Proyecciones Journal of Mathematics Vol. 37, N^o 1, pp. 153-169, March 2018. Universidad Católica del Norte Antofagasta - Chile

Sequentially spaces and the finest locally K-convex of topologies having the same onvergent sequences

A. El Amrani

University Sidi Mohamed Ben Abdellah, Morocco Received : June 2017. Accepted : November 2017

Abstract

The present paper is concerned with the concept of sequentially topologies in non-archimedean analysis. We give characterizations of such topologies.

Keywords : Non-archimedean topological space, sequentially spaces, convergent sequence in non-archimedean space.

MSC2010 : 11F85 - 46A03 - 46A45.

1. Introduction

In 1962 Venkataramen, in [19], posed the following problem: Characterize "the class of topological spaces which can be specified completely by the knowledge of their convergent sequences".

Several authors then agreed to provide a solution, based on the concept of sequential spaces, in particular: In [9] and [10] Franklin gave some properties of sequential spaces, examples, and a relationship with the Frechet spaces; after Snipes in [17], has studied a new class of spaces called Tsequential space and relationships with sequential spaces; in [2], Boone and Siwiec gave a characterization of sequential spaces by sequential quotient mappings; in [4], Cueva and Vinagre have studied the $\mathbf{K} - c$ -Sequential spaces and the $\mathbf{K} - s$ -bornological spaces and adapted the results established by Snipes using linear mappings; thereafter Katsaras and Benekas, in [13], starting with a topological vector space (t.v.s.) (E,τ) , have built up, the finest of topologies on E having the same convergent sequences as τ ; and the thinnest of topologies on E having the same precompact as τ ; using the concept of String (this study is a generalization of the study led by Weeb [21], on 1968, in case of locally convex spaces l.c.s.); in [8], Ferrer, Morales and Ruiz, have reproduced previous work by introducing the concept of maximal sequentially topology. Goreham, in [11], has conducted a study linking sequentiality and countable subsets in a topological space by considering the five classes of spaces: spaces of countable first case, sequential spaces, Frechet spaces, spaces of "C.T." type and perfect spaces.

In this work, we will study, in the non-archimedean (n.a) case, for a locally **K**-convex space E the finest sequential locally **K**-convex topology on E having the same convergent sequences as the original topology.

2. Preliminaries

Throughout this paper **K** is a (n.a) non trivially valued complete field with the valuation |.|, and the valuation ring is $B(0,1) := \{\lambda \in \mathbf{K} : |\lambda| \leq 1\}$. There exists $\rho \in \mathbf{R}$ such that $\rho > 1$ and for all $n \in \mathbf{Z}$ there exists $\lambda_n \in \mathbf{K}$ verifing $|\lambda_n| = \rho^n$ see [18], p.251.

The field \mathbf{K} is spherically complete if any decreasing sequence of closed balls in \mathbf{K} has a non-empty intersection.

For the basic notions and properties concerning locally \mathbf{K} -convex spaces we refer to [14] or [18] if \mathbf{K} is spherically complete and to [15] if \mathbf{K} is not spherically complete. However we recall the following:

Let *E* be a **K**-vector space, a nonempty subset *A* of *E* is called **K**-convex if $\lambda x + \mu y + \gamma z \in A$ whenever $x, y, z \in A, \lambda, \mu, \gamma \in \mathbf{K}, |\lambda| \leq 1$, $|\mu| \leq 1, |\gamma| \leq 1$ and $\lambda + \mu + \gamma = 1$. *A* is said to be absolutely **K**-convex if $\lambda x + \mu y \in A$ whenever $x, y \in A, \lambda, \mu \in \mathbf{K}, |\lambda| \leq 1, |\mu| \leq 1$. For a nonempty set $A \subset E$ its absolutely **K**-convex hull $c_0(A)$ is the smallest absolutely **K**-convex set that contains *A*. If *A* is a finite set $\{x_1, ..., x_n\}$ we sometimes write $c_0(x_1, ..., x_n)$ instead of $c_0(A)$.

A topology on a vector space E over \mathbf{K} is said to be locally \mathbf{K} -convex $(l\mathbf{K}cs)$ if there exists in E a fundamental system of zero-neighbourhoods consisting of absolutely \mathbf{K} -convex subsets of E.

If E is a $l\mathbf{K}cs$, E' and E^* denote its topological and algebraic dual, respectively, and $\sigma(E, E')$ and $\sigma(E', E)$ the weak topology of E and E', respectively.

If (E, τ) is a locally **K**-convex space with topology τ we denote by \mathcal{P}_E , (or by \mathcal{P} if no confusion is possible) a family of semi-norms determining the topology τ . We always assume that (E, τ) is a Hausdorff space.

If A is a subset of E we denote by [A] the vector space spanned by A. Remark that, if A is absolutely \mathbf{K} -convex $[A] = \mathbf{K}A$. For an absolutely \mathbf{K} -convex subset A of E we denote by p_A the Minkowski functional on [A], i.e for $x \in [A]$, $p_A(x) = inf \{ | \lambda | : x \in \lambda A \}$. If A is bounded then p_A is a norm on [A]. We then denote by E_A the space [A] normed by p_A .

Let \langle, \rangle be a duality between E and F where E and F are two vectors spaces over **K** (see [1] for general results), if A is a subset of E, the polar of A is a subset of F defined by $A^{\circ} = \{y \in F \mid \forall x \in A \mid \langle x, y \rangle \mid \leq 1\}$.

We define also the polar of a subset B of F in the same way. A subset A of E is said to be a polar set if $A^{\circ\circ} = A$ ($A^{\circ\circ}$ is the bipolar of A)

A continuous semi-norm p on E is called a polar seminorm if the corresponding zero-neighbourhood $A = \{x \in E : p(x) \leq 1\}$ is a polar set. The space E is called strongly polar if every continuous semi-norm on E is polar, and it is called polar if $\exists \mathcal{P}_E$ such that every $p \in \mathcal{P}_E$ is polar. (see [15]). Obviously:

E strongly polar $\Longrightarrow E$ polar.

If E is a polar space then the weak topology $\sigma(E, E')$ is Hausdorff. ([15] prop. 5.6). In that case we have a dual pair (E, E'). The value of the bilinear form on $E \times E'$ (and similarly on $E \times E$) is denoted by $\langle x, a \rangle$, $x \in E$, $a \in E'$. If E is a polar space and p is a continuous semi-norm on E we denote by E_p the vector space E/Ker(p) and by π_p the canonical surjection $\pi_p : E \longrightarrow E_p$. The space E_p is normed by $\|\pi_p(x)\|_p = p(x)$. Its unit ball is $\pi_p(U)$, with $U = \{x \in E : p(x) \leq 1\}$. Its completion is denoted by $\widehat{E_p}$.

3. Sequential spaces in non-Archimedean analysis

3.1. Definitions and properties

Definitions 1. 1. Let E a locally **K**-convex space and V a subset of E.

V is called a sequential neighborhood (S - neighborhood) of 0 if every null sequence in E lies eventually in V, that is to say:

$$(\forall (x_n)_n \in C_0) \ (\exists N_0 \in \mathbf{N}) : (\forall n \ge N_0), \ x_n \in V.$$

2. A locally \mathbf{K} -convex space E is called sequential space if every convex sequential neighborhood of 0 is a neighborhood of 0.

Remark 1. Every sequential neighborhood of 0 is absorbent and contains 0.

Proposition 1. If V is absolutely \mathbf{K} -convex and absorbent subset of a locally \mathbf{K} -convex space E, the following are equivalent:

- (i) V is a S neighborhood of 0;
- (ii) p_V is sequentially continuous. Where p_V is the Minkowski functional associated to V.

Proof. (i) \Rightarrow (ii) Suppose that V is a sequentially neighbourhood of 0; and let $(x_n)_n \in C_0(E)$, let us show that $P_V(x_n) \xrightarrow{n \to +\infty} 0$.

Let $\varepsilon > 0$. Let us consider $\lambda \in \mathbf{K}$ such that $0 < |\lambda| \le \varepsilon$, then $\left(\frac{x_n}{\lambda}\right)_n \in C_0(E)$, from where there exists $N \in \mathbf{N}$ such that $(\forall n \ge N)$, $\frac{x_n}{\lambda} \in V$,

which implies that $\forall n \geq N$, $p_V\left(\frac{x_n}{\lambda}\right) \leq 1$, or $\left(\forall n \geq N\right)$, $p_V(x_n) \leq |\lambda| \leq \varepsilon$. Thus the result follows.

Reciprocally, suppose that p_V is sequentially continuous over E. Let $(x_n)_n \in C_0(E)$, so $P_V(x_n) \xrightarrow{n \to +\infty} 0$, therefore there exists $N \in \mathbb{N}$ such that $(\forall n \ge N)$, $p_V(x_n) < 1$, and so $(\forall n \ge N)$, $x_n \in V$.

Proposition 2. For a locally \mathbf{K} -convex space E the following are equivalent:

- (i) E is a sequential space;
- (ii) Every sequentially continuous seminorm on E is continuous;
- (iii) For every locally \mathbf{K} -convex space F, every sequentially continuous linear map from E to F is continuous;
- (iv) For every Banach space F, every sequentially continuous linear map from E to F is continuous.

Proof. $(i) \Rightarrow (ii)$. Suppose that *E* is sequential and let *p* a seminorm sequentially continuous on *E*. Let: $V = \{x \in E : p(x) \le 1\}$.

V is a sequential neighborhood of 0 and so V is a neighborhood of 0 and consequently p is continuous: $\forall \varepsilon > 0$, let $\lambda \in \mathbf{K}$ such that $0 < |\lambda| < \varepsilon$. Then:

 $U = \lambda V$ is a neighborhood of 0 and we have $p(U) \subset B(0, \varepsilon)$.

 $(ii) \Rightarrow (i)$. Let V a convex subset of E which is a sequential neighborhood of 0. V is absorbent and contains 0, therefore it's absolutely **K**-convex (**K**-convex and contains 0). Then, by Proposition 1, p_V is sequetially continuous, then continuous, and so V is a neighborhood of 0. Therefore E is sequential.

 $(ii) \Rightarrow (iii)$. Let F a locally **K**-convex space and $f : E \longrightarrow F$ a sequentially-continuous linear mapping.

Let V a **K**-convex neighborhood of 0 in F, $f^{-1}(V)$ is a sequential **K**-convex neighborhood of 0 in E, and so $f^{-1}(V)$ is a neighborhood of 0 in E, (E is sequential and $(ii) \Leftrightarrow (i)$). And then f is continuous.

 $(iv) \Rightarrow (ii)$. Let p a sequentially-continuous semi-norm on E; consider the Banach space \widehat{E}_p the completion of $E_p = E/Ker(p)$. The canonical mapping $\pi_p : E \longrightarrow \widehat{E}_p$ is sequentially continuous, because: for all $(x_n)_n \subset E$ such that $x_n \xrightarrow{n \to +\infty} 0$, we have:

$$\begin{array}{ccc} x_n \stackrel{n \to +\infty}{\longrightarrow} 0 & \Rightarrow p\left(x_n\right) \stackrel{n \to +\infty}{\longrightarrow} 0 \\ & \Rightarrow \widehat{p}\left(\widehat{x_n}\right) \stackrel{n \to +\infty}{\longrightarrow} 0 \\ & \Rightarrow \pi_p\left(x_n\right) \stackrel{n \to +\infty}{\longrightarrow} 0 \end{array}$$

Then π_p is continuous, and so p is continuous:

$$(\forall \varepsilon > 0) \quad U = \pi_p^{-1} \left(B_{\widehat{p}}(0, \varepsilon) \right) \text{ is a neighborhood of } 0 \text{ in } E$$

and we have $p(U) \subset B(0, \varepsilon)$.

(iii) \Rightarrow (iv) Obvious.

3.2. The sequential topology

Let (E, τ) a locally **K**-convex space. Consider \mathcal{U} the set of all sequentially **K**-convex neighborhood of 0 and let \mathcal{P}_s the family of all sequentially τ -continuous *n.a.* semi-norm on E.

- \mathcal{U} is a base of neighborhood of 0 for a locally **K**-convex topology on E which is denoted τ^s [16, 1.2. p.14]. Since every neighborhood of 0 is a sequential neighborhood of 0, then $\tau \leq \tau^s$.
- \mathcal{P}_s define a locally **K**-convex topology on E which is denoted T^s . A base of neighborhood of 0 for T^s is formed by the balls $B_p(0,\varepsilon)$ where $\varepsilon > 0$ and p is a *n.a.* sequentially τ -continuous semi-norm. $B_p(0,\varepsilon)$ is sequential neighborhood of 0, because for all sequence $(x_n)_n$ converging to zero in (E,τ) , there exists $n_0 \in \mathbf{N}$ such that for all $(n \ge n_0)$, $p(x_n) < \varepsilon (p(x_n) \xrightarrow{n \to +\infty} 0)$.

Remark 2. The topology T^s is sequential.

Proposition 3. τ^s is the coarset of all sequential locally **K**-convex topologies on *E* finer than τ .

Proof. τ^s is sequential and $\tau^s \ge \tau$.

Let ρ a sequential locally **K**-convex topology on E finer than τ . Let $U \in \mathcal{U}$; U sequential neighborhood of 0 for τ , and so U is a sequential neighborhood of 0 for ρ ($\rho \geq \tau$) and then U is a neighborhood of 0 for ρ ($\rho \in \tau$) and then U is a neighborhood of 0 for ρ ($\rho \in \tau$). Which proves the proposition.

3.2.1. Characterization of sequential locally K- convex spaces

Proposition 4. τ is sequential if, and only if, $\tau = \tau^s$.

Proof. \Leftarrow Obvious.

Suppose that τ is sequential and let $U \in \mathcal{U}$; U is a sequential **K**-convex neighborhood of 0 for τ , so U is a neighborhood of 0 for τ and then $\tau \geq \tau^s$. Finally $\tau = \tau^s$.

Lemma 1. For all sequence $(x_n)_n$ of (E, τ) we have:

$$\left(x_n \stackrel{n \to +\infty}{\to} 0 \text{ for } \tau\right) \Leftrightarrow \left(x_n \stackrel{n \to +\infty}{\to} 0 \text{ for } \tau^s\right).$$

Proof. \Rightarrow] Let $U \in \mathcal{U}$, there exists $N \in \mathbf{N}$ such that: $\forall n \geq N \quad x_n \in U$, hence $x_n \xrightarrow{n \to +\infty} 0$ for τ^s .

The converse follows by $\tau \leq \tau^s$.

Lemma 2. Let ρ a locally **K**-convex topology on *E* such that for all null sequence for τ is a null sequence for ρ . Then $\tau^s \geq \rho$.

Proof. Consider $i: (E, \tau) \longrightarrow (E, \varrho)$ the canonical injection. Then for every sequence $(x_n)_n$ in E we have:

$$\mathbf{x}_n \xrightarrow{\tau^s} 0 \xrightarrow{\text{Lemma } 1} \mathbf{x}_n \xrightarrow{\tau} 0$$

 $\implies x_n \stackrel{\varrho}{\longrightarrow} 0$

Then, *i* is sequentially continuous, and since (E, τ^s) is sequential, *i* is continuous (Proposition 2). Hence $\tau \leq \tau^s$.

Proposition 5. τ^s is the finest locally **K**-convex topology on *E* having the same convergent suequences as τ .

Proof. By Lemma 1 before, τ^s and τ has the same convergent sequences. Let ρ a locally **K**-convex topology on *E* having the same convergent sequence as τ and let $(x_n)_n$ a sequence of *E* converging to 0 for τ , then $x_n \longrightarrow 0$ for ρ , hence, by Lemma 3, $\tau^s \ge \rho$.

Remark 3. τ^s is also the finer topology on *E* having the same null sequences as τ .

Lemma 3. Let (E, τ) a locally **K**-convex space and *A* a subset of *E*, then: *A* is τ -bounded if, and only if, for all null sequence $(\lambda_n)_n$ in **K** and all sequence $(x_n)_n$ in *A*; the sequence $(\lambda_n x_n)_n$ converges to zero in (E, τ) that is to say $(\lambda_n x_n)_n$ is a null sequence in (E, τ) . **Proof.** Suppose that A be bounded in (E, τ) . Let $(\lambda_n)_n \in C_0(\mathbf{K})$ and $(x_n)_n$ a sequence in A. Let V a \mathbf{K} -convex neighborhood of zero in E, then there exists λ in \mathbf{K}^* such that $\lambda A \subset V$ and there exists $N \in \mathbf{N}^*$ such that $(\forall n \ge N) | \lambda_n | \le | \lambda |$; but

$$\begin{array}{ll} (\forall n \ge N) & \lambda_n x_n &= \frac{\lambda_n}{\lambda} \lambda x_n \\ & \in \frac{\lambda_n}{\lambda} \lambda A \\ & \subset \frac{\lambda_n}{\lambda} V \\ & \subset V. \end{array}$$

Then the sequence $(\lambda_n x_n)_n$ converges to zero in (E, τ) .

Reciprocally, if A is no τ -bounded, then there exists U a **K**-convex neighborhood of zero such that $\forall n \in \mathbf{N}$ $A \not\subset \frac{1}{\lambda_n} U$ where $(\lambda_n)_n$ is the sequence of general term $|\lambda_n| = \varrho^n$ and ϱ is the real number defined in the preliminary. For all $n \in \mathbf{N}$, let x_n the element of A such that $x_n \notin \frac{1}{\lambda_n} U$, then, $(\forall n \in \mathbf{N}) \quad \lambda_n x_n \notin U$ that is to say that the sequence $(\lambda_n x_n)_n$ does not converge to zero, and we have: $(x_n)_n \subset A$ and $(\lambda_n)_n \in C_0(\mathbf{K})$.

Proposition 6. Let (E, τ) a locally **K**-convex space, then: τ and τ^s have the same bounded subsets.

Proof. Let A a subset of E. If A is τ^s -bounded, A is τ -bounded, because $\tau^s \ge \tau$. If A is τ -bounded, let $(x_n)_n \subset A$ and $(\lambda_n)_n \in C_0(\mathbf{K})$, then, according to the previous Lemma, the sequence $(\lambda_n x_n)_n$ converges to zero in (E, τ) and therefore it converges to zero in (E, τ^s) (Lemma 1). So A is τ^s -bounded.

Proposition 7. Let (F, τ') a locally **K**-convex space and $f : E \longrightarrow F$ a linear mapping, then:

f is τ^s -continuous if, and only if, f is sequentially τ -continuous.

Proof. Suppose that f be τ^s -continuous, and let $(x_n)_n$ a converging sequence to zero in (E, τ) and let $V \in \mathcal{V}_F(0)$, there exists $U \in \mathcal{U}$ such that $f(U) \subset V$. U being a sequential neighborhood of zero, so there exists $n_0 \in \mathbf{N}$ such that $(\forall n \ge n_0) \quad x_n \in U$ and consequently $(\forall n \ge n_0)$ $f(x_n) \in f(U) \ (\subset V)$. Therefore the sequence $(f(x_n))_n$ converges to zero in F. Conversely, suppose that f is sequentially τ -continuous; let us show that $f: (E, \tau^s) \longrightarrow F$ is continuous. According to Proposition 2, it suffices to show that f is sequentially τ^s -continuous. Let then $(x_n)_n$ a converging sequence to zero in (E, τ^s) , then it converges to zero in (E, τ) (Lemma 1) and consequently $(f(x_n))_n$ is converging to zero in F.

3.3. Comparison of topologies τ^s and T^s

Lemma 4. For every $U \in \mathcal{U}$, p_U is a n.a. sequentially τ -continuous seminorm.

Proof. Let $U \in \mathcal{U}$; then for all $(x_n)_n \in C_0(E)$, all $\varepsilon > 0$ and all $\lambda \in \mathbf{K}^*$ such that $0 < |\lambda| \le \varepsilon$ we have: $(\lambda^{-1}x_n)_n \in C_0(E)$ from where it exists $n_0 \in \mathbf{N} : (\forall n \ge n_0) \quad \lambda^{-1}x_n \in U$ and then:

 $(\forall n \ge n_0) \quad p_U(\lambda^{-1}x_n) \le 1 \Rightarrow (\forall n \ge n_0) \quad p_U(x_n) \le |\lambda| \le \varepsilon.$ Therefore the sequence $(p_U(x_n))_n$ converges to zero in \mathbf{R}^+ and consequently p_U is sequentially τ -continuous.

Proposition 8. $\tau^s = T^s$

Proof. T^s being a sequential locally **K**-convex topology (*Remark* 2), whence $\tau^s \geq T^s$.

For the other inequality, it suffices to show that $i : (E, T^s) \to (E, \tau^s)$ is continuous, and by *Proposition2*, it suffices to show that the mapping *i* is sequentially T^s -continuous.

Let $(x_n)_n$ a sequence that tends towards zero in (E, T^s) . Then for any $U \in \mathcal{U}$, p_U is sequentially τ -continuous, therefore the sequence $(p_U(x_n))_n$ converges to zero in \mathbb{R}^+ , from where it exists $n_0 \in \mathbb{N} : (\forall n \ge n_0) \quad p_U(x_n) < 1$, or $(\forall n \ge n_0) \quad x_n \in U$. Therefore the sequence $(x_n)_n$ tends to zero in (E, τ^s) . From where *i* is T^s -sequentially continuous. And consequently $T^s \ge \tau^s$.

Remark 4. We can show otherwise the previous Proposition: Since any n.a. τ -continuous seminorm on E is sequentially τ -continuous, $T^s \geq \tau$. But T^s is sequential and τ^s is the coarset sequential locally **K**-convex topology finer than τ , then $T^s \geq \tau^s$.

3.4. The sequential polar topology

Let \mathcal{V} the family of all **K**-convex, subsets A of E which are polar and sequential neighborhood of 0 in (E, τ) . \mathcal{V} is a base of neighborhood of 0 of

a locally **K**-convex topology on *E* which we noted τ^{ps} [16, 1.2., p. 14]. τ^{ps} is a polar topology on *E* and $\tau^{s} \geq \tau^{ps}$ ($\mathcal{V} \subset \mathcal{U}$).

Remark 5. Since, if $V \in \mathcal{V}$, then $\overline{V}^{\tau} \in \mathcal{V}$, we can suppose that all $V \in \mathcal{V}$, V is τ -closed.

Lemma 5. Suppose that **K** is spherically complete, and let A a subset of E absolutely **K**-convex and τ -closed, then:

- 1. If **K** is discrete, $A^{\circ\circ} = A$.
- 2. If **K** is dense, $\forall \alpha \in \mathbf{K} : |\alpha| > 1 A^{\circ \circ} \subset \alpha A$.

Where $A^{\circ\circ}$ is the bipolar of A with respect the duality $\langle E, E' \rangle$.

Proof. See [18, *Theorems* 4.14, 4.15, p.280 - 281].

Lemma 6. If **K** is spherically complete, then τ^{ps} is a sequential topology.

Proof. Let U a subset of E which is \mathbf{K} -convex, τ -closed and sequential neighborhood of 0 on (E, τ) . Let us show that U is a neighborhood of 0 of τ^{ps} . By Lemma 5, before $U^{\circ\circ} \subset \alpha U$ for $\alpha = 1$ if \mathbf{K} is discrete and $|\alpha| > 1$ is \mathbf{K} dense. We pose $V = U^{\circ\circ}$, then V is \mathbf{K} -convex, polar and sequential neighborhood of 0 on (E, τ) ($U \subset V$), then V is a neighborhood of 0 for τ^{ps} and therefore U is a neighborhood of 0 for $\tau^{ps} \left(\frac{1}{\alpha}V \subset U\right)$. Then τ^{ps} is sequential.

Proposition 9. If **K** is spherically complete, then $\tau^{ps} \geq \tau$.

Proof. It is a matter of showing that $i : (E, \tau^{ps}) \longrightarrow (E, \tau)$ is continuous, and since τ^{ps} is sequential (Lemma 6), it suffices to show that i is sequentially τ^{ps} -continuous.

Let $(x_n)_n$ a sequence of E which is converging to zero on (E, τ^{ps}) and let Uan absolutely **K**-convex and τ -closed neighborhood of zero on (E, τ) , then $U^{\circ\circ} \subset \alpha U$ where $\alpha = 1$ if **K** is discrete and $|\alpha| > 1$ if **K** is dense (Lemma 5). The sequence $(\alpha x_n)_n$ converges to zero on (E, τ^{ps}) and $U^{\circ\circ} \in \mathcal{V}$ hence there exists $n_0 \in \mathbf{N} : (\forall n \ge n_0) \quad \alpha x_n \in U^{\circ\circ}$ and so $(\forall n \ge n_0) \quad x_n \in \frac{1}{\alpha} U^{\circ\circ} \subset U$. Then the sequence $(x_n)_n$ converges to zero on (E, τ) . **Remark 6.** If **K** is spherically complete, then $\tau^{ps} \ge \tau$; but τ^s is the coarset of all sequential locally **K**-convex topologies finest than τ and since τ^{ps} is sequential, then $\tau^{ps} \ge \tau^s$, and so $\tau^{ps} = \tau^s$.

Proposition 10. Let (E, τ) a locally **K**-convex space. Then τ^{ps} is the finer of all polar locally **K**-convex topologies δ on E such that all sequence on E which is τ -convergent is δ -convergent.

Proof. τ^{ps} is a locally **K**-convex polar topology on *E*. Let $(x_n)_n$ a converging sequence to zero on (E, τ) , then for all $V \in \mathcal{V}$, there exists $n_0 \in \mathbf{N} : (\forall n \ge n_0) \ x_n \in V$, then $(x_n)_n$ converges to zero on (E, τ^{ps}) .

Let δ a locally **K**-convex polar topology on E such that all sequence on E which is τ -convergent is δ -convergent; showing that $\tau^{ps} \geq \delta$. Let U a **K**-convex and polar neighborhood of zero for δ , and let $(x_n)_n$ a sequence which converges to zero on (E, τ) , then it's convergent to zero for δ ; hence there exists $n_0 \in \mathbf{N} : (\forall n \geq n_0) \quad x_n \in U$. Then U is a sequential neighborhood of zero and so $U \in \mathcal{V}$. And then $\tau^{ps} \geq \delta$.

Corollary 1. If τ is polar, then $\tau^{ps} \geq \tau$ and τ^{ps} and τ have the same convergent sequences.

Proof. $\tau^{ps} \geq \tau$ follows immediately of the proposition before and we have all τ^{ps} -convergent sequence is τ -convergent. And we have already all τ -convergent sequence is τ^{ps} -convergent; then τ^{ps} and τ have the same convergent sequences.

Or equivalently the two topologies have the same null sequences.

Lemma 7. Let p a seminorm n.a. over E. And let:

 $A = \{x \in E : p(x) < 1\}$ and $B = \{x \in E : p(x) \le 1\}$.

Then $A^{\circ} = B^{\circ}$.

Proof. If **K** is discrete, A = B, then we can suppose that **K** is dense.

A is a subset of B, then $B^{\circ} \subset A^{\circ}$.

A. El Amrani

Let $f \in E^*$ such that $f \notin B^\circ$, then there exists $y \in B$ such that |f(y)| > 1. Suppose that $f \in A^\circ$, that is to say that $(\forall x \in A) ||f(x)| \le 1$; then, since **K** is dense, there exists $\lambda \in \mathbf{K}$ such that $1 < |\lambda| < |f(y)|$ so: $1 < |f(\frac{y}{\lambda})| \implies \frac{y}{\lambda} \notin A$

$$\begin{array}{l} f(y) \mid \implies \stackrel{a}{\Longrightarrow} \notin A \\ \implies p\left(\frac{y}{\lambda}\right) \ge 1 \\ \implies p\left(y\right) \ge |\lambda| \\ \implies p\left(y\right) > 1 \\ \implies y \notin B \end{array}$$

Which is absurd.

Proposition 11. τ^{ps} coincides with the locally **K**-convex topology generated by all *n.a.* polar and sequentially τ -continuous semi-norms.

Proof. Let T^{ps} the locally **K**-convex topology generated by S_p the familly of all *n.a.* polar and sequentially τ -continuous semi-norms. Then T^{ps} admits a basis \mathcal{B} of neighborhoods of zero formed by polar balls $B_p(0, \varepsilon)$ where $p \in S_p$ and $\varepsilon > 0$.

Let us show that $i: (E, \tau^{ps}) \longrightarrow (E, T^{ps})$ is bicontinuous.

Let $V = B_p(0,\varepsilon)$ an element of \mathcal{B} , then V is **K**-convex. Let $(x_n)_n$ a sequence of elements of E which converges to zero in (E,τ) , then $\lim_{n \to +\infty} p(x_n) = 0$ (p is sequetially τ -continuous), hence there is $n_0 \in \mathbf{N}$: $(\forall n \ge n_0) \quad p(x_n) < \varepsilon$, or $(\forall n \ge n_0) \quad x_n \in V$ which implies that V is a sequentially neighborhood of zero, hence $V \in \mathcal{V}$ and so $T^{ps} \le \tau^{ps}$.

Conversely, either $V \in \mathcal{V}$, then it's sequentially **K**-convex neighborhood of zero. Whe have:

$$\{x \in E : p_V(x) < 1\} \subset V \subset \{x \in E : p_V(x) \le 1\}.$$

And by the previous *Lemma* 7:

$$A^{\circ\circ} = B^{\circ\circ} = V^{\circ\circ} = V,$$

where $A = \{x \in E : p_V(x) < 1\}$ and $B = \{x \in E : p_V(x) \le 1\}$; from where $B^{\circ\circ} = B$, and consequently p is polar or p_V is polar

[15, Proposition 3.4, p. 195]. Let us show that p_V is sequentially τ -continuous. Let $(x_n)_n$ a sequence of elements of E which converges to zero in (E, τ) and let $\varepsilon > 0$; let us consider $\lambda \in \mathbf{K}$ such that $0 < |\lambda| < \varepsilon$, then

the sequence $(\lambda^{-1}x_n)_n$ converges to zero in (E, τ) and V being a sequential neighborhood of 0, then there exists $n_0 \in \mathbf{N}$: $(\forall n \ge n_0) \quad \lambda^{-1}x_n \in V$, from where $(\forall n \ge n_0) \quad p_V(\lambda^{-1}x_n) \le 1$ or $(\forall n \ge n_0) \quad p_V(x_n) \le |\lambda^{-1}| < \varepsilon$; from where p_V is sequentially τ -continuous and consequently $p_V \in \mathcal{S}_p$; then $T^{ps} \ge \tau^{ps}$. So what $T^{ps} = \tau^{ps}$.

Proposition 12. τ^{ps} is the finer of all polar locally **K**-convex topologies which are less fine than τ^s .

Proof. τ^{ps} is a polar locally **K**-convex topology and $\tau^{ps} \leq \tau^s$. Let ρ a polar locally **K**-convex topology such that $\rho \leq \tau^s$, and let V a polar **K**-convex neighborhood of 0 for ρ , then there exists $U \in \mathcal{U}$ such that $U \subset V$ ($\rho \leq \tau^s$), from where V is a sequential neighborhood of zero, consequently it is a sequential neighborhood of zero for τ^{ps} . Therefore $\tau^{ps} \geq \rho$.

3.4.1. Continuity of linear mappings

Lemma 8. Let *E* and *F* be two locally \mathbf{K} - convex spaces and $f : E \longrightarrow F$ a continuous linear mapping, then for any subset *V* of *F*.

If V is polar in F, $f^{-1}(V)$ is polar in E.

Proof. Let $V \subset F$, putting $U = f^{-1}(V)$. Suppose that V is sequential.

Let $x \in U^{\circ\circ}$; let us show that $x \in U$. By absurd, suppose that $x \notin U$, and let y = f(x) then $y \notin V$ from where $y \notin V^{\circ\circ}$ $(V^{\circ\circ} = V)$ then there exists $\varphi \in V^{\circ}$: $|\varphi(y)| > 1$. But $\forall t \in U$, $f(t) \in V$ from where

 $\forall t \in U \mid \varphi(f(t)) \mid \leq 1 \text{ and consequently } \varphi \circ f \in U^{\circ} \text{ and so } \mid \varphi(f(x)) \mid \leq 1, \text{ therefore } \mid \varphi(y) \mid \leq 1; \text{ which is absurd.} \blacksquare$

Proposition 13. Let (E, τ) and (F, τ_1) two locally **K**-convex spaces.

If $f : (E, \tau) \longrightarrow (F, \tau_1)$ is a continuous linear mapping, then f is (τ^s, τ_1^s) -continuous and (τ^{ps}, τ_1^{ps}) -continuous.

Proof. Let us show that $f : (E, \tau^s) \longrightarrow (F, \tau_1^s)$ is continuous. For this it suffices to show that for every sequential neighborhood V of zero for

 $\tau_1, f^{-1}(V)$ is a sequential neighborhood V of zero for τ .

Let V a sequential neighborhood of zero for τ_1 and let $(x_n)_n$ a sequence of E which converges towards zero in (E, τ) ; then the sequence $(f(x_n))_n$ converges towards zero in (F, τ_1) , from where there exists $n_0 \in \mathbf{N}$: $(\forall n \ge n_0) f(x_n) \in V$, then $(\forall n \ge n_0) x_n \in f^{-1}(V)$.

Let us show that $f : (E, \tau^{ps}) \longrightarrow (F, \tau_1^{ps})$ is continuous. For this it suffices to show that for every polar and sequential neighborhood V of zero for τ_1 , $f^{-1}(V)$ is a polar and sequential neighborhood V of zero for τ .

Let V a polar and sequential neighborhood of zero for τ_1 , then by Lemma 8, $f^{-1}(V)$ is polar for τ . In the other hand, for all sequence $(x_n)_n$ of E which converges towards zero in (E, τ) , the sequence $(f(x_n))_n$ converges to zero in (F, τ_1) , from where there exists $n_0 \in \mathbf{N}$: $(\forall n \ge n_0) f(x_n) \in V$, therefore $(\forall n \ge n_0) x_n \in f^{-1}(V)$.

Proposition 14. Let $(E, \tau) = \prod_{k=1}^{n} (E_k, \tau_k)$, then:

(i)
$$\tau^s = \prod_{k=1}^n \tau_k^s;$$

(ii) $\tau^{ps} = \prod_{k=1}^n \tau_k^{ps}.$

Proof. Let us show that $i : (E, \tau^s) \longrightarrow \left(E, \prod_{k=1}^n \tau_k^s\right)$ is continuous. Let us show that V is neighborhood of zero for (E, τ^s) , where $V = (U_k)_{1 \le k \le n}$ is a K-convex neighborhood of zero for the arrival space. Let $(y_p)_p = \left(\prod_{k=1}^n x_k^p\right)_p$ a sequence of E which converges to zero in (E, τ) , then for all $k \in \mathbf{N}$, $1 \le k \le n$, the sequence $(x_k^p)_p$ converges to zero in (E_k, τ_k) , from where there exists $p_k \in \mathbf{N}$: $(\forall p \ge p_k) \quad x_k^p \in U_k$. Let $p_0 = \max_{1 \le k \le n} p_k$, so $(\forall p \ge p_0) \quad \forall k \in \mathbf{N}, \ 1 \le k \le n, \ x_k^p \in U_k$, from where $(\forall p \ge p_0) \quad y_p \in V$. Therefore V is a sequential neighborhood of zero in (E, τ^s) .

Let us show that $i: \left(E, \prod_{k=1}^{n} \tau_{k}^{s}\right) \longrightarrow (E, \tau^{s})$ is continuous. Let V a sequential **K**-convex neighborhood of zero in (E, τ) . For all $k, 1 \leq k \leq n$, let $j_{k}: E_{k} \to E$ the canonical injection and pose $V_{k} = j_{k}^{-1}(V)$, so V_{k} is a sequential neighborhood of zero in (E_{k}, τ_{k}) , from where V_{k} is a neighborhood of zero in (E_{k}, τ_{k}^{s}) , and consequently $U = \prod_{k=1}^{n} V_{k}$ is a neighborhood of zero in $\left(E, \prod_{k=1}^{n} \tau_{k}^{s}\right)$. But $U \subset V$ (V is absolutely $\mathbf{K} - convex$); therefore V is a neighborhood of zero in $\prod_{k=1}^{n} \tau_{k}^{s}$.

References

- R. Ameziane Hassani and M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-archimédien, Proyecciones. Vol. 20, No. 2, pp. 217-241, (2001).
- [2] J. R. Boone and F.Siwiec, Sequentially quotient mappings, Czechoslovak Mathematical Journal, Vol. 26, No. 2, pp. 174-182, (1976).
- [3] J. Boos and T. Leiger, Duals pairs of sequence spaces, IJMMS 28, No.1, pp. 9-23, (2001).
- [4] M. C. Cueva and C. T. Maia Vinagre, Sequences in non-archimedean locally convex spaces, Indian J. pure appl. Math., 25(9): pp. 955-962, (1994).
- [5] N. De Grande-De Kimpe, Perfect locally K-convex sequence spaces, Indag. Math. (33), pp. 371-482, (1971).
- [6] A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences: Advances and Applications 6, No. 2, pp. 193-214, (2010).
- [7] A. El Amrani, R. Ameziane Hassani and M. Babahmed, Polar topologies in sequence spaces in non-archimedean analysis. Universidad Catolica del Norte Antofagasta-Chile. Proyecciones Journal of Mathematics **31**, No. 2, pp. 103-123, (2012).

- [8] J. R. Ferrer, I. Morales, L. M. Sanchez Ruiz, Sequential convergence in topological vector spaces, Topology and its applications 108, pp. 1-6, (2000).
- [9] S. P. Franklin, Spaces in which sequences suffice," Fundamenta Mathematicae 67, pp. 107-116, (1965).
- [10] S. P. Franklin, "Spaces of which sequences suffice, II," Fund. Math. 61, pp. 51-56, (1967).
- [11] A. Goreham, Sequential convergence in topological spaces, arXiv:math/0412558v2-[math.GN] 10 April, (2016).
- [12] D.A. Gregory, Vector sequence spaces, Ph.D thesis, University of Machigan, (1967).
- [13] A. K. Katsaras and V. Benekas, Sequential convergence in topological vector spaces, Georgian mathematical journal: Vol. 2, No. 2, pp. 151-164, (1995).
- [14] A. F. Monna, Analyse non- archimédienne, Springer-Verlag, band 56, (1970).
- [15] W. H. Schikhof, Locally convex spaces over nonspherically complete valued field, I, II, Bull. Soc. Math. Belg. sér. B 38, pp. 187-224 (1986).
- [16] H. H. Schaefer, Topological vector spaces, Springer-Verlag New-York, herdlberg Berlin, (1971).
- [17] R. F. Snipes, T-sequential topological spaces, Fundamenta Mathematicae, T. LXXVII, pp. 95-98, (1970).
- [18] J. Van-tiel, Espaces localement K-convexes, I-III. Proc. Kon. Ned. Akad. van Wetensch. A 68, pp. 249-289, (1965).
- [19] M. Venkataramen, Directed sets in topology, Math. student 30, pp. 99-100, (1962).
- [20] S. Warner, Topological Fields, North-Holland Mathematics studies 157, (1989).
- [21] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64, pp. 341-364, (1968).

A. El Amrani
Department of mathematics and computer science
Faculty of Sciences Dhar El Mahraz
B. P. 1796 Atlas Fès,
Morocco
e-mail: abdelkhalek.elamrani@usmba.ac.ma