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Abstract

In this paper we will investigate the complex-valued solutions and
stability of the generalized variant of Wilson’s functional equation

(E) : f(xy) + χ(y)f(σ(y)x) = 2f(x)g(y), x, y ∈ G,

where G is a group, σ is an involutive morphism of G and χ is a char-
acter of G. (a) We solve (E) when σ is an involutive automorphism,
and we obtain some properties about solutions of (E) when σ is an
involutive anti-automorphism. (b) We obtain the Hyers Ulam stabil-
ity of equation (E). As an application, we prove the superstability of
the functional equation f(xy) + χ(y)f(σ(y)x) = 2f(x)f(y), x, y ∈ G.
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1. Introduction

D’Alembert’s functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ R(1.1)

also called the cosine functional equation has a long history going back to
J. d’Alembert. Equation (1.1) plays an important role in determining the
sum of two vectors in various Euclidean and non-Euclidean geometries.

The continuous solutions f : R −→ C of d’Alembert’s functional equa-
tion (1.1) are known: Apart from the trivial solution f = 0, they are
fλ(x) = cos(λx), x ∈ R where the parameter λ ranges over C (see for
example [1])

Several authors have determined the general solution on groups f :
G −→ C of the following generalization of d’Alembert’s functional equation

f(xy) + f(xσ(y)) = 2f(x)f(y), x, y ∈ G(1.2)

in abelian case and in non abelian case, and where σ is an involution of G.

Probably the first result for non abelian groups was obtained by Kan-
nappan [20]. Under the condition f(xyz) = f(yxz) for all x, y, z ∈ G, the
solutions of equation (1.2) with σ(x) = x−1, for all x ∈ G are of the form

f(x) = φ(x)+φ(x−1)
2 , where φ is multiplicative.

There has been quite a development of the theory of d’Alembert’s func-
tional equation (1.1) during the last years, on non abelian groups, as shown
in works by Dilian Yang about compact groups [9, 10, 11], Stetkær [29] for
step 2 nilpotent groups, Friis [15] for results on Lie groups and Davison [7,
8] for general groups, even monoids. The most comprehensive recent study
is by Stetkær [28].

Recently, Stetkær [26] obtained the complex valued solutions of the
following version of d’Alembert’s functional equation

f(xy) + χ(y)f(xy−1) = 2f(x)f(y), x, y ∈ G,(1.3)

where χ : G −→ C is a character of G. The non-zero solutions of equation
(1.3) are the normalized traces of certain representation of the group G on
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C2.

The year after Stetkær [25] obtained the complex valued solutions of
the following variant of d’Alembert’s functional equation

f(xy) + f(σ(y)x)) = 2f(x)f(y), x, y ∈ G,(1.4)

where σ is an involutive homomorphism of G. The solutions of equation
(1.4) are of the form f(x) = ϕ(x)+ϕ(σ(x))

2 , x ∈ G, where ϕ is multiplicative.

We refer also to Wilson’s first generalization of d’Alembert’s functional
equation:

f(x+ y) + f(x− y) = 2f(x)g(y), x, y ∈ R.(1.5)

For more about the functional equation (1.5) see Aczél ([1], Section
3.2.1 and 3.2.2). The solution formulas of equation (1.5) are known.

In [12] Ebanks and Stetkær studied the solutions f, g: G −→ C of
Wilson’s functional equation

f(xy) + f(xy−1) = 2f(x)g(y), x, y ∈ G(1.6)

and the following variant of Wilson’s functional equation (see also [31])

f(xy) + f(y−1x) = 2f(x)g(y), x, y ∈ G.(1.7)

They solved (1.7) and they obtained some new results about (1.6).

The stability of d’Alembert’s functional equation was first obtained by
Baker [4] when the following theorem was proved.

Theorem 1.1 (4). (Superstability of d’Alembert’s functional equation)
Let G be an abelian group. If a function f : G −→ C satisfies the in-
equality

| f(x+ y) + f(x− y)− 2f(x)f(y) |≤ δ

for some δ > 0 and for all x, y ∈ G, then either f is bounded on G or
f(x+ y) + f(x− y) = 2f(x)f(y) for all x, y ∈ G.

A different generalization of Baker’s result was given by L. Székelyhidi
[33, 34]. It involves an interesting generalization of the class of bounded
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function on a group or semigroup. For other stability and superstability
results, we can see for example [2], [3], [6], [13], [16], [17], [23] and [5] for
general groups.

Various stability results of Wilson’s functional equation and its gener-
alization are obtained. The number of papers in this subject is very high,
hence, it is not realistic to try to refer to all. The interested reader should
refer to [14], [18] and [19] for a thorough account on the subject of stability
of functional equations.

The main purpose of this paper is to study the solutions and stability
of the more general variant of Wilson’s functional equation

f(xy) + χ(y)f(σ(y)x) = 2f(x)g(y), x, y ∈ G,(1.8)

where G is a group, χ is a character of G such that χ(xσ(x)) = 1, for all
x ∈ G, σ is an involutive morphism of G. That is, σ(xy) = σ(y)σ(x) and
σ(σ(x)) = x for all x, y ∈ G or σ(xy) = σ(x)σ(y) and σ(σ(x)) = x for all
x, y ∈ G.

On abelian groups the solutions and stability of the functional equation
(1.8) are known, so the contributions of the present papers to theory of
trigonometric functional equation and their stability in the non-abelian
case.

We solve (1.8) when σ is an involutive automorphism, and we obtain
some properties of the solutions of equation (1.8) when σ is an involutive
anti-automorphism. The solutions are expressed in terms of characters
and additive functions. Furthermore, we obtain the Hyers Ulam stability
of equation (1.8). As an application we prove the superstability of the
functional equation

f(xy) + χ(y)f(σ(y)x) = 2f(x)f(y), x, y ∈ G.(1.9)

Our results are natural extensions of the previous papers mentioned
above. In particular the structure and the form of the solutions follow the
same pattern as in the previous papers.
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2. Stability of the functional equation (1.8), where σ is an
involutive anti-automorphism of G.

In this section σ is an involutive anti-automorphism of G, that is σ(xy) =
σ(y)σ(x) and σ(σ(x)) = x, for all x, y ∈ G. The following theorem is one of
the main results of the present paper. Recalling that mh for any complex-
valued function h on G is defined by mh(x) = 2h(x)

2 − h(x2), x ∈ G. We
have

Theorem 2.1. Let δ ≥ 0. Let σ be an involutive anti-automorphism of
G. Let χ be a unitary character of G such that χ(xσ(x)) = 1 for all x ∈ G.

Suppose that the functions f, g: G −→ C satisfy the inequality

|f(xy) + χ(y)f(σ(y)x)− 2f(x)g(y)| ≤ δ(2.1)

for all x, y ∈ G. Under these assumptions the following statements hold:
(1) If f is unbounded, then
(i) g is central. That is g(xy) = g(yx), for all x, y ∈ G; mg: G −→ C∗ is
multiplicative.
(ii) If σ(x) = x−1, then g(x) = χ(x)g(σ(x)) for all x ∈ G and
χ̌mg(G) ⊆ {∓1}, where χ̌(x) = χ(x−1), x ∈ G.
(iii) g(x)=mg(x)g(x

−1) for all x ∈ G
and
(iv)

g(xy) +mg(y)g(xy
−1) = 2g(x)g(y) for all x, y ∈ G.(2.2)

(2) If g is unbounded and f 6= 0, then
(v) the pair (f, g) satisfies the functional equation (1.8). Furthermore,
(vi) mg:G −→ C∗ is multiplicative. If σ(x) = x−1 then g(x) = χ(x)g(σ(x))
for all x ∈ G and χ̌mg(G) ⊆ {∓1}.
(vii) g(x) = mg(x)g(x

−1),
χ(y)f(σ(y)xy) = mg(y)f(x) for all x,y∈ G.
(viii) The pair (f, g) satisfies the functional equation

f(xy) +mg(y)f(xy
−1) = 2f(x)g(y), x, y ∈ G(2.3)

and g satisfies equation ((2.2)).
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Proof. All technical methods that are needed in our discussion are due
to Stetkær [21]. (1) We let L and R denote respectively: the left and right
regular representation of G with respect to σ on functions on G. That is,
[L(y)h](x) = h(σ(y)x) and R(y)h(x) = h(xy) for x, y ∈ G and h: G −→ C.
We notice here that L(x)R(y) = R(y)L(x) and L(yz)h = L(y)[L(z)h],
R(yz)h = R(y)[R(z)h] for all x, y ∈ G and for all function h : G −→ C.

Thus, inequality (2.1) can be written as follows

k[R(y) + χ(y)L(y)]f − 2g(y)fk∞ ≤ δ(2.4)

for all y ∈ G where for any bounded complex-valued function h on G the
norm khk∞ is defined by khk∞ = supx∈G|h(x)|. Applying the operator
R(z) + χ(z)L(z) to the bounded function R(y)f + χ(y)L(y)f − 2g(y)f we
get after reduction that

k(R(z) + χ(z)L(z))[R(y) + χ(y)L(y)]f − 2g(y)(R(z)f + χ(z)L(z))f k∞

(2.5)

= k[(R(zy)+χ(zy)L(zy))f−2g(zy)f+2g(zy)f+[χ(y)R(z)L(z)+χ(z)L(z)R(y)]f

−2g(y)(R(z)f + χ(z)L(z)f − 2g(z)f)− 4g(z)g(y)fk∞.

By using (2.4) and that k(R(z)+χ(z)L(z))hk∞ ≤ 2khk∞ for all complex
bounded functions h on G we obtain

k2g(zy)f+[χ(y)R(z)L(y)+χ(z)L(z)R(y)]f−4g(z)g(y)fk∞ ≤ 3δ+2|g(y)|δ
(2.6)
for all z, y ∈ G.
(1) (i) Interchanging z and y in (2.6) and substracting the result obtained
from (2.6) we get

k[g(zy)− g(yz)]fk∞ ≤ |g(z)|δ + |g(y)|δ + 3δ.

Since f is assumed to be unbounded, then g is central.

Setting y = z in (2.6), we obtain
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k(2g(y)2 − g(y2))f − χ(y)R(y)L(y)fk∞ ≤ |g(y)|δ +
3

2
δ.(2.7)

That is,

|(2g(y)2 − g(y2))f(x)− χ(y)f(σ(y)xy)| ≤ |g(y)|δ + 3
2
δ(2.8)

for all x, y ∈ G. Which can be written as follows.

kmg(y)f − χ(y)µ(y)fk∞ ≤ |g(y)|δ +
3

2
δ,(2.9)

where [µ(y)h](x) = h(σ(y)xy). Noting that µ(yz) = µ(y)µ(z) for all z, y ∈
G. By using inequality (2.8) we have

|mg(yz)f(x)− χ(y)χ(z)f(σ(z)σ(y)xyz)| ≤ |g(yz)|δ + 3
2
δ,

|mg(y)f(x)− χ(y)f(σ(y)xy)| ≤ |g(y)|δ + 3
2
δ,

and

|mg(z)f(σ(y)xy)− χ(z)f(σ(z)σ(y)xyz)| ≤ |g(z)|δ + 3
2
δ.

So, by using the triangle inequality we get

|mg(yz)f(x)−mg(y)mg(z)f(x)| ≤ |mg(yz)f(x)−χ(y)χ(z)f(σ(z)σ(y)xyz)|

+|χ(y)χ(z)f(σ(z)σ(y)xyz)−mg(y)mg(z)f(x)|

≤ |mg(yz)f(x)− χ(y)χ(z)f(σ(z)σ(y)xyz)|

+|χ(y)χ(z)f(σ(z)σ(y)xyz)−mg(z)χ(y)f(σ(y)xy)|

+|mg(z)χ(y)f(σ(y)xy)−mg(y)mg(z)f(x)|

≤ |g(yz)|δ + 3
2
δ + |mg(z)||χ(y)f(σ(y)xy)−mg(y)f(x)|

+|χ(y)||χ(z)f(σ(z)σ(y)xyz)−mg(z)f(σ(y)xy)|

≤ |g(yz)|δ + 3
2
δ + |mg(z)|[|g(y)|δ +

3

2
δ] + |χ(y)|[|g(z)|δ + 3

2
δ].

From the assumption that f is unbounded we getmg(yz) = mg(y)mg(z)
for all y, z ∈ G. On the other hand if mg = 0, then if we put y = e in (2.8)
we obtain f bounded. But f is unbounded, so mg(G) ⊆ C∗.
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(ii) Now, let a ∈ G be arbitrary. First case: Assume that g is a bounded
function on G. Setting x = e in (2.1), we obtain

|f(y) + χ(y)f(σ(y))− 2f(e)g(y)| ≤ δ

for all y ∈ G. Which implies that

|f(y) + χ(y)f(σ(y))| ≤ δ + 2|f(e)|M(2.10)

for all y ∈ G and where M = supx∈G|g(x)|. Thus, from χ(aσ(a)) = 1,
2f(x)[g(a)− χ(a)g(σ(a))] can be written as follows

|2f(x)[g(a)− χ(a)g(σ(a))] = 2f(x)g(a)− f(xa)− χ(a)f(σ(a)x)

+χ(a)[f(xσ(a)) + χ(σ(a))f(ax)− 2f(x)g(σ(a))]

+f(xa) + χ(a)f(σ(a)x)− χ(a)f(xσ(a))− f(ax).

Since
f(xa) + χ(a)f(σ(a)x)− χ(a)f(xσ(a))− f(ax)

= f(xa)+χ(a)f(σ(a)x)−χ(a)[f(xσ(a))+χ(xσ(a))f(aσ(x))]+χ(x)f(aσ(x))

−[f(ax) + χ(ax)f(σ(x)σ(a))] + χ(ax)f(σ(x)σ(a))

= χ(x)[f(aσ(x))+χ(σ(x))f(σ(σ(x))a)−2f(a)g(σ(x))]+2χ(x)f(a)g(σ(x))

+χ(a)[f(σ(a)x) + χ(x)f(σ(x)σ(a))− 2f(σ(a))g(x)] + 2χ(a)f(σ(a))g(x)

−χ(a)[f(xσ(a)) + χ(xσ(a))f(aσ(x))]− [f(ax) + χ(ax)f(σ(x)σ(a))].

From inequalities (2.1), (2.10) and |χ(x)| = 1 we get

|2f(x)[g(a)− χ(a)g(σ(a))]| ≤ 4δ + 2|f(σ(a))|M + 2|f(a)|M + 4|f(e)|M.

(2.11)

for all x ∈ G. By using the unboundedness of f we get g(a) = χ(a)g(σ(a)).

Second case: If g is unbounded. For all x, y, z ∈ G we have

|2g(z)||f(xy) + χ(y)f(σ(y)x)− 2f(x)g(y)|

= |2f(xy)g(z) + 2χ(y)f(σ(y)x)g(z)− 4f(x)g(y)g(z)|
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≤ |− f(xyz)− χ(z)f(σ(z)xy) + 2f(xy)g(z)|

+|χ(y)[−f(σ(y)xz)− χ(z)f(σ(z)σ(y)x) + 2f(σ(y)x)g(z)]|

+|+ f(xyz) + χ(yz)f(σ(z)σ(y)x)− 2f(x)g(yz)|

+|− f(xzy)− χ(zy)f(σ(y)σ(z)x) + 2f(x)g(zy)|

+|χ(z)f(σ(z)xy) + χ(zy)f(σ(y)σ(z)x)− 2χ(z)f(σ(z)x)g(y)|

+|f(xzy) + χ(y)f(σ(y)xz)− 2f(xz)g(y)|

+2|f(x)||g(yz)− g(zy)|+ 2g(y)|f(xz) + χ(z)f(σ(z)x)− 2f(x)g(z)|.

≤ δ + δ + δ + δ + |χ(z)|δ + 0× 2|f(x)|δ + 2|g(y)|δ = 6δ + 2|g(y)|δ.

Using that g is unbounded, we get that the pair (f, g) satisfies the
functional equation (1.8). For the rest of the proof of (ii) we assume that
σ(x) = x−1 for all x ∈ G. We discuss two subcases: First subcase: As-
sume either f(a) 6= 0 or f(e) 6= 0. The pair (f, g) satisfies equation (1.8)
with σ(x) = x−1 on the abelian subgroup hai generated by a, then on
the abelian subgroup hai we have f(xy−1) + χ(y−1)f(xy) = 2f(x)g(σ(y)),
since χ(yy−1) = 1 hence we get χ(y)f(xy−1)+ f(xy) = 2f(x)χ(y)g(y−1) =
2f(x)g(y), x, y ∈ G. Then we have g(y) = χ(y)g(σ(y)) for all y ∈ hai. In
particular g(a) = χ(a)g(σ(a)).

Second subcase: Assume that f(a) = 0 and f(e) = 0. Setting x = e in
(1.8) with σ(x) = x−1, we obtain

f(y) + χ(y)f(y−1) = 0(2.12)

for all y ∈ G. In particular f(a−1) = 0. By using the above computation
we get

|2f(x)[g(a)− χ(a)g(a−1)] = 2f(x)g(a)− f(xa)− χ(a)f(a−1x)

+χ(a)[f(xa−1) + χ(a−1)f(ax)− 2f(x)g(a−1)]

+f(xa) + χ(a)f(a−1x)− χ(a)f(xa−1)− f(ax).

Since
f(xa) + χ(a)f(a−1x)− χ(a)f(xa−1)− f(ax)

= f(xa)+χ(a)f(a−1x)−χ(a)[f(xa−1)+χ(xa−1)f(aσ(x))]+χ(x)f(aσ(x))

−[f(ax) + χ(ax)f(σ(x)a−1)] + χ(ax)f(σ(x)a−1)



326 Elqorachi Elhoucien and Redouani Ahmed

= χ(x)[f(aσ(x))+χ(σ(x))f(σ(σ(x))a)−2f(a)g(σ(x))]+2χ(x)f(a)g(σ(x))

+χ(a)[f(a−1x) + χ(x)f(σ(x)a−1)− 2f(a−1)g(x)] + 2χ(a)f(a−1)g(x)

−χ(a)[f(xa−1) + χ(xa−1)f(aσ(x))]− [f(ax) + χ(ax)f(σ(x)a−1)].

So, we get 2f(x)[g(a) − χ(a)g(a−1)] = 0, which implies that g(a) =
χ(a)g(a−1).

On the other hand we have mg(y
−1) = 2g(y−1)2 − g((y−1)2)

= 2χ(y−1)2g(y)2 − χ(y−1)2g(y2) = χ(y−1)2mg(y).

So, we get mg(y)mg(y
−1) = mg(e) = 1 = (χ(y−1)mg(y))

2. Which
implies that χ̌mg(G) ⊆ {∓1}.
(iii) The formula 2f(x)[g(y)−mg(y)(y

−1)] can be written as follows

2f(x)[g(y)−mg(y)g(y
−1)] =

[−f(xy)− χ(y)f(σ(y)x) + 2f(x)g(y)]

+mg(y)[f(xy
−1) + χ(y−1)f(σ(y−1)x))− 2f(x)g(y−1)]

+f(xy)− χ(y−1)mg(y)f(σ(y
−1)x) + χ(y)f(σ(y)x)−mg(y)f(xy

−1).

Once again we have

f(xy)− χ(y−1)mg(y)f(σ(y
−1)x) + χ(y)f(σ(y)x)−mg(y)f(xy

−1)

= f(σ(y)σ(y−1)xy)− χ(y−1)mg(y)f(σ(y
−1)x) + χ(y)f(σ(y)xy−1y)

−mg(y)f(xy
−1)

= [µ(y)f ](σ(y−1)x)− χ(y−1)mg(y)f(σ(y
−1)x) + χ(y)[µ(y)f ](xy−1)

−mg(y)f(xy
−1)

and from inequality (2.8) and the triangle inequality we obtain

|[µ(y)f ](σ(y−1)x)− χ(y−1)mg(y)f(σ(y
−1)x)) + χ(y)[µ(y)f ](xy−1)

−mg(y)f(xy
−1)|(2.13)

≤ 2|g(y)|δ + 3δ.

Now, from inequalities (2.1) and (2.13) we get
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|2f(x)[g(y)−mg(y)g(y
−1)]| ≤ |mg(y)|δ + 2|g(y)|δ + 4δ(2.14)

for all x, y ∈ G. Since f is unbounded then we have g(y) = mg(y)g(y
−1)

for all y ∈ G.
(vi) Let us consider

2f(x)[g(zy) +mg(y)g(zy
−1)− 2g(y)g(z)](2.15)

= [2g(zy)f(x)−4g(y)g(z)f(x)+χ(y)(R(z)L(y)f)(x)+χ(z)(L(z)R(y)f)(x)]

+2f(x)mg(y)g(zy
−1)− χ(y)(R(z)L(y)f)(x)− χ(z)(L(z)R(y)f)(x).

Since

2f(x)mg(y)g(zy
−1)− χ(y)(R(z)L(y)f)(x)− χ(z)(L(z)R(y)f)(x)

= 2f(x)mg(y)g(zy
−1)− χ(y)f(σ(y)xzy−1y)− χ(z)f(σ(y)σ(y−1)σ(z)xy)

= 2f(x)mg(y)g(zy
−1)−χ(y)f(σ(y)xzy−1y)+mg(y)f(xzy

−1)−mg(y)f(xzy
−1)

−χ(z)f(σ(y)σ(y−1)σ(z)xy) + χ(y−1)χ(z)mg(y)f(σ(y
−1)σ(z)x))

−χ(y−1)χ(z)mg(y)f(σ(y
−1)σ(z)x))

= −χ(y)[µ(y)f ](xzy−1) +mg(y)f(xzy
−1)

−χ(z)[µ(y)f ](σ(y−1)σ(z)x) + χ(y−1)χ(z)mg(y)f(σ(y
−1)σ(z)x))

−mg(y)[f(xzy
−1) + χ(zy−1)f(σ(y−1)σ(z)x)− 2f(x)g(zy−1)].

From inequalities (2.1), (2.6) and |χ(z)| = 1 we obtain

|2f(x)[g(zy) +mg(y)g(zy
−1)− 2g(y)g(z)]| ≤ 6δ + 4|g(y)|δ + |mg(y)|δ

for all x, y, z ∈ G. Since f is unbounded, then g satisfies the functional
equation ((2.2))

(2) We assume that g is unbounded and f 6= 0. By simple computations
we get that f is unbounded. Now, by using some computations used in (ii)
we get that the pair (f, g) satisfies the functional equation (1.8).

Now, by using (2.8) with δ = 0 we get
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mg(y)f(x) = χ(y)f(σ(y)xy)(2.16)

for all x, y ∈ G.
So if we replace x by xy−1 in(2.16) we obtainmg(y)f(xy

−1) = χ(y)f(σ(y)x)
and equation (1.8) can be written as follows f(xy) + mg(y)f(xy

−1) =
2f(x)g(y) for all x, y ∈ G. For the proof of other properties we use case (1)
with δ = 0. This completes the proof of theorem. 2

Corollary 2.2. Let δ ≥ 0. Let σ be an involutive anti-automorphism of
G.

Let χ be a unitary character of G such that χ(xσ(x)) = 1 for all x ∈ G.
Suppose that the function f : G −→ C satisfies the inequality

|f(xy) + χ(y)f(σ(y)x)− 2f(x)f(y)| ≤ δ(2.17)

for all x, y ∈ G. Then, either f is bounded or f satisfies equation (1.9).

As an application we get some properties of the solutions of equation
(1.8), where σ is an involutive anti-automorphism. By using the above
Theorem for δ = 0, [12], Proposition 2, Theorem 3 and Corollary 6], [[39],
Theorem 6.1, Theorem 10.1 and Corollary 10.2] we obtain the following
theorem.

For later use, we recall (see for example [12] that a function f : G −→ C
is said to be abelian, if f(xσ(1)xσ(2)...xσ(n)) = f(x1x2...xn) for all
x1, x2, ..., xn ∈ G, all permutations σ and all n = 1, 2, ....

Theorem 2.3. Let σ be an involutive anti-automorphism of G. Let χ be
a unitary character of G such that χ(xσ(x)) = 1 for all x ∈ G. Let the pair
f, g: G −→ C be a solution of the variant of Wilson’s functional equation
(1.8) such that f 6= 0.
(1) If f is a nonzero central function. Then,

(i) f = f(e)g, when g is non abelian.
(ii) When g is abelian g has the form g = ψ+χψ◦σ

2 where ψ : G −→ C∗ is a
character. If ψ 6= χψ ◦ σ, then f = α(ψ − χψ ◦ σ)/2 + β(ψ + χω ◦ σ)/2 for
some α, β ∈ C. If ψ = χψ ◦ σ, then f = ψa+ βψ for some additive map a:
G −→ C and some β ∈ C.
(2) (i) g(e) = 1, g is central, and g = χg ◦ σ, g = mgǧ.
(ii) mg: G −→ C∗ is multiplicative.
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(iii) χ(y)f(σ(y)xy) = mg(y)f(x), χ(y)f(σ(y)x) = mg(y)f(xy
−1) for all

x, y ∈ G.
(iv) g(xy) +mg(y)g(xy

−1) = 2g(x)g(y) for all x, y ∈ G.
(v) f(xy) +mg(y)f(xy

−1) = 2f(x)g(y) for all x, y ∈ G.
(vi) f = −χf ◦ σ if and only if f(e) = 0
(vii) The even part and the odd part of f : fe(x) =

f(x)+χ(x)f(σ(x))
2 , fo(x) =

f(x)−χ(x)f(σ(x))
2 and χf ◦ σ satisfy (1.8) with g unchanged.

(ix) fe = f(e)g. In particular fe = 0 (f is odd) if and only if f(e) = 0
(x) The odd part fo of f satisfies

fo(xy) + fo(yx) = 2fo(x)g(y) + 2fo(y)g(x)(2.18)

for all x, y ∈ G..

(3) For the rest we assume that σ(x) = x−1 for all x ∈ G.

(i) χ̌mg(G) ⊆ {∓1}

If mg = χ, then either

(i) g is non-abelian and f = f(e)g, or
(iii) f and g are both abelian, in which case (1) applies.
(4) If mg 6= χ, then f = −χf ◦ σ (f is odd).

3. Solutions and Stability of the functional equation (1.8),
where σ is an involutive homomorphism of G

In this section σ is an involutive homomorphism of G, that is σ(xy) =
σ(x)σ(y) and σ(σ(x)) = x, for all x, y ∈ G. In the following theorem, we
obtain the solutions of the functional equation (1.8) on groups. It turns
out that, like on abelian groups, only multiplicative and additive functions
occur in the solution formulas.

Theorem 3.1. Let G be a groups, σ: G −→ G a multiplicative function
such that σ ◦ σ = I, where I denotes the identity map, and χ: G −→ C be
a multiplicative function on G such that χ(xσ(x)) = 1 for all x ∈ G.

The solutions f, g of the functional equation (1.8) are the following pairs
of functions, where m: G −→ C denotes an homomorphism and α, c ∈ C∗.
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(i) f = 0 and g arbitrary.
(ii) g = m+χm◦σ

2 and f = αg.
(iii) g = m+χm◦σ

2 and f = (c+α
2 )m−(c−

α
2 )m◦σ with (χ−1)m = (χ−1)m◦σ.

(iv) g = m and f = (a + α)m, where m = χm ◦ σ and a: G −→ C is an
additive map which satisfies m(a ◦ σ + a) = 0.

Proof. It is elementary to check that the cases stated in the Theorem
define solutions, so it is left to show that any solution f, g: G −→ C of
(1.8) falls into one of these cases. We use in the proof similar Stetkær’s
computations [25]. Let x, y, z ∈ G. If we replace x by xy and y by z in
(1.8) we get

f(xyz) + χ(z)f(σ(z)xy) = 2f(xy)g(z).(3.1)

On the other hand if we replace x by σ(z)x in (1.8), we obtain

f(σ(z)xy) + χ(y)f(σ(y)σ(z)x) = 2f(σ(z)x)g(y)

= 2g(y)[χ(σ(z))[2f(x)g(z)− f(xz)]].

Since,

χ(y)f(σ(y)σ(z)x) = χ(y)f(σ(yz)x) = χ(y)χ(σ(yz))[2g(yz)f(x)− f(xyz)]

= χ(σ(z))[2g(yz)f(x)− f(xyz)],

so by using χ(zσ(z)) = 1 we have

χ(z)f(σ(z)xy) + [2g(yz)f(x)− f(xyz)] = 2g(y)[2f(x)g(z)− f(xz).

(3.2)

Subtracting this from (3.1) we get

f(xyz) = g(yz)f(x) + f(xy)g(z) + g(y)f(xz)− 2g(y)f(x)g(z).(3.3)

With the notation
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fx(y) = f(xy)− f(x)g(y)(3.4)

equation (3.3) can be written as follows

fa(xy) = fa(x)g(y) + fa(y)g(x), x, y ∈ G.(3.5)

We will in the rest of the proof of Theorem 3.1 need to know the solu-
tions of the functional equation

f(xy) + χ(y)f(σ(y)x) = 2f(x)f(y); x, y ∈ G.(3.6)

They are obtained in the following lemma.

Lemma 3.2. Let G be a semigroup, σ: G −→ G an homomorphism such
that σ ◦ σ = I, where I denotes the identity map, and χ: G −→ C be a
multiplicative function on G such that χ(xσ(x)) = 1 for all x ∈ G. The
solutions f of the functional equation (3.6) are of the form f = m+χm◦σ

2 ,
where m: G −→ C is multiplicative.

Proof. Verifying that f = m+χm◦σ
2 , wherem: G −→ C is multiplicative,

is solution of equation (3.6) consists in simple computations. Let f satisfy
the functional equation (3.6), then by using the above computations the
pair f, fa satisfies equation

fa(xy) = fa(x)f(y) + fa(y)f(x), x, y ∈ G.(3.7)

If fa = 0 for all a ∈ G then f is multiplicative. Substituting f into (3.6)
we get χ(y)f(σ(y)) = f(y) for all y ∈ G. This implies that f = ϕ+χϕ◦σ

2 ,
where f = ϕ is multiplicative.

If fa 6= 0 for some a ∈ G. From the known solution of the sine addition
law (see for example [27], Theorem 4.1]) there exist two multiplicative func-
tions χ1, χ2: G −→ C such that f = χ1+χ2

2 . We can assume that χ1 6= χ2.
Substituting f = χ1+χ2

2 in (3.6) we get after reduction that

χ1(x)[χ(y)χ1(σ(y))− χ2(y)] = χ2(x)[χ1(y)− χ(y)χ2(σ(y))].

Since χ1 6= χ2 at least one of χ1 and χ2 is not zero. So, we get χ1 = χχ2◦σ,
and f = ϕ+χϕ◦σ

2 , where ϕ: G −→ C is multiplicative. This completely
describes the solutions of equation (3.6). 2
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Now, we will find the solutions of equation (1.8). Let f, g: G −→ C
a solution of equation (1.8). The above computation shows that the pair
fa, g satisfies the sine addition formula (3.5) for any a ∈ G. From the known
solution of the sine addition formula (see for example [27], Theorem 4.1])
we have the following possibilities.

If f = 0 we deal with case (i). So during the rest of the proof we will as-
sume that f 6= 0. If we replace a by e in (3.4) we get fe(x) = f(x)−f(e)g(x).
If fe = 0, then f(x) = f(e)g(x) for all x ∈ G. Since f 6= 0 then f(e) 6= 0.
Substituting f = f(e)g into (1.8) we find that g satisfies equation (3.6)
then there exists m: G −→ C multiplicative such that g = m+χm◦σ

2 . We
see that we deal with case (ii).

If fe 6= 0, the pair (fe, f) satisfies (3.5) and we known from [27], Theo-
rem 4.1] that there are only the following 3 possibilities:

(1) fe = cm and g = m/2 for some m multiplicative. Here

f = fe + f(e)g. Substituting f = (c + f(e)
2 )m, g = m/2 into (1.8) we find

(c + f(e)
2 )χ(y)m(x)m(σ(y)) = 0 for all x, y ∈ G. This case does not apply,

because f 6= 0.

(2) There exist two different characters m and M on G and a constant
c ∈ C∗ such that

g =
m+M

2
and fe = c(m−M)

then f = c(m −M) + f(e)m+M2 = αm − βM , where α = c + f(e)
2 and

β = c− f(e)
2 . Substituting this into (1.8) we find after reduction that

αm(x)(χ(y)m(σ(y))−M(y)) = βM(x)(χ(y)M(σ(y))−m(y)).(3.8)

If we replace y by σ(y) in (3.8) and after we multiply equation obtained by
χ(y) and using χ(yσ(y)) = 1 we find

αm(x)(m(y)− χ(y)M(σ(y))) = βM(x)(M(y))− χ(y)m(σ(y))).(3.9)

Subtracting (3.8) from (3.9) we get after some simplifications that
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(αm(x) + βM(x))(χ(y)m(σ(y))−M(y))

= (αm(x) + βM(x))(χ(y)M(σ(y))−m(y)).(3.10)

Putting x = e in (3.10) we find that χ(y)m(σ(y))−M(y)
= χ(y)M(σ(y)) − m(y), because α + β = 2c 6= 0. If χM ◦ σ − m 6= 0,
then from (3.8) we get αm(x) = βM(x) for all x ∈ G. So, for x = e
we obtain α = β which contradicts the assumption that f(e) 6= 0. Thus,
M = χm ◦ σ and m = χM ◦ σ from which we see that g = m+χm◦σ

2 and

f = (c+ f(e)
2 )m−(c−

f(e)
2 )χm◦σ. We conclude that we deal with case (iii).

(3) g = m and fe = ma, where m is multiplicative of G and a is an
additive map. From fe = f − f(e)g we get f = ma+ f(e)m = (a+f(e))m.
Substituting this into (1.8) we find after reduction that

m(x)(a(y)m(y) + χ(y)a(σ(y))m(σ(y)))(3.11)

+m(x)(a(x) + f(e))(χ(y)m(σ(y))−m(y)) = 0.

If we replace y by σ(y) in (3.11) and after we multiply equation obtained
by χ(y) and using χ(yσ(y)) = 1 we find

m(x)(χ(y)a(σ(y))m(σ(y)) + a(y)m(y))(3.12)

+m(x)(a(x) + f(e))(m(y)− χ(y)m(σ(y))) = 0.

Subtracting (3.11) from (3.12) we get after some simplifications that

2m(x)(a(x) + f(e))(χ(y)m(σ(y))−m(y)) = 0(3.13)

for all x, y ∈ G. Putting x = e in (3.13) we get m = χm ◦ σ, because
2m(e)(a(e) + f(e)) = 2.1.(0 + f(e)) = 2f(e) 6= 0. This means that g =
m+χm◦σ

2 . Substitutingm = χm◦σ into (3.11) we deduce thatm(a◦σ+a) =
0. We see that we deal with case (iv) and this completes the proof. 2

The formulas of Theorem 3.1 implies the following corollary.

Corollary 3.3. Let G be a group, σ: G −→ G a multiplicative function
such that σ ◦ σ = I, where I denotes the identity map, and χ: G −→ C be
a multiplicative function of G such that χ(xσ(x)) = 1 for all x ∈ G. If f ; g :
G −→ C is a solution of variant of Wilson’s functional equation (1.8) such
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that f 6= 0, then g is a solution of the variant of d’Alembert’s functional
equation (3.6).

In the rest of this section we examine the Hyers-Ulam stability of the
functional equation (1.8). We shall first recall two variants of Székelyhidi
results because it will be useful in the treatment of stability of other func-
tional equations like sine addition formula. The proof of Theorem 3.3 and
Theorem 3.4 goes along the same lines as the one in [33] and [34].

Theorem 3.4 (33). Let V be a vector space of C-valued functions on a
semigroup G, let V be left invariant and suppose that f andm areC-valued
functions on G. If the function y 7−→ f(xy) − f(y)m(x) belongs to V for
all x ∈ G. Then either f is in V or m is an exponential.

Theorem 3.5 (35). Let V be a vector space of C-valued functions on a
semigroup G, let V be invariant and suppose that f and g are C-valued
functions on G which are linearly independent modulo V .

If the function x 7−→ f(yx)− f(x)g(y)− f(y)g(x) belongs to V for all
y ∈ G, then f(xy) = f(x)g(y) + f(y)g(x) for all x, y ∈ G.

In the following theorem we obtain the Hyers-Ulam stability of the
functional equation (1.8). The following lemmas will be helpful in the
sequel.

Lemma 3.6. Let δ ≥ 0, let G be a semigroup with identity element, σ:
G −→ G be an homomorphism such that σ ◦ σ = I, and χ: G −→ C be
a bounded multiplicative function such that χ(xσ(x)) = 1 for all x ∈ G.
Suppose that the pair f, g : G→ C satisfies

|f(xy) + χ(y)f(σ(y)x)− 2f(x)g(y)| ≤ δ, for all x, y ∈ G.(3.14)

Under these assumptions the following statement hold:

|fa(xy)− fa(x)g(y)− fa(y)g(x)| ≤ |g(x)|δ +
3

2
δ, for all x, y ∈ G,

(3.15)

where fa is the function defined in (3.4).
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Proof. For x, y ∈ G we put F (x, y) = f(xy)+χ(y)f(σ(y)x)−2f(x)g(y).
By using similar computations used in the proof of Theorem 3.1 we get

f(xyz)− f(x)g(yz) + 2f(x)g(y)g(z)− f(xy)g(z)− g(y)f(xz)(3.16)

= −g(y)F (x, z) + F (x, yz)

2
+

F (xy, z)

2
− F (σ(z)x, y)

2

for all x, y, z ∈ G. From inequality (3.14) and the definition of fa we get
the desired result. 2

The second main result of this section is the next one.

Theorem 3.7. Let G be a semigroup with identity element, σ: G −→ G
an involutive homomorphism of G and χ: G −→ C be a unitary character
of G such that χ(xσ(x)) = 1 for all x ∈ G. Let the pair f, g : G → C be
given. Suppose that the function

(x, y) −→ f(xy) + χ(y)f(σ(y)x)− 2f(x)g(y)(3.17)

is bounded. Under these assumptions the following statements hold:
(i) f = 0 and g arbitrary.
(ii) f 6= 0 is bounded and g is bounded.
(iii) f is unbounded, g is bounded and G is an amenable group, then g 6= 0
is multiplicative, g = χg ◦ σ and there exists an additive map a: G −→ C
such that f−ag is bounded and (ag)(xy)+χ(y)(ag)(σ(y)x) = 2(ag)(x)g(y)
for all x, y ∈ G.
(iv) f is unbounded, g is unbounded. In this case there are the following
three possibilities:
(1) g is multiplicative, g = χg ◦ σ, f = f(e)g. Furthermore, f, g satisfy
equation (1.8).
(2) g is multiplicative, g = χg ◦σ, f = ag, where a is an additive map such
that a ◦ σ = −a. Furthermore, f, g satisfy equation (1.8).
(3) g = m+χm◦σ

2 and f = (c+ f(e)
2 )m− (c−

f(e)
2 )m ◦ σ, where m is multi-

plicative.

Proof. If f = 0 we deal with case (i). So during the rest of the proof
we will assume that f 6= 0. If f is bounded then by using (3.17) we get g
bounded. This is case (ii)
(iii) If f is unbounded and g bounded. We notice here that g 6= 0, because
if g = 0 then from (3.17) with y = e we get f bounded, which contradict
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our assumption that f is unbounded. We put h = f − f(e), so h(e)=0 and
the function

(x, y) −→ h(xy)− h(x)g(y)− h(y)g(x)(3.18)

is bounded. Thus, the function y 7−→ h(xy) − h(y)g(x) is bounded for all
x ∈ G. So, by using Theorem 3.4 we get g = m multiplicative and the
function defined in (3.18) remains bounded when the right side is mul-
tilied by m((xy)−1) = m(x−1)m(y−1), so that the function (x, y) −→
h
m(xy) −

h
m(x) −

h
m(y) is bounded. Since G is amenable then from [36]

we have h
m(x) = a(x) + b(x) for all x ∈ G, where a: G −→ C is an un-

bounded additive map and b: G −→ C is bounded. On the other hand by
substituting this into B(x, y) = h(xy) + χ(y)h(σ(y)x) − 2h(x)g(y) we get
a(xy)m(xy)+b(xy)m(xy)+χ(y)[a(σ(y)x)m(σ(y)x)+b(σ(y)x)m(σ(y)x)] =
2[a(x)m(x)+ b(x)m(x)]m(y)+B(x, y) and we find after reduction that the
function

|a(x)m(x)(χ(y)m(σ(y))−m(y)) + a(y)m(x)m(y)

+ χ(y)a(σ(y))m(x)m(σ(y))| ≤ δ(3.19)

for all x, y ∈ G and for some δ ≥ 0. By replacing y by σ(y) in ((3.19)) and
using χ(yσ(y)) = 1 we get

|a(x)m(x)(m(y)− χ(y)m(σ(y))) + χ(y)a(σ(y))m(x)m(σ(y))

+ a(y)m(x)m(y)| ≤ δ.(3.20)

Subtracting (3.19) from (3.20) we get after some simplifications that

|2a(x)m(x)||(m(y)− χ(y)m(σ(y)))| ≤ 2δ(3.21)

for all x, y ∈ G. Since |m(x)| = 1 and a is unbounded then we get m(y) =
χ(y)m(σ(y))) for all y ∈ G.

Now, we will show that l = ag satisfies l(xy)+χ(y)l(σ(y)x) = 2l(x)m(y).
For all x, y ∈ G we have

l(xy) + χ(y)l(σ(y)x)− 2l(x)m(y)
= (a(x) + a(y))m(x)m(y) + χ(y)(a(σ(y))

+a(x))m(σ(y))m(x)− 2a(x)m(x)m(y)
= (a(y) + a(σ(y)))m(x)m(y).
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Since

|h(xy) + χ(y)h(σ(y))− 2h(x)g(y)| ≤ β(3.22)

for some β ≥, h(e) = 0, h = m(a + b), m is multiplicative, |m(x)| = 1,
m = χm ◦ σ and b is bounded then if we put x = e in (3.22) we get

|m(y)a(y) +m(y)b(y) + χ(y)m(σ(y))a(σ(y)) + χ(y)m(σ(y))b(σ(y))| ≤ β.

This means that the function y −→ |a(y) + a(σ(y))| is bounded. Since
a+a◦σ is an additive map then we get a(y)+a(σ(y) = 0 for all y ∈ G and
we conclude that l(xy) + χ(y)l(σ(y)x) = 2l(x)g(y) for all x, y ∈ G, and we
see that we deal with case (iii).

If f, g are unbounded, then by using (3.15) we get that either fa = 0
for all a ∈ G or fa is unbounded for all a ∈ G. Indeed, if there exists a ∈ G
with fa 6= 0 and fa bounded, so from inequality (3.15) with x = x0 where
fa(x0) 6= 0 we get g bounded which contradicts the assumption that g is
unbounded.

In this case we have the following possibilities:

If fa = 0 for all a ∈ G then f(xy) = f(x)g(y) for all x, y ∈ G and this
implies that g is multiplicative and f = f(e)g. Substituting this into (3.17)
we get after reduction that |g(x)|χ(y)g(σ(y)) − g(y)| ≤ γ for all x, y ∈ G
and for some γ ≥ 0. Since g is unbounded we deduce that g = χg ◦ σ. So,
g satisfies equation (1.9), and the pair f, g satisfies equation (1.8). We deal
with case (iv)(1).

If there exists a ∈ G such that fa 6= 0, then by using the above notice
we get fa is unbounded for all a ∈ G. For the rest of the proof we put a = e
and we will discuss two cases.

First Case: If fe, g are linearly dependent modulo the spaces of complex
bounded function on G (see [35]), then there exists a constant λ ∈ C∗ and
a bounded function b on G such that g = 1

2λfe + b. Substituting this into
inequality (3.15) we get

|fe(xy)−fe(x)[
1

2λ
fe(y)+b(y)]−fe(y)[

1

2λ
fe(x)+b(x)]| ≤ |

1

2λ
fe(x)+b(x)]|δ+

3

2
δ
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for all x,y∈ G, so we have

|fe(xy)− (
1

λ
fe(x) + b(x))fe(y)| ≤ |fe(x)||b(y)|+ |

1

2λ
fe(x) + b(x)]|δ + 3

2
δ.

Thus the function y −→ fe(xy)−( 1λfe(x)+b(x))fe(y) is bounded for all
x ∈ G. Since fe is unbounded then from Theorem 3.4 (with V is the space
of bounded function on G) we getm = 1

λfe+b multiplicative, fe = λm−λb,
g = m

2 +
b
2 and f = fe + f(e)g = (λ + f(e)

2 )m + (f(e)2 − λ)b = αm + βb
Substituting this into bounded function B(x, y) = f(xy) +χ(y)f(σ(y)x)−
2f(x)g(y) we find after reduction that

αm(x)[χ(y)m(σ(y))−b(y)] = βb(x)m(y)+βb(x)b(y)−βχ(y)b(σ(y)x)+B(x, y)
(3.23)
for all x, y ∈ G. Since b is bounded, m is unbounded and |χ(y)| = 1 then
there exists a ∈ G such that χ(a)m(σ(a)) − b(a) 6= 0. From (3.23) we
conclude that m is a bounded multiplicative and this case does not apply,
because m is unbounded. So we have the second case:

Case 2: fe, g are linearly independent modulo the spaces of complex bounded
function on G. From inequality (3.15) and Theorem 3.5, (with V is the
space of bounded function on G) reveals that the pair (fe, g) is a solution
of the sine addition formulas

fe(xy) = fe(x)g(y) + fe(y)g(x)(3.24)

for all x, y ∈ G, so we known from [[40], Corollary 4.4] that there are only
the following possibilities:

(1) fe = cm and g = m
2 for some multiplicative function m : G −→ C.

Here f = fe + f(e)g = (c + fe
2 )m = γm. Substituting this into bounded

function B(x, y) = f(xy) + χ(y)f(σ(y)x) − 2f(x)g(y) we find after reduc-
tion that βχ(y)m(σ(y))m(x) = B(x, y). This means that m is a bounded
multiplicative and this case does not apply, because m is unbounded.

(2) g = m and fe = am for some multiplicative function m : G −→ C
and a : G −→ C an additive map. In this case f = (a+ f(e))m, so we find
after reduction that the bounded function:

f(xy) + χ(y)f(σ(y)x)− 2f(x)g(y) = (a(x) + a(y) + f(e))m(x)m(y)
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+χ(y)[(a(σ(y)) + a(x) + f(e))m(σ(y))m(x)− 2(a(x) + f(e))m(x)m(y)]

= (a(x)+f(e))m(x)(χ(y)m(σ(y))−m(y))+m(x)[χ(y)a(σ(y))m(σ(y))+a(y)m(y)].

(3.25)

If we replace y with σ(y) in (3.25), and after we multiply equation
obtained by χ(y) and using χ(yσ(y)) = 1 we get

(a(x)+f(e))m(x)(m(y)−χ(y)m(σ(y)))+m(x)(a(y)m(y)+χ(y)a(σ(y))m(σ(y))
(3.26)

which is also a bounded function. Subtracting (3.25) from (3.26) we get af-
ter some simplifications that the function (x, y) 7−→ m(x)(a(x)+f(e))(m(y)−
χ(y)m(σ(y))) is bounded. Since f = m(a + f(e)) is unbounded then we
get m = χm ◦ σ. Now, we will verify that the pair (f, g) is a solution of
equation (1.8). for all x, y ∈ G we have

f(xy) + χ(y)f(σ(y)x)− f(x)g(y)

= (a(x) + a(y) + f(e))m(x)m(y)

+χ(y)[a(σ(y)) + a(x) + f(e))m(σ(y))m(x)]− 2(a(x) + f(e))m(x)m(y)

= (a(y) + a(σ(y)))m(x)m(y).

Since (x, y) 7−→ f(xy)+χ(y)f(σ(y)x)−f(x)g(y) is a bounded function,
then we have (x, y) 7−→ (a(y) + a(σ(y)))m(x)m(y) is also bounded. Since
m is unbounded then we get the desired result, so we see that we deal with
case (iv) (2).
(3) There exit two different characters m,M and a constant c ∈ C∗ such
that g = m+M

2 and fe = c(m − M). In this case f = fe + f(e)g =

(c+ f(e)
2 )m− (c−

f(e)
2 )m = αm−βM , where α = c+ f(e)

2 and β = c− f(e)
2 .

Substituting this into bounded functionB(x, y) = f(xy)+χ(y)f(σ(y)x)−
2f(x)g(y) we find after reduction that

αm(x)(χ(y)m(σ(y))−M(y)) + βM(x)(m(y)− χ(y)M(σ(y))) = B(x, y).(3.27)
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If we replace y with σ(y) in (3.27), and after we multiply equation
obtained by χ(y) and using χ(yσ(y)) = 1 we get

αm(x)(m(y))−χ(y)M(σ(y)))+βM(x)(χ(y)m(σ(y))−M(y)) = χ(y)B(x, σ(y)).
(3.28)

If we add (3.27) to (3.28) we get after some simplifications that the func-
tion (x, y) 7−→ (αm(x) + βM(x))[(m(y)−χ(y)M(σ(y))) + (χ(y)m(σ(y))−
M(y))] is bounded. Since αm + βM = 2cg + f(e)

c fe and g, fe are lin-
early independent modulo the space of complex bounded functions on G,
αm+βM = 2cg+ f(e)

c fe is unbounded then we getm−χM◦σ =M−χm◦σ.
Now, the bounded function (3.27) can be written as follows

f(xy)+χ(y)f(σ(y)x)−2f(x)g(y) = (αm(x)−βM(x))(χ(y)m(σ(y))−M(y))
(3.29)

= f(x)(χ(y)m(σ(y))−M(y))

Since f is assumed to be unbounded then we get χ(y)m(σ(y)) =M(y)
for all y ∈ G and g take the expression: g = m+χm◦σ

2 . Equation (3.29)
show that the pair (f, g) satisfies equation (1.8). We see that we deal with
case (iv) (3) and this completes the proof. 2 As an application we get the
superstability of the functional equation (3.6).

Corollary 3.8. Let δ ≥ 0. Let G be a semigroup with identity element,
σ: G −→ G an involutive homomorphism and χ: G −→ C be a unitary
character of G such that χ(xσ(x)) = 1 for all x ∈ G. Let f : G → C such
that

|f(xy) + χ(y)f(σ(y)x)− 2f(x)f(y)| ≤ δ(3.30)

for all x, y ∈ G. Then either f is bounded or f satisfies equation (3.6)

In [23], the authors presented some rich ideas on the study of the su-
perstability of symmetrized multiplicative Cauchy equation

f(xy) + f(yx) = 2f(x)f(y) x, y ∈ G.(3.31)

However, we have formulate the problem as an open problem. The
solutions of equation (3.31) are multiplicative functions (see for exapmle
[30]. In the following, we give the affirmative answer. If we put χ = 1 and
σ = I in Corollary 3.8, where I denotes the identity map we get
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Corollary 3.9. Let δ ≥ 0. Let G be a group with identity element. Let
f : G→ C such that

|f(xy) + f(yx)− 2f(x)f(y)| ≤ δ(3.32)

for all x, y ∈ G. Then either f is bounded or f is multiplicative.
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[36] L. Székelyhidi, Fréchet equation and Hyers’s theorem on noncommu-
tative semigroups, Ann. Polon. Math., 48, pp. 183-189, (1988).

Elhoucien Elqorachi
Department of Mathematics
Faculty of Sciences
Ibn Zohr University
Agadir,
Morocco
e-mail : e.elqorachi@uiz.ac.ma

and

Ahmed Redouani
Department of Mathematics
Faculty of Sciences
Ibn Zohr University
Agadir, Morocco
e-mail : Redouani−ahmed@yahoo.fr


