P)$. Then there exists $r \in R \setminus T$ such that $rm \in P$. Since $S_T(P) \neq M$, by Lemma 2.2, we have $(N : M) \subseteq T$ and hence $r \notin (N : M)$. But P is prime and therefore $rm \in P$ implies that $m \in P$, that is $S_T(P) \subseteq P$. So we have the equality. \Box

Proposition 2.7. Let R be a ring and M be an R-module.

- (1) If $N \subseteq K$ are submodules of M such that $S_T^M(N)$ is a submodule of M, then $S_T^K(N)$ is a submodule of K.
- (2) If $M = i \in I \oplus M_i$ and $S_T^M(i \in I \oplus N_i)$ is a submodule of M, where N_i is a submodule of M_i , then $S_T^{M_i}(N_i)$ is a submodule of M_i and $S_T^M(i \in I \oplus N_i) = i \in I \oplus S_T^{M_i}(N_i)$.

Proof. (1) Clearly $S_T^K(N)$ is the intersection of two submodules $S_T^M(N)$ and K of M and hence we have the result. (2) Let $x, y \in S_T^{M_j}(N_j)$. Then $x, y \in S_T^M(i \in I \oplus N_i)$ and hence there exists $r \in R \setminus T$ such that $r(x+y) \in i \in I \oplus N_i$, by hypothesis. Thus $r(x+y) \in (i \in I \oplus N_i) \cap M_j = N_j$ with $r \in R \setminus T$, that is $x + y \in S_T^{M_j}(N_j)$. \Box

Example 2.8. Let $R = M = \mathbf{Z}_4 \oplus \mathbf{Z}_4$, $M_1 = \mathbf{Z}_4 \oplus 0$, $M_2 = 0 \oplus \mathbf{Z}_4$, $N_1 = 2\mathbf{Z}_4 \oplus 0$, $N_2 = 0 \oplus 2\mathbf{Z}_4$ and consider T to be $\{(\bar{0}, \bar{0}), (\bar{0}, \bar{2}), (\bar{2}, \bar{0}), (\bar{2}, \bar{2})\}$. Then $S_T^{M_1}(N_1) = M_1$ and $S_T^{M_2}(N_2) = M_2$ are submodules of M_1 and M_2 but $S_T^M(N_1 \oplus N_2) = S_T^{M_1 \oplus M_2}(N_1 \oplus N_2)$ is not a submodule of M. Since $(\bar{3}, \bar{0}), (\bar{0}, \bar{3}) \in S_T^M(N_1 \oplus N_2)$ but $(\bar{3}, \bar{0}) + (\bar{0}, \bar{3}) = (\bar{3}, \bar{3}) \notin S_T^M(N_1 \oplus N_2)$. **Proposition 2.9.** Let W be a multiplicatively closed subset of R, M be an R-module and N be a submodule of R such that $S_T^M(N)$ is a submodule of M. Then $S_T^{M_W}(N_W)$ is an R-submodule of M_W .

Proof. $(S_T^M(N))_W$ is a submodule of M_W and we will show that it is equal to $(S_T^{M_W}(N_W))$. Let $\frac{m}{w} \in (S_T^M(N))_W$. Then there exists $r \in R \setminus T$ such that $rm \in N$ and hence $\frac{rm}{w} \in N_W$, that is, $\frac{m}{w} \in S_T^{M_W}(N_W)$. Now, let $\frac{m}{w} \in S_T^{M_W}(N_W)$ for some $m \in M$ and $w \in W$. Then there exists $r \in R \setminus T$ such that $r\frac{m}{w} \in N_W$. So, $rw'm \in N$ for some $w' \in W$ and hence $r\frac{m}{w} = r\frac{w'm}{w'w} \in N_W$. This means that $\frac{m}{w} \in (S_T^M(N))_W$. Hence $(S_T^M(N))_W = (S_T^{M_W}(N_W))$. \Box

Proposition 2.10. Let $f : R \to S$ be a ring homomorphism and M be an S-module. Consider M as an R-module with the scalar multiplication defined by r.m = f(r)m. For a S-submodule N of M the following hold:

(1) If f is injective, then $S_T^M(N) \subseteq S_{f(T)}^M(N)$.

(2) If f is surjective, then $S_{f(T)}^M(N) \subseteq S_T^M(N)$.

Proof. (1) Let f be injective and $m \in S_T^M(N)$. Then $r.m \in N$ for some $r \in R \setminus T$ and since f is injective, $f(r) \notin f(T)$. Hence $m \in S_{f(T)}^M(N)$.

(2) Let f be surjective and $m \in S^M_{f(T)}(N)$. Then $sm \in N$ for some $s \in S \setminus f(T)$ and since f is surjective, s = f(r) for some $r \in R \setminus T$. Hence $r.m = f(r)m = sm \in N$. Therefore $m \in S^M_T(N)$. \Box

Let R be a ring. An ideal I of R is said to be irreducible if it cannot be written as the intersection of two ideals, both of which properly contain it.

Theorem 2.11. Let R be a ring.

- (1) For every cyclic R-module M and arbitrary submodule N of M, $S_T(N)$ with T = (N : M), is a submodule of M if and only if $S_T(T)$ is a (prime) ideal of R.
- (2) Let T be an ideal of R. Then for every R-module M and for every submodule N of M, $S_T(N)$ is a submodule of M if and only if every ideal of R contained in T is an irreducible ideal of R.

Proof. (1) (\Rightarrow) Consider the cyclic *R*-module *R* and let *I* be an arbitrary ideal of *R*. Then T = (I : R) = I and $S_T(I) = S_T(T)$ is an ideal of *R*. If *I* is a proper ideal of *R*, then $S_T(I) \neq R$ and hence, by Proposition 2.5, it is a prime ideal of *R*. (\Leftarrow) Let *N* be a submodule of *M* and $x_1, x_2 \in S_T(N)$. Then there exist $r_1, r_2 \in R \setminus T$, such that $r_1x_1, r_2x_2 \in N$. Since $S_T(T)$ is a prime ideal of *R*, $r_1r_2 \notin T$ and hence $r_1r_2(x_1 + x_2) \in N$ implies that $x_1 + x_2 \in S_T(N)$. Now, by Lemma 2.3, we have the result.

(2) (\Leftarrow) Let M be an R-module, N be a submodule of M. Assume that every ideal contained in T is an irreducible ideal of R. Let $m_1, m_2 \in S_T(N)$. Then there exist $r_1, r_2 \in R \setminus T$ such that $r_1m_1, r_2m_2 \in N$. If $Rr_1 \cap Rr_2 \subseteq T$, then $Rr_1 \subseteq Rr_2$ or $Rr_2 \subseteq Rr_1$. Let, for example, $Rr_1 \subseteq Rr_2$. Then $r_1(m_1 + m_2) = r_1m_1 + r_1m_2 = r_1m_1 + r'r_2m_2 \in N$ and hence $m_1 + m_2 \in$ $S_T(N)$. If $Rr_1 \cap Rr_2T$, choose $r \in Rr_1 \cap Rr_2 \setminus T$. Then there exist $r'_1, r'_2 \in R$ such that $r(m_1 + m_2) = r'_1r_1m_1 + r'_2r_2m_2 \in N$ and hence $m_1 + m_2 \in S_T(N)$. (\Rightarrow) Let I, J be incomparable ideals of R such that $I \cap J \subseteq T$. We will show that there exists an R-module M and a submodule N of M such that $S_T(N)$ is not a submodule of M. Let $a \in I \setminus J$ and $b \in J \setminus I$, $M = \frac{R}{(a)} \oplus \frac{R}{(b)}$ and N = 0. Then $a(\bar{1}, \bar{0}) = (\bar{0}, \bar{0}) = b(\bar{0}, \bar{1})$ and hence $(\bar{1}, \bar{0}), (\bar{0}, \bar{1}) \in S_T(0)$. Now, it is clear that there is no element $r \in R \setminus T$ such that $r(\bar{1}, \bar{1}) = (\bar{0}, \bar{0})$ and hence $S_T(0)$ is not a submodule of M. \Box

Let R be a ring and M be an R-module. For a submodule N of M, let $s_T(N) = \{m \in M : rm \in N \text{ for some } r \in R \setminus T \text{ such that } rs \in T \text{ for some } s \in R \text{ implies that } s \in T\}$. It is clear that, $s_T(N)$ is an R-submodule of M for every submodule N of M.

Theorem 2.12. Let R be a ring and T be a subset of R such that $Z(R) \subseteq T$.

- (1) $s_T(N) = N$ for every *R*-module and for every submodule *N* of that module if and only if *R* is a total quotient ring.
- (2) $S_T(N) = N$ for every *R*-module and for every submodule *N* of that module if and only if *R* is a field.

Proof. (1) (\Rightarrow) Let M be an R-module, N be a submodule of M and $m \in s_T(N)$. Then there exists $r \in R \setminus T$ such that $rm \in N$. Since R is a total quotient ring and $r \notin Z(R)$, r is a unit and hence $m \in N$. (\Leftarrow) Let $r \in R$ be a regular element of R and consider the submodule Rr of the R-module R. Since $r.1 \in Rr$, we have $1 \in s_T(Rr) = Rr$ and hence Rr = R, that is r is a unit.

(2) (\Rightarrow) Let M be an R-module, N be a submodule of M and $m \in S_T(N)$. Then there exists $r \in R \setminus T$ such that $rm \in N$. Since R is a field, r is a unit and hence $m \in N$. (\Leftarrow) Let $r \in R$ be a non-zero element of R and consider the submodule Rr of the R-module R. Since $r.1 \in Rr$, we have $1 \in S_T(Rr) = Rr$ and hence Rr = R, that is r is a unit. \Box

Theorem 2.13. Let R be a ring. The following conditions are equivalent:

- (1) $s_{(N:M)}(N) = S_{(N:M)}(N)$ for every *R*-module *M* and its submodule *N*;
- (2) For every *R*-module *M* and its submodule *N*, either $s_{(N:M)}(N) = M$ or $s_{(N:M)}(N)$ is a prime submodule of *M*.

Proof. (1) \Rightarrow (2) Suppose that $s_{(N:M)}(N)$ be a proper submodule of M. Hence, by (1), $S_{(N:M)}(N)$ is a proper submodule of M. Therefore, by Proposition 2.5, $S_{(N:M)}(N)$ and hence $s_{(N:M)}(N)$ is a prime submodule of M.

 $(2) \Rightarrow (1)$ Let M be an R-module and N be a proper submodule of M. By (2), $s_{(N:M)}(N)$ is a prime ideal of R. Now, it is clear that $s_{(N:M)}(N) = S_{(N:M)}(N)$. \Box

3. $S_T(N)$ as a union of prime submodules

In this section, we consider the question of when for an *R*-module M, the set $S_T(M)$ is a union of prime submodules.

Let R be a ring and M be an R-module. It is known that if I is a maximal of $\{(0:m): 0 \neq m \in M\}$, then I is a prime ideal of R [1, p.4, Theorem 6]. Also, if M is a finitely generated nonzero module, then Z(M) is the union of a finite number of prime ideals each of which is (0:m) for some nonzero element m of M [1, p.55, Theorem 80]. In this section, we will see that $S_T(N)$, for some submodule N of M with $S_T(N) \neq M$ of some finitely generated modules M over Noetherian rings has similar properties.

Theorem 3.1. Let M be an R-module and L be a submodule of M such that $S_T(L) \neq M$ with T = (L : M). Let $\Sigma = \{N : NM \text{ such that } N \subseteq \cup (L :_M r_\lambda) \text{ for some } \{r_\lambda\} \subseteq R\}$. Then a maximal element of Σ is prime.

Proof. Let $N = \bigcup (L:_M r_\lambda)$ be a maximal element of Σ and let $rm \in N$ but $m \notin N$. Assume that $rr_\lambda \notin T$ for every $\lambda \in \Lambda$. So, for every $\lambda \in \Lambda$, $(L:_M r_\lambda) \subseteq (L:_M rr_\lambda)$ and hence $N_1 = \bigcup (L:_M rr_\lambda) \supseteq \bigcup (L:_M r_\lambda) =$ N. Also, it is clear that N_1 is a submodule of M with $N_1 \subseteq S_T(L)$ and hence by maximality of N we have $N_1 = N$. Now $rm \in N$ implies that $rm \in (L:_M r_\lambda)$, for some $\lambda \in \Lambda$. Therefore $m \in (L:_M rr_\lambda) \subseteq N_1 = N$, a contradiction. This shows that there must exist a $\lambda \in \Lambda$ such that $rr_\lambda \in T$. But then $rM \subseteq (L:_M r_\lambda) \subseteq N$, that is $r \in (N:M)$ and hence N is prime. \Box

Theorem 3.2. Let M be an R-module and L be a submodule of M such that $S_T(L) \neq M$ with T = (L : M). Then $S_T(L)$ is a union of prime submodules of M.

Proof. For $m \in S_T(L)$, set $\Sigma_m = \{N : NM, m \in N \subseteq S_T(L) \text{ and } N = \cup (L : r_{\lambda}) \text{ for some } \{r_{\lambda}\} \subseteq R\}$. Suppose that $rm \in S_T(L)$ for some $r \in R \setminus T$. Then $m \in (L :_M r) \subseteq S_T(L)$ and hence $\Sigma_m \neq$. Partially order Σ_m by inclusion. By Zorn's Lemma, Σ_m has a maximal element N_m which is a prime submodule of M, by Theorem 3.1 and hence $S_T(L) = \bigcup_{m \in S_T(L)} N_m$, that is $S_T(L)$ is a union of prime submodules of M. \Box

Theorem 3.3. Let *L* be submodule of *M* and $\Phi_L = \{(L:_M r) \subseteq M : r \in R \setminus T\}$. Then a maximal element of Φ_L is a prime submodule of *M*.

Proof. Let $P = (L :_M r)$ be a maximal element of Φ_L . Let $r'm \in P$ and $m \notin P$. Then $rr'm \in L$ but $rm \notin L$. Since P is maximal and $P \subseteq (L :_M rr')$, either $P = (L :_M rr')$ or $(L :_M rr') = M$. If $P = (L :_M rr')$, then $m \in (L :_M rr') = P$, a contradiction. Thus $(L :_M rr') = M$, that is $r(r'M) = rr'M \subseteq L$. Therefore $r'M \subseteq (L :_M r) = P$. Thus $r' \in (P : M)$ and hence P is prime. \Box

Theorem 3.4. Let M be a Noetherian R-module . For a submodule L of M and any subset T of R with $(L:M) \subseteq T$, $S_T(L) = \bigcup \{P: P \text{ is a prime submodule of } M, P = (L:_M r) \text{ for some } r \in R \setminus T \}.$

Proof. Let $m \in S_T(L)$ and so $rm \in L$ for some $r \in R \setminus T$. Then $m \in (L :_M r)M$, since $(L : M) \subseteq T$. Let $\Phi_{L,r} = \{(L :_M r') : r' \in R \setminus T, (L :_M r) \subseteq (L :_M r')\}$. Then, by hypothesis, $\Phi_{L,r}$ has a maximal element $(L :_M s)$ which is a prime submodule of M by Theorem 3.3. Therefore, $m \in (L :_M r') \subseteq (L :_M s)$ and hence $S_T(L)$ is a union of prime submodules of the form $(L :_M s)$ for some $s \in R \setminus T$. \Box

References

- I. Kaplansky, Commutative Rings. The University of Chicago Press, (1974).
- [2] C. P. Lu, Saturations of submodules, Comm. Algebra 31(6), pp. 2655-2673, (2003).
- [3] C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (1), pp. 125-143, (2007).

Javad Bagheri Harehdashti

Department of Mathematics University of Birjand Birjand Iran e-mail : J_bagheri@birjand.ac.ir

and

Hosein Fazaeli Moghimi

Department of Mathematics University of Birjand Birjand Iran e-mail : hfazaeli@birjand.ac.ir