Proyecciones Journal of Mathematics
Vol. 37, ${ }^{o}$ 2, pp. 199-211, June 2018.
Universidad Católica del Norte
Antofagasta - Chile

On estimates for the generalized Fourier-Bessel transform

A. Akhlidj
University of Hassan II, Morocco
R. Daher
University of Hassan II, Morocco
and
M. El Hamma
University of Hassan II, Morocco
Received: December 2016. Accepted: February 2018

Abstract

Two estimates useful in applications are proved for the generalized Fourier-Bessel transform in the space $L_{\alpha, n}^{2}$ as applied to some classes of functions characterized by a generalized modulus of continuity.

Keywords : Generalized Fourier-Bessel transform; generalized translation operator; modulus of continuity.

Mathematics Subject Classification :

1. Introduction and preliminaries

In [2], Abilov et al. proved two useful estimates for the Fourier transform in the space of square integrable functions on certain classes of functions characterized by the generalized continuity modulus, using a translation operator .
In this paper, we prove two useful estimates in certain classes of functions characterized by a generalized continuity modulus and connected with the generalized Fourier-Bessel transform in the space $L_{\alpha, n}^{2}$ analogs of the statements proved in $[2,4,5]$. For this purpose, we use a generalized translation operator.

Consider the second-order singular differential operator on the half line

$$
B f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x}-\frac{4 n(\alpha+n)}{x^{2}} f(x)
$$

where $\alpha>-\frac{1}{2}$ and $n=0,1,2, \ldots \ldots$ For $n=0$, we obtain the classical Bessel operator

$$
B_{\alpha} f(x)=\frac{d^{2} f(x)}{d x^{2}}+\frac{(2 \alpha+1)}{x} \frac{d f(x)}{d x} .
$$

For $\alpha>-\frac{1}{2}$ and $n=0,1,2, \ldots$. let M be the map defined by

$$
M f(x)=x^{2 n} f(x)
$$

Let $L_{\alpha, n}^{2}$ be the class of measurable functions f on $[0, \infty[$ for which

$$
\|f\|_{2, \alpha, n}=\left\|M^{-1} f\right\|_{2, \alpha+2 n}<\infty
$$

where

$$
\|f\|_{2, \alpha+2 n}=\left(\int_{0}^{+\infty}|f(x)|^{2} x^{2 \alpha+4 n+1} d x\right)^{1 / 2}
$$

For $\alpha>-\frac{1}{2}$, we introduce the normalized spherical Bessel function j_{α} defined by

$$
\begin{equation*}
j_{\alpha}(x)=\frac{2^{\alpha} \Gamma(\alpha+1) J_{\alpha}(x)}{x^{\alpha}}, \tag{1.1}
\end{equation*}
$$

where $J_{\alpha}(x)$ is a Bessel function of the first kind and $\Gamma(x)$ is the gammafunction. The function $y=j_{\alpha}(x)$ satisfies the differential equation

$$
B_{\alpha} y+y=0
$$

with the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$. The function $j_{\alpha}(x)$ is infinitely differentiable, even, and, moreover entire analytic.

Lemma 1.1. The following inequalities are fulfilled:

1. $1-j_{\alpha}(x)=O(1), x \geq 1$,
2. $1-j_{\alpha}(x)=O\left(x^{2}\right), 0 \leq x \leq 1$,
3. $\sqrt{h x} J_{\alpha}(h x)=O(1), h x \geq 0$.

Proof. (see [1])
For $\lambda \in \mathbf{C}$ and $x \in \mathbf{R}$, put

$$
\varphi_{\lambda}(x)=x^{2 n} j_{\alpha+2 n}(\lambda x)
$$

From [2] recall the following properties.
Proposition 1.2. 1. φ_{λ} satisfies the differential equation

$$
B \varphi_{\lambda}=-\lambda^{2} \varphi_{\lambda}
$$

2. For all $\lambda \in \mathbf{C}$, and $x \in \mathbf{R}$

$$
\left|\varphi_{\lambda}(x)\right| \leq x^{2 n} e^{|I m \lambda||x|}
$$

The generalized Fourier-Bessel transform we call the integral from [2]

$$
\mathcal{F}_{B}(f)(\lambda)=\int_{0}^{+\infty} f(x) \varphi_{\lambda}(x) x^{2 \alpha+1} d x, \lambda \geq 0, f \in L_{\alpha, n}^{1}
$$

Let $f \in L_{\alpha, n}^{1}$, the inverse generalized Fourier-Bessel transform is given by the formula

$$
f(x)=\int_{0}^{+\infty} \mathcal{F}_{B}(f)(\lambda) \varphi_{\lambda}(x) d \mu_{\alpha+2 n}(\lambda),
$$

where

$$
d \mu_{\alpha+2 n}(\lambda)=\frac{1}{4^{\alpha+2 n}(\Gamma(\alpha+2 n+1))^{2}} \lambda^{2 \alpha+4 n+1} d \lambda
$$

From [2], we have

Theorem 1.3. 1. For every $f \in L_{\alpha, n}^{1} \cap L_{\alpha, n}^{2}$ we have the Plancherel formula

$$
\int_{0}^{+\infty}|f(x)|^{2} x^{2 \alpha+1} d x=\int_{0}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)
$$

2. The generalized Fourier-Bessel transform \mathcal{F}_{B} extends uniquely to an isometric isomorphism from $L_{\alpha, n}^{2}$ onto $L^{2}\left(\left[0,+\infty\left[, \mu_{\alpha+2 n}\right)\right.\right.$.

Define the generalized translation operator $T_{h}, h>0$ by the relation

$$
T_{h} f(x)=(x h)^{2 n} \tau_{\alpha+2 n}^{h}\left(M^{-1} f\right)(x), x \geq 0
$$

where $\tau_{\alpha+2 n}^{h}$ are the Bessel translation operators of order $\alpha+2 n$ defined by

$$
\tau_{\alpha}^{h} f(x)=c_{\alpha} \int_{0}^{\pi} f\left(\sqrt{x^{2}+h^{2}-2 x h \cos t}\right) \sin ^{2 \alpha} t d t
$$

where

$$
c_{\alpha}=\left(\int_{0}^{\pi} \sin ^{2 \alpha} t d t\right)^{-1}=\frac{\Gamma(\alpha+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\alpha+\frac{1}{2}\right)}
$$

Proposition 1.4. [2]

1. Let f be in $L_{\alpha, n}^{2}$. Then for all $h \geq 0$, the function $T_{h} f$ belongs to $L_{\alpha, n}^{2}$, and

$$
\left\|T_{h} f\right\|_{2, \alpha, n} \leq h^{2 n}\|f\|_{2, \alpha, n}
$$

2. For $f \in L_{\alpha, n}^{2}$, we have

$$
\mathcal{F}_{B}\left(T_{h} f\right)(\lambda)=\varphi_{\lambda}(h) \mathcal{F}_{B}(f)(\lambda), f \in L_{\alpha, n}^{2}
$$

From [3], we have

$$
\mathcal{F}_{B}(B f)(\lambda)=-\lambda^{2} \mathcal{F}_{B}(f)(\lambda), f \in L_{\alpha, n}^{2}
$$

Then

$$
\begin{equation*}
\mathcal{F}_{B}\left(B^{r} f\right)(\lambda)=(-1)^{r} \lambda^{2 r} \mathcal{F}_{B}(f)(\lambda) \tag{1.2}
\end{equation*}
$$

where $r=1,2, \ldots$.
The first and higher order finite differences of $f(x)$ are defined as follows

$$
\Delta_{h} f(x)=T_{h} f(x)+T_{-h} f(x)-2 h^{2 n} f(x)=\left(T_{h}+T_{-h}-2 h^{2 n} E\right) f(x),
$$

where E is the identity operator in $L_{\alpha, n}^{2}$, and

$$
\Delta_{h}^{k} f(x)=\Delta_{h}\left(\Delta_{h}^{k-1} f(x)\right)=\left(T_{h}+T_{h}-2 h^{2 n} E\right)^{k} f(x),
$$

where $T_{h}^{0} f(x)=f(x), T_{h}^{k} f(x)=T_{h}\left(T_{h}^{k-1} f(x)\right)$ for $k=1,2, \ldots$.
The k th order generalized modulus of continuity of function $f \in L_{\alpha, n}^{2}$ is defined as

$$
\Omega_{k}(f, \delta)=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{k} f(x)\right\|_{2, \alpha, n}
$$

Let $W_{2, \psi}^{r, k}(B)$ denote the class of functions $f \in L_{\alpha, n}^{2}$ such that

$$
\Omega_{k}\left(B^{r} f, \delta\right)=O\left(\psi\left(\delta^{k}\right)\right),
$$

where $\psi(t)$ is any nonnegative function given on $[0, \infty)$ and $\psi(0)=0$, for the generalized Bessel operator B, we have $B^{0} f=f, B^{r} f=B\left(B^{r-1} f\right), r=$ $1,2, \ldots$

Lemma 1.5. For any function $f \in L_{\alpha, n}^{2}$ such that $B^{r} f \in L_{\alpha, n}^{2}$. Then
$\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{2}=\int_{0}^{+\infty} 2^{2 k} h^{4 k n} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$

Proof. From formulas (1.2) and (2) of Proposition 1.4, we have

$$
\mathcal{F}_{B}\left(B^{r} f\right)(\lambda)=(-1)^{r} \lambda^{2 r} \mathcal{F}_{B}(f)(\lambda)
$$

and

$$
\mathcal{F}_{B}\left(\Delta_{h}^{k} f\right)(\lambda)=2^{k} h^{2 k n}\left(j_{\alpha+2 n}(\lambda h)-1\right)^{k} \mathcal{F}_{B}(f)(\lambda)
$$

Then

$$
\mathcal{F}_{B}\left(\Delta_{h}^{k} B^{r} f\right)(\lambda)=(-1)^{r} 2^{k} h^{2 k n} \lambda^{2 r}\left(j_{\alpha+2 n}(\lambda h)-1\right)^{k} \mathcal{F}_{B}(f)(\lambda)
$$

Plancherel's identity gives the result.

2. Main Result

In this section, we prove two estimates for the integral

$$
\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) .
$$

Theorem 2.1. For functions $f \in L_{\alpha, n}^{2}$ in the class $W_{2, \psi}^{r, k}(B)$

$$
\sup _{W_{2, \psi}^{r, k}(B)} \sqrt{\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)}=O\left(N^{2 k n-2 r} \psi\left(\frac{c}{N}\right)^{k}\right)
$$

where $r=0,1, \ldots . ; k=1,2 \ldots ; c>0$ is a fixed constant, and $\psi(t)$ is any nonnegative function defined on the interval $[0, \infty)$.
Proof. Let $f \in W_{2, \psi}^{r, k}(B)$. Taking into account the Hölder inequality yields

$$
\begin{aligned}
& \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)-\int_{N}^{+\infty} j_{\alpha+2 n}(\lambda h)\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =\int_{N}^{+\infty}\left(1-j_{\alpha+2 n}(\lambda h)\right)\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =\int_{N}^{+\infty}\left(1-j_{\alpha+2 n}(\lambda h)\right)\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2-\frac{1}{k}}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{\frac{1}{k}} d \mu_{\alpha+2 n}(\lambda) \\
& \leq\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}} \\
& \left.\left.\left(\int_{N}^{+\infty} \mid 1-j_{\alpha+2 n}(\lambda h)\right)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{1}{2 k}} \\
& \leq\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}} \\
& \left.\times\left.\left(2^{-2 k} h^{-4 k n} \int_{N}^{+\infty} 2^{2 k} h^{4 k n} \lambda^{-4 r} \lambda^{4 r} \mid 1-j_{\alpha+2 n}(\lambda h)\right)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{1}{2 k}} \\
& \leq\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}} 2^{-1} h^{-2 n} N^{-2 r / k}\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore } \\
& \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \leq \int_{N}^{+\infty} j_{\alpha+2 n}(\lambda h)\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& +2^{-1} h^{-2 n} N^{-2 r / k}\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}
\end{aligned}
$$

From formulas (1.1) and (3) of Lemma 1.1, we have

$$
j_{\alpha+2 n}(\lambda h)=O\left((\lambda h)^{-\alpha-2 n-\frac{1}{2}}\right)
$$

Then

$$
\begin{aligned}
& \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(\int_{N}^{+\infty}(\lambda h)^{-\alpha-2 n-\frac{1}{2}}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& \left.+h^{-2 n} N^{-2 r / k}\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}\right) \\
& =O\left((N h)^{-\alpha-2 n-\frac{1}{2}} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& \left.+h^{-2 n} N^{-2 r / k}\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Or } \\
& \qquad\left(1-O\left((N h)^{-\alpha-2 n-\frac{1}{2}}\right) \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& =O\left(h^{-2 n} N^{-2 r / k}\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{2 k-1}{2 k}}\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}\right)
\end{aligned}
$$

Setting $h=\frac{c}{N}$ in the last inequality and choosing $c>0$ such that $1-O\left(c^{-\alpha-2 n-\frac{1}{2}}\right) \geq \frac{1}{2}$, we obtain

$$
\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{\frac{1}{2 k}}=O\left(N^{2 n-2 r / k}\right)\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{1 / k}
$$

Then

$$
\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)=O\left(N^{4 k n-4 r} \psi^{2}\left(\frac{c}{N}\right)^{k}\right)
$$

which proves theorem 2.1.

Theorem 2.2. Let $\psi(t)=t^{\nu}$. Then the following are equivalents

1. $\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{1 / 2}=O\left(N^{2 k n-2 r-k \nu}\right)$,
2. $f \in W_{2, \psi}^{r, k}(B)$,
where $r=0,1,2 \ldots . \ldots k=1,2, \ldots . ; 0<\nu<2$.
1) $\Longrightarrow 2)$ Assume that

$$
\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{1 / 2}=O\left(N^{2 k n-2 r-k \nu}\right)
$$

Then

$$
\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)=O\left(N^{4 k n-4 r-2 k \nu}\right)
$$

From Lemma 1.5, we have
$\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}^{2}=\int_{0}^{+\infty} 2^{2 k} h^{4 k n} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)$

This integral is divided into two

$$
\begin{aligned}
& \int_{0}^{+\infty} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =\int_{0}^{N} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& +\int_{N}^{+\infty} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =I_{1}+I_{2},
\end{aligned}
$$

where $N=\left[h^{-1}\right]$ let us estimate them separately.
From formula (1) of Lemma 1.1, we have

$$
\begin{aligned}
& I_{2}=\int_{N}^{+\infty} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(\int_{N}^{+\infty} \lambda^{4 r}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right) \\
& =O\left(\sum_{n=N}^{\infty} \int_{n}^{n+1} \lambda^{4 r}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right) \\
& =\left(\sum_{n=N}^{\infty} n^{4 r} \int_{n}^{n+1}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right) \\
& =O\left(\sum _ { n = N } ^ { \infty } n ^ { 4 r } \left[\int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right.\right. \\
& -\int_{n+1}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(\sum_{n=N}^{\infty} n^{4 r} \int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& -\sum_{n=N}^{\infty} n^{4 r} \int_{n+1}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(N^{4 r} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& +\sum_{n=N+1}^{\infty} n^{4 r} \int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \left.-\sum_{n=N}^{\infty} n^{4 r} \int_{n+1}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right) \\
& =O\left(N^{4 r} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& +\sum_{n=N}^{\infty}(n+1)^{4 r} \int_{n+1}^{+\infty}|\mathcal{F}(f)(\lambda)|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& \left.-\sum_{n=N}^{\infty} n^{4 r} \int_{n+1}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =O\left(N^{4 r} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& +\sum_{n=N}^{\infty}\left((n+1)^{4 r}-n^{4 r}\right) \int_{n+1}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(N^{4 r} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& +\sum_{n=N}^{\infty}\left((n+1)^{4 r}-n^{4 r}\right) \int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(N^{4 r} \int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& +\sum_{n=N}^{\infty} n^{4 r-1} \int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(N^{4 r} N^{4 k n-4 r-2 k \nu}\right)+O\left(\sum_{n=N}^{\infty} n^{4 r-1} n^{4 k n-4 r-2 k \nu}\right) \\
& =O\left(N^{4 k n-2 k \nu}\right)+O\left(N^{4 k n-2 k \nu}\right) \\
& =O\left(h^{-4 k n+2 k \nu}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
2^{2 k} h^{4 k n} I_{2}=O\left(h^{2 k \nu}\right) . \tag{2.1}
\end{equation*}
$$

Now we estimate I_{1}. By virtue of formula (2) of Lemma 1.1.

$$
\begin{aligned}
& \mathbf{I}_{1}=\int_{0}^{N} \lambda^{4 r}\left|1-j_{\alpha+2 n}(\lambda h)\right|^{2 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(h^{4 k}\right) \int_{0}^{N} \lambda^{4 r+4 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(h^{4 k}\right) \sum_{n=0}^{N} \int_{n}^{n+1} \lambda^{4 r+4 k}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(h^{4 k}\right) \sum_{n=0}^{N}(n+1)^{4 r+4 k} \int_{n}^{n+1}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(h^{4 k}\right) \sum_{n=0}^{N}(n+1)^{4 r+4 k}\left[\int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right. \\
& -\int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda) \\
& =O\left(h^{4 k}\right)\left[1+\sum_{n=0}^{N}\left((n+1)^{4 r+4 k}-n^{4 r+4 k}\right) \int_{n}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right] \\
& =O\left(h^{4 k}\right)\left[1+\sum_{n=0}^{N} n^{4 r+4 k-1} n^{4 k n-4 r-2 k \nu}\right] \\
& =O\left(h^{4 k}\right)\left[1+\sum_{n=0}^{N} n^{4 k+4 k n-2 k \nu-1}\right] \\
& =O\left(h^{4 k}\right) O\left(N^{4 k+4 k n-2 k \nu}\right) \\
& =O\left(h^{-4 k n+2 k \nu}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
2^{2 k} h^{4 k n} I_{1}=O\left(h^{2 k \nu}\right) \tag{2.2}
\end{equation*}
$$

Combining the estimates for formulas (3) and (4) gives

$$
\left\|\Delta_{h}^{k} B^{r} f(x)\right\|_{2, \alpha, n}=O\left(h^{k \nu}\right)
$$

which means that $f \in W_{2, \psi}^{r, k}(B)$.
$2) \Longrightarrow 1)$ Suppose that $f \in W_{2, \psi}^{r, k}(B)$ and $\psi(t)=t^{\nu}$. By theorem 2.1, we have

$$
\left(\int_{N}^{+\infty}\left|\mathcal{F}_{B}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n}(\lambda)\right)^{1 / 2}=O\left(N^{2 k n-2 r-k \nu}\right)
$$

Thus, the proof is finiched.

References

[1] V. A. Abilov and F. V. Abilova, Approximation of Functions by Fourier-Bessel Sums, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, pp. 3-9 (2001).
[2] V. A. Abilov, F. V. Abilova and M. K. Kerimov, Some Remarks Concerning the Fourier Transform in the Space $L_{2}(\mathbf{R})$ Zh. Vychisl. Mat. Mat. Fiz. 48, pp. 939-945 (2008) [Comput. Math. Math. Phys. 48, 885-891].
[2] R. F. Al Subaie and M. A. Mourou, The Continuous Wavelet Transform for A Bessel Type Operator on the Half Line, Mathematics and Statistics 1 (4), pp. 196-203, (2013).
[3] R. F. Al Subaie and M. A. Mourou, Transmutation Operators Associated with a Bessel Type Operator on The Half Line and Certain of Their Applications, Tamsii. oxf. J. Inf. Math. Scien 29 (3), pp. 329-349, (2013).
[4] R. Daher and M. El Hamma, On Estimates for the Fourier transform in the space $L^{2}\left(\mathbf{R}^{n}\right)$, C. R. Acad. Sci. Paris, Ser. I 352, pp. 235-240, (2014).
[5] M. El Hamma and R. Daher, On Estimates for the Dunkl transform in the space $L_{2, \alpha}(\mathbf{R})$, Int. J. Analysis and Applications. Vol. 6, No. 1, pp. 53-62, (2014).

A. Akhlidj
Departement of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca,
Morocco
e-mail: akhlidj@hotmail.fr
R. Daher
Departement of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco
e-mail: rjdaher024@gmail.com
and
\section*{M. El Hamma}
Departement of Mathematics, Faculty of Sciences Aïn Chock,
University of Hassan II,
Casablanca,
Morocco
e-mail: m_elhamma@yahoo.fr

