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1. Introduction

In 1962 Venkataramen, in [19], posed the following problem:
Characterize ”the class of topological spaces which can be specified com-
pletely by the knowledge of their convergent sequences”.
Several authors then agreed to provide a solution, based on the concept of
sequential spaces, in particular: In [9] and [10] Franklin gave some prop-
erties of sequential spaces, examples, and a relationship with the Frechet
spaces; after Snipes in [17], has studied a new class of spaces called T−
sequential space and relationships with sequential spaces; in [2], Boone and
Siwiec gave a characterization of sequential spaces by sequential quotient
mappings; in [4], Cueva and Vinagre have studied the K − c−Sequential
spaces and the K − s−bornological spaces and adapted the results estab-
lished by Snipes using linear mappings; thereafter Katsaras and Benekas,
in [13], starting with a topological vector space (t.v.s.) (E, τ) , have built
up, the finest of topologies on E having the same convergent sequences as
τ ; and the thinnest of topologies on E having the same precompact as τ ;
using the concept of String (this study is a generalization of the study led
by Weeb [21], on 1968, in case of locally convex spaces l.c.s. ); in [8], Fer-
rer, Morales and Ruiz, have reproduced previous work by introducing the
concept of maximal sequentially topology. Goreham, in [11], has conducted
a study linking sequentiality and countable subsets in a topological space
by considering the five classes of spaces: spaces of countable first case, se-
quential spaces, Frechet spaces, spaces of ”C.T.” type and perfect spaces.

In this work, we will study, in the non-archimedean (n.a) case, for a
locally K−convex space E the finest sequential locally K−convex topology
on E having the same convergent sequences as the original topology.

2. Preliminaries

Throughout this paper K is a (n.a) non trivially valued complete field with
the valuation |.| , and the valuation ring is B (0,1) : = {λ ∈ K : |λ| ≤ 1} .
There exists ∈ R such that > 1 and for all n ∈ Z there exists λn ∈ K
verifing | λn |= n see [18], p.251.
The field K is spherically complete if any decreasing sequence of closed
balls in K has a non-empty intersection.
For the basic notions and properties concerning locally K−convex spaces
we refer to [14] or [18] if K is spherically complete and to [15] if K is not
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spherically complete. However we recall the following:

Let E be a K−vector space, a nonempty subset A of E is called
K−convex if λx+ µy + γz ∈ A whenever x, y, z ∈ A, λ, µ, γ ∈ K, |λ| ≤ 1,
|µ| ≤ 1, |γ| ≤ 1 and λ+ µ+ γ = 1. A is said to be absolutely K−convex if
λx+µy ∈ A whenever x, y ∈ A, λ, µ ∈ K, |λ| ≤ 1, |µ| ≤ 1. For a nonempty
set A ⊂ E its absolutely K−convex hull c0 (A) is the smallest absolutely
K−convex set that contains A. If A is a finite set {x1, ..., xn} we sometimes
write c0 (x1, ..., xn) instead of c0 (A) .

A topology on a vector space E over K is said to be locally K−convex
(lKcs) if there exists in E a fundamental system of zero-neighbourhoods
consisting of absolutely K−convex subsets of E.

If E is a lKcs, E
0
and E∗ denote its topological and algebraic dual,

respectively, and σ(E,E
0
) and σ(E

0
, E) the weak topology of E and E

0
,

respectively.
If (E, τ) is a locally K−convex space with topology τ we denote by PE, (or
by P if no confusion is possible) a family of semi-norms determining the
topology τ. We always assume that (E, τ) is a Hausdorff space.
If A is a subset of E we denote by [A] the vector space spanned by A.
Remark that, if A is absolutely K−convex [A] = KA. For an absolutely
K−convex subset A of E we denote by pA the Minkowski functional on
[A], i.e for x ∈ [A], pA(x) = inf {| λ |: x ∈ λA} . If A is bounded then pA is
a norm on [A]. We then denote by EA the space [A] normed by pA.

Let h, i be a duality between E and F where E and F are two vectors
spaces over K (see [1] for general results), if A is a subset of E, the polar
of A is a subset of F defined by A◦ = {y ∈ F / ∀x ∈ A |hx, yi| ≤ 1} .

We define also the polar of a subset B of F in the same way. A subset
A of E is said to be a polar set if A◦◦ = A (A◦◦ is the bipolar of A )

A continuous semi-norm p on E is called a polar seminorm if the cor-
responding zero-neighbourhood A = {x ∈ E : p(x) ≤ 1} is a polar set. The
space E is called strongly polar if every continuous semi-norm on E is po-
lar, and it is called polar if ∃PE such that every p ∈ PE is polar. (see [15]).
Obviously:

E strongly polar =⇒ E polar.
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If E is a polar space then the weak topology σ (E,E0) is Hausdorff.
([15] prop. 5.6). In that case we have a dual pair (E,E0). The value of
the bilinear form on E × É (and similarly on E×́E) is denoted by hx, ai ,
x ∈ E, a ∈ E0. If E is a polar space and p is a continuous semi-norm on
E we denote by Ep the vector space E/Ker(p) and by πp the canonical
surjection πp : E −→ Ep. The space Ep is normed by k πp (x) kp= p(x). Its
unit ball is πp (U) , with U = {x ∈ E : p (x) ≤ 1}. Its completion is denoted
by cEp.

3. Sequential spaces in non-Archimedean analysis

3.1. Definitions and properties

Definitions 1. 1. Let E a locally K−convex space and V a subset of
E.
V is called a sequential neighborhood (S − neighborhood ) of 0 if ev-
ery null sequence in E lies eventually in V, that is to say:

(∀ (xn)n ∈ C0) (∃N0 ∈ N) : (∀n ≥ N0) , xn ∈ V.

2. A locallyK−convex space E is called sequential space if every convex
sequential neighborhood of 0 is a neighborhood of 0.

Remark 1. Every sequential neighborhood of 0 is absorbent and contains
0.

Proposition 1. If V is absolutely K−convex and absorbent subset of a
locally K−convex space E, the following are equivalent:

(i) V is a S − neighborhood of 0;

(ii) pV is sequentially continuous. Where pV is the Minkowski functional
associated to V.

Proof. (i) ⇒ (ii) Suppose that V is a sequentially neighbourhood

of 0; and let (xn)n ∈ C0 (E) , let us show that PV (xn)
n→+∞−→ 0.

Let ε > 0. Let us consider λ ∈ K such that 0 <| λ |≤ ε, then

µ
xn
λ

¶
n
∈

C0 (E) , from where there exists N ∈ N such that (∀n ≥ N) ,
xn
λ
∈ V,
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which implies that ∀n ≥ N, pV
¡xn
λ

¢
≤ 1, or (∀n ≥ N) , pV (xn) ≤| λ |≤ ε.

Thus the result follows.

Reciprocally, suppose that pV is sequentially continuous over E. Let

(xn)n ∈ C0 (E) , so PV (xn)
n→+∞−→ 0, therefore there exists N ∈ N such

that (∀n ≥ N) , pV (xn) < 1, and so (∀n ≥ N) , xn ∈ V.

Proposition 2. For a locally K−convex space E the following are equiv-
alent:

(i) E is a sequential space;

(ii) Every sequentially continuous seminorm on E is continuous;

(iii) For every locally K−convex space F, every sequentially continuous
linear map from E to F is continuous;

(iv) For every Banach space F, every sequentially continuous linear map
from E to F is continuous.

Proof. (i) ⇒ (ii). Suppose that E is sequential and let p a semi-
norm sequentially continuous on E. Let: V = {x ∈ E : p (x) ≤ 1} .

V is a sequential neighborhood of 0 and so V is a neighborhood of 0
and consequently p is continuous: ∀ε > 0, let λ ∈ K such that 0 <| λ |< ε.
Then:

U = λV is a neighborhood of 0 and we have p (U) ⊂ B (0, ε) .

(ii)⇒ (i). Let V a convex subset of E which is a sequential neighborhood
of 0. V is absorbent and contains 0, therefore it’s absolutely K−convex
(K−convex and contains 0). Then, by Proposition 1, pV is sequetially
continuous, then continuous, and so V is a neighborhood of 0. Therefore E
is sequential.

(ii) ⇒ (iii). Let F a locally K−convex space and f : E −→ F a
sequentially-continuous linear mapping .

Let V a K−convex neighborhood of 0 in F, f−1 (V ) is a sequential
K−convex neighborhood of 0 in E, and so f−1 (V ) is a neighborhood of 0
in E, (E is sequential and (ii)⇔ (i)). And then f is continuous.
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(iv) ⇒ (ii). Let p a sequentially-continuous semi-norm on E; consider
the Banach space cEp the completion of Ep = E/Ker(p). The canonical

mapping πp : E −→ cEp is sequentially continuous, because: for all (xn)n ⊂
E such that xn

n→+∞−→ 0, we have:

xn
n→+∞−→ 0 ⇒ p (xn)

n→+∞−→ 0

⇒ bp (cxn) n→+∞−→ 0

⇒ πp (xn)
n→+∞−→ 0.

Then πp is continuous, and so p is continuous:

(∀ε > 0) U = π−1p
³
Bbp (0, ε)´ is a neighborhood of 0 in E

and we have p(U) ⊂ B (0, ε) .

(iii) ⇒ (iv) Obvious.

3.2. The sequential topology

Let (E, τ) a locally K−convex space. Consider U the set of all sequen-
tially K−convex neighborhood of 0 and let Ps the family of all sequentially
τ−continuous n.a. semi-norm on E .

• U is a base of neighborhood of 0 for a locally K−convex topology on
E which is denoted τ s [16, 1.2. p.14] . Since every neighborhood of 0
is a sequential neighborhood of 0, then τ ≤ τ s.

• Ps define a locally K−convex topology on E which is denoted T s.
A base of neighborhood of 0 for T s is formed by the balls Bp (0, ε)
where ε > 0 and p is a n.a. sequentially τ−continuous semi-norm.
Bp (0, ε) is sequential neighborhood of 0, because for all sequence
(xn)n converging to zero in (E, τ) , there exists n0 ∈ N such that for

all (n ≥ n0) , p (xn) < ε
³
p (xn)

n→+∞−→ 0
´
.

Remark 2. The topology T s is sequential.

Proposition 3. τ s is the coarset of all sequential locallyK−convex topolo-
gies on E finer than τ.

Proof. τ s is sequential and τ s ≥ τ.

Let a sequential locally K−convex topology on E finer than τ. Let
U ∈ U ; U sequential neighborhood of 0 for τ, and so U is a sequential
neighborhood of 0 for ( ≥ τ) and then U is a neighborhood of 0 for
( is sequential). Therefore ≥ τ s. Which proves the proposition.
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3.2.1. Characterization of sequential locally K− convex spaces

Proposition 4. τ is sequential if, and only if, τ = τ s.

Proof. ⇐= Obvious.
Suppose that τ is sequential and let U ∈ U ; U is a sequential K−convex
neighborhood of 0 for τ, so U is a neighborhood of 0 for τ and then τ ≥ τ s.
Finally τ = τ s.

Lemma 1. For all sequence (xn)n of (E, τ) we have:³
xn

n→+∞→ 0 for τ
´
⇔
³
xn

n→+∞→ 0 for τ s
´
.

Proof. ⇒] Let U ∈ U , there exists N ∈ N such that: ∀n ≥ N xn ∈ U,

hence xn
n→+∞→ 0 for τ s.

The converse follows by τ ≤ τ s.

Lemma 2. Let a locally K−convex topology on E such that for all null
sequence for τ is a null sequence for . Then τ s ≥ .

Proof. Consider i : (E, τ) −→ (E, ) the canonical injection. Then
for every sequence (xn)n in E we have:

xn
τs−→ 0

Lemma 1
=⇒ xn

τ−→ 0
=⇒ xn −→ 0

Then, i is sequentially continuous, and since (E, τ s) is sequential, i is
continuous (Proposition 2). Hence τ ≤ τ s.

Proposition 5. τ s is the finest locally K−convex topology on E having
the same convergent suequences as τ.

Proof. By Lemma 1 before, τ s and τ has the same convergent se-
quences. Let a locally K−convex topology on E having the same con-
vergent sequence as τ and let (xn)n a sequence of E converging to 0 for τ,
then xn −→ 0 for , hence, by Lemma 3, τ s ≥ .

Remark 3. τ s is also the finer topology on E having the same null se-
quences as τ.

Lemma 3. Let (E, τ) a locallyK−convex space and A a subset of E, then:
A is τ−bounded if, and only if, for all null sequence (λn)n in K and all
sequence (xn)n in A; the sequence (λnxn)n converges to zero in (E, τ) that
is to say (λnxn)n is a null sequence in (E, τ) .
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Proof. Suppose that A be bounded in (E, τ) .
Let (λn)n ∈ C0 (K) and (xn)n a sequence in A.
Let V aK−convex neighborhood of zero inE, then there exists λ inK∗ such
that λA ⊂ V and there exists N ∈ N∗ such that (∀n ≥ N) | λn |≤| λ |;
but

(∀n ≥ N) λnxn = λn
λ λxn

∈ λn
λ λA

⊂ λn
λ V

⊂ V.

Then the sequence (λnxn)n converges to zero in (E, τ) .
Reciprocally, if A is no τ−bounded, then there exists U a K−convex neigh-
borhood of zero such that ∀n ∈ N A 6⊂ 1

λn
U where (λn)n is the sequence

of general term |λn| = n and is the real number defined in the prelim-

inary. For all n ∈ N, let xn the element of A such that xn /∈ 1

λn
U, then,

(∀n ∈ N) λnxn /∈ U that is to say that the sequence (λnxn)n does not
converge to zero, and we have: (xn)n ⊂ A and (λn)n ∈ C0 (K) .

Proposition 6. Let (E, τ) a locally K−convex space, then:
τ and τ s have the same bounded subsets.

Proof. Let A a subset of E.
If A is τ s−bounded, A is τ−bounded, because τ s ≥ τ.
If A is τ−bounded, let (xn)n ⊂ A and (λn)n ∈ C0 (K) , then, according to
the previous Lemma, the sequence (λnxn)n converges to zero in (E, τ) and
therefore it converges to zero in (E, τ s) (Lemma 1). So A is τ s−bounded.

Proposition 7. Let
³
F, τ

0
´
a locally K−convex space and f : E −→ F a

linear mapping, then:
f is τ s−continuous if, and only if, f is sequentially τ−continuous.

Proof. Suppose that f be τ s−continuous, and let (xn)n a converg-
ing sequence to zero in (E, τ) and let V ∈ VF (0) , there exists U ∈ U
such that f (U) ⊂ V. U being a sequential neighborhood of zero, so there
exists n0 ∈ N such that (∀n ≥ n0) xn ∈ U and consequently (∀n ≥ n0)
f (xn) ∈ f (U) (⊂ V ) . Therefore the sequence (f (xn))n converges to zero
in F.
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Conversely, suppose that f is sequentially τ−continuous; let us show
that f : (E, τ s) −→ F is continuous. According to Proposition 2, it suffices
to show that f is sequentially τ s−continuous. Let then (xn)n a converging
sequence to zero in (E, τ s) , then it converges to zero in (E, τ) (Lemma 1)
and consequently (f (xn))n is converging to zero in F.

3.3. Comparison of topologies τ s and T s

Lemma 4. For every U ∈ U , pU is a n.a. sequentially τ−continuous semi-
norm.

Proof. Let U ∈ U ; then for all (xn)n ∈ C0 (E) , all ε > 0 and all λ ∈ K∗
such that 0 <| λ |≤ ε we have:

¡
λ−1xn

¢
n ∈ C0 (E) from where it exists

n0 ∈N : (∀n ≥ n0) λ−1xn ∈ U and then:

(∀n ≥ n0) pU
¡
λ−1xn

¢
≤ 1⇒ (∀n ≥ n0) pU (xn) ≤| λ |≤ ε. Therefore

the sequence (pU (xn))n converges to zero in R
+ and consequently pU is

sequentially τ−continuous.

Proposition 8. τ s = T s

Proof. T s being a sequential locally K−convex topology (Remark 2) ,
whence τ s ≥ T s.
For the other inequality, it suffices to show that i : (E, T s) → (E, τ s) is
continuous, and by Proposition2, it suffices to show that the mapping i is
sequentially T s−continuous.
Let (xn)n a sequence that tends towards zero in (E, T

s) . Then for any
U ∈ U , pU is sequentially τ−continuous, therefore the sequence (pU (xn))n
converges to zero inR+, from where it exists n0 ∈ N : (∀n ≥ n0) pU (xn) <
1, or (∀n ≥ n0) xn ∈ U. Therefore the sequence (xn)n tends to zero in
(E, τ s) . From where i is T s−sequentially continuous. And consequently
T s ≥ τ s.

Remark 4. We can show otherwise the previous Proposition: Since any
n.a. τ−continuous seminorm on E is sequentially τ−continuous, T s ≥ τ.
But T s is sequential and τ s is the coarset sequential locally K−convex
topology finer than τ, then T s ≥ τ s.

3.4. The sequential polar topology

Let V the family of all K−convex, subsets A of E which are polar and
sequential neighborhood of 0 in (E, τ) . V is a base of neighborhood of 0 of
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a locally K−convex topology on E which we noted τps [16, 1.2., p. 14]. τps

is a polar topology on E and τ s ≥ τps (V ⊂ U) .

Remark 5. Since, if V ∈ V, then V
τ ∈ V, we can suppose that all V ∈ V,

V is τ−closed.

Lemma 5. Suppose that K is spherically complete, and let A a subset of
E absolutely K−convex and τ−closed, then:

1. If K is discrete, A◦◦ = A.

2. If K is dense, ∀α ∈K :| α |> 1 A◦◦ ⊂ αA.

Where A◦◦ is the bipolar of A with respect the duality
D
E,E

0
E
.

Proof. See [18, Theorems 4.14, 4.15, p.280− 281] .

Lemma 6. If K is spherically complete, then τps is a sequential topology.

Proof. Let U a subset of E which is K−convex, τ−closed and se-
quential neighborhood of 0 on (E, τ) . Let us show that U is a neighborhood
of 0 of τps. By Lemma 5, before U◦◦ ⊂ αU for α = 1 if K is discrete and
| α |> 1 is K dense. We pose V = U◦◦, then V is K−convex, polar and
sequential neighborhood of 0 on (E, τ) (U ⊂ V ) , then V is a neighborhood

of 0 for τps and therefore U is a neighborhood of 0 for τps
µ
1

α
V ⊂ U

¶
.

Then τps is sequential.

Proposition 9. If K is spherically complete, then τps ≥ τ.

Proof. It is a matter of showing that i : (E, τps) −→ (E, τ) is
continuous, and since τps is sequential (Lemma 6), it suffices to show that
i is sequentially τps−continuous.
Let (xn)n a sequence of E which is converging to zero on (E, τps) and let U
an absolutelyK−convex and τ−closed neighborhood of zero on (E, τ), then
U◦◦ ⊂ αU where α = 1 ifK is discrete and | α |> 1 ifK is dense (Lemma 5).
The sequence (αxn)n converges to zero on (E, τ

ps) and U◦◦ ∈ V hence there
exists n0 ∈ N : (∀n ≥ n0) αxn ∈ U◦◦ and so (∀n ≥ n0) xn ∈

1

α
U◦◦ ⊂ U.

Then the sequence (xn)n converges to zero on (E, τ) .
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Remark 6. IfK is spherically complete, then τps ≥ τ ; but τ s is the coarset
of all sequential locally K−convex topologies finest than τ and since τps is
sequential, then τps ≥ τ s, and so τps = τ s.

Proposition 10. Let (E, τ) a locally K−convex space. Then τps is the
finer of all polar locally K−convex topologies δ on E such that all sequence
on E which is τ−convergent is δ−convergent.

Proof. τps is a locally K−convex polar topology on E.
Let (xn)n a converging sequence to zero on (E, τ) , then for all V ∈ V, there
exists n0 ∈ N : (∀n ≥ n0) xn ∈ V, then (xn)n converges to zero on (E, τ

ps) .

Let δ a locally K−convex polar topology on E such that all sequence
on E which is τ−convergent is δ−convergent; showing that τps ≥ δ. Let
U a K−convex and polar neighborhood of zero for δ, and let (xn)n a se-
quence which converges to zero on (E, τ) , then it’s convergent to zero for
δ; hence there exists n0 ∈ N : (∀n ≥ n0) xn ∈ U. Then U is a sequential
neighborhood of zero and so U ∈ V. And then τps ≥ δ.

Corollary 1. If τ is polar, then τps ≥ τ and τps and τ have the same
convergent sequences.

Proof. τps ≥ τ follows immediately of the proposition before and we
have all τps−convergent sequence is τ−convergent. And we have already
all τ−convergent sequence is τps−convergent; then τps and τ have the same
convergent sequences.

Or equivalentely the two topologies have the same null sequences .

Lemma 7. Let p a seminorm n.a. over E. And let:

A = {x ∈ E : p (x) < 1} and B = {x ∈ E : p (x) ≤ 1} .

Then A◦ = B◦.

Proof. If K is discrete, A = B, then we can suppose that K is
dense.

A is a subset of B, then B◦ ⊂ A◦.
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Let f ∈ E∗ such that f /∈ B◦, then there exists y ∈ B such that
| f (y) |> 1. Suppose that f ∈ A◦, that is to say that (∀x ∈ A) | f (x) |≤ 1;
then, since K is dense, there exists λ ∈K such that 1 <| λ |<| f (y) | so:

1 <| f
¡ y
λ

¢
| =⇒ y

λ /∈ A
=⇒ p

¡ y
λ

¢
≥ 1

=⇒ p (y) ≥| λ |
=⇒ p (y) > 1
=⇒ y /∈ B

Which is absurd.

Proposition 11. τps coincides with the locally K−convex topology gen-
erated by all n.a. polar and sequentially τ−continuous semi-norms.

Proof. Let T ps the locally K−convex topology generated by Sp the
familly of all n.a. polar and sequentially τ−continuous semi-norms. Then
T ps admits a basis B of neighborhoods of zero formed by polar balls Bp (0, ε)
where p ∈ Sp and ε > 0.

Let us show that i : (E, τps) −→ (E, T ps) is bicontinuous.

Let V = Bp (0, ε) an element of B, then V is K−convex. Let (xn)n a
sequence of elements of E which converges to zero in (E, τ) , then
lim

n→+∞
p (xn) = 0 (p is sequetially τ−continuous), hence there is n0 ∈ N :

(∀n ≥ n0) p (xn) < ε, or (∀n ≥ n0) xn ∈ V which implies that V is a
sequentially neighborhood of zero, hence V ∈ V and so T ps ≤ τps.

Conversely, either V ∈ V, then it’s sequentially K−convex neighbor-
hood of zero. Whe have:

{x ∈ E : pV (x) < 1} ⊂ V ⊂ {x ∈ E : pV (x) ≤ 1} .

And by the previous Lemma 7:

A◦◦ = B◦◦ = V ◦◦ = V,

where A = {x ∈ E : pV (x) < 1} andB = {x ∈ E : pV (x) ≤ 1} ; from where
B◦◦ = B, and consequently p is polar or pV is polar
[15, Proposition 3.4, p. 195] . Let us show that pV is sequentially
τ−continuous. Let (xn)n a sequence of elements of E which converges to
zero in (E, τ) and let ε > 0; let us consider λ ∈ K such that 0 <| λ |< ε, then
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the sequence
¡
λ−1xn

¢
n converges to zero in (E, τ) and V being a sequential

neighborhood of 0, then there exists n0 ∈N : (∀n ≥ n0) λ−1xn ∈ V, from
where (∀n ≥ n0) pV

¡
λ−1xn

¢
≤ 1 or (∀n ≥ n0) pV (xn) ≤| λ−1 |< ε; from

where pV is sequentially τ−continuous and consequently pV ∈ Sp; then
T ps ≥ τps. So what T ps = τps.

Proposition 12. τps is the finer of all polar locally K−convex topologies
which are less fine than τ s.

Proof. τps is a polar locally K−convex topology and τps ≤ τ s.
Let a polar locally K−convex topology such that ≤ τ s, and let V a
polar K−convex neighborhood of 0 for , then there exists U ∈ U such
that U ⊂ V ( ≤ τ s) , from where V is a sequential neighborhood of zero,
consequently it is a sequential neighborhood of zero for τps. Thereforeτps ≥
.

3.4.1. Continuity of linear mappings

Lemma 8. Let E and F be two locallyK− convex spaces and f : E −→ F
a continuous linear mapping, then for any subset V of F.

If V is polar in F, f−1 (V ) is polar in E.

Proof. Let V ⊂ F, putting U = f−1 (V ) . Suppose that V is sequen-
tial.

Let x ∈ U◦◦; let us show that x ∈ U. By absurd, suppose that x /∈ U,
and let y = f (x) then y /∈ V from where y /∈ V ◦◦ (V ◦◦ = V ) then there
exists ϕ ∈ V ◦ : | ϕ (y) |> 1. But ∀t ∈ U, f (t) ∈ V from where

∀t ∈ U | ϕ (f (t)) |≤ 1 and consequently ϕ◦f ∈ U◦ and so | ϕ (f (x)) |≤
1, therefore | ϕ (y) |≤ 1; which is absurd.

Proposition 13. Let (E, τ) and (F, τ1) two locally K−convex spaces .

If f : (E, τ) −→ (F, τ1) is a continuous linear mapping, then f is
(τ s, τ s1 )−continuous and (τps, τ

ps
1 )−continuous.

Proof. Let us show that f : (E, τ s) −→ (F, τ s1 ) is continuous. For
this it suffices to show that for every sequential neighborhood V of zero for
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τ1, f
−1 (V ) is a sequential neighborhood V of zero for τ.

Let V a sequential neighborhood of zero for τ1 and let (xn)n a se-
quence of E which converges towards zero in (E, τ) ; then the sequence
(f (xn))n converges towards zero in (F, τ1) , from where there exists n0 ∈
N : (∀n ≥ n0) f (xn) ∈ V, then (∀n ≥ n0)xn ∈ f−1 (V ) .

Let us show that f : (E, τps) −→ (F, τps1 ) is continuous. For this it
suffices to show that for every polar and sequential neighborhood V of zero
for τ1, f

−1 (V ) is a polar and sequential neighborhood V of zero for τ.

Let V a polar and sequential neighborhood of zero for τ1, then by
Lemma 8, f−1 (V ) is polar for τ. In the other hand, for all sequence (xn)n of
E which converges towards zero in (E, τ) , the sequence (f (xn))n converges
to zero in (F, τ1) , from where there exists n0 ∈ N : (∀n ≥ n0) f (xn) ∈ V,
therefore (∀n ≥ n0)xn ∈ f−1 (V ) .

Proposition 14. Let (E, τ) =
nY

k=1

(Ek, τk) , then:

(i) τ s =
nY

k=1

τ sk ;

(ii) τps =
nY

k=1

τpsk .

Proof. Let us show that i : (E, τ s) −→
Ã
E,

nY
k=1

τ sk

!
is contin-

uous. Let us show that V is neighborhood of zero for (E, τ s), where
V = (Uk)1≤k≤n is a K-convex neighborhood of zero for the arrival space.

Let (yp)p =

Ã
nY

k=1

xpk

!
p

a sequence of E which converges to zero in (E, τ) ,

then for all k ∈ N, 1 ≤ k ≤ n, the sequence
¡
xpk
¢
p converges to zero in

(Ek, τk) , from where there exists pk ∈ N : (∀p ≥ pk) xpk ∈ Uk. Let
p0 = max

1≤k≤n
pk, so (∀p ≥ p0) ∀k ∈ N, 1 ≤ k ≤ n, xpk ∈ Uk, from where

(∀p ≥ p0) yp ∈ V. Therefore V is a sequential neighborhood of zero in
(E, τ) ; V beingK−convex, therefore V is a neighborhood of zero in (E, τ s) .
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Let us show that i :

Ã
E,

nY
k=1

τ sk

!
−→ (E, τ s) is continuous. Let V a

sequential K−convex neighborhood of zero in (E, τ) . For all k, 1 ≤ k ≤ n,
let jk : Ek → E the canonical injection and pose Vk = j−1k (V ) , so Vk is a
sequential neighborhood of zero in (Ek, τk) , from where Vk is a neighbor-

hood of zero in (Ek, τ
s
k) , and consequently U =

nY
k=1

Vk is a neighborhood of

zero in

Ã
E,

nY
k=1

τ sk

!
. But U ⊂ V (V is absolutely K− convex ) ; therefore

V is a neighborhood of zero in
nY

k=1

τ sk .
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