Some new Ostrowski type fractional integral inequalities for generalized (s,m,φ)-preinvex functions via Caputo k-fractional derivatives

Artion Kashuri
University "Ismail Qemali", Albania

and

Rozana Liko
University "Ismail Qemali", Albania

Received : June 2017. Accepted : July 2017

Abstract

In the present paper, the notion of generalized (s,m,φ)-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo k-fractional derivatives. At the end, some applications to special means are given.

2010 Mathematics Subject Classification : Primary: 26A51; Secondary: 26A33, 26D07, 26D10, 26D15.

Keywords : Ostrowski type inequality, Hölder’s inequality, power mean inequality, s-convex function in the second sense, m-invex.
1. Introduction and Preliminaries

The following notations are used throughout this paper. We use I to denote an interval on the real line $\mathbb{R} = (-\infty, +\infty)$ and I^o to denote the interior of I. For any subset $K \subseteq \mathbb{R}^n$, K^o is used to denote the interior of K. \mathbb{R}^n is used to denote a n-dimensional vector space. The set of continuous differentiable functions of order n on the interval $[a, b]$ is denoted by $C^n[a, b]$.

The following result is known in the literature as the Ostrowski inequality (see [10]), which gives an upper bound for the approximation of the integral average $\frac{1}{b-a} \int_a^b f(t)dt$ by the value $f(x)$ at point $x \in [a, b]$.

Theorem 1.1. Let $f : I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, be a mapping differentiable in the interior I^o of I, and let $a, b \in I^o$ with $a < b$. If $|f'(x)| \leq M$ for all $x \in [a, b]$, then

$$\left| f(x) - \frac{1}{b-a} \int_a^b f(t)dt \right| \leq M(b - a) \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b - a} \right)^2 \right], \quad \forall x \in [a, b].$$

(1.1)

For other recent results concerning Ostrowski type inequalities (see [1]-[3],[10],[16],[34]-[38],[42]). Ostrowski inequality is playing a very important role in all the fields of mathematics, especially in the theory of approximations. Thus such inequalities were studied extensively by many researches and numerous generalizations, extensions and variants of them for various kind of functions like bounded variation, synchronous, Lipschitzian, monotonic, absolutely, continuous and n-times differentiable mappings etc. appeared in a number of papers (see [4]-[15],[17]-[20]). In recent years, one more dimension has been added to this studies, by introducing a number of integral inequalities involving various fractional operators like Riemann-Liouville, Erdelyi-Kober, Katugampola, conformable fractional integral operators etc. by many authors (see [21]-[31]). Riemann-Liouville fractional integral operators are the most central between these fractional operators.
In numerical analysis many quadrature rules have been established to approximate the definite integrals. Ostrowski inequality provides the bounds of many numerical quadrature rules (see [8]). In recent decades Ostrowski inequality is studied in fractional calculus point of view by many mathematicians (see [9]-[11]).

Definition 1.2. (see [33]) A function \(f : [0, +\infty) \rightarrow \mathbb{R} \) is said to be \(s \)-convex in the second sense, if

\[
(1.2) \quad f(\lambda x + (1 - \lambda)y) \leq \lambda^s f(x) + (1 - \lambda)^s f(y)
\]

for all \(x, y \geq 0 \), \(\lambda \in [0, 1] \) and \(s \in (0, 1] \).

It is clear that a 1-convex function must be convex on \([0, +\infty)\) as usual. The \(s \)-convex functions in the second sense have been investigated in (see [33]).

Definition 1.3. (see [39]) A set \(K \subseteq \mathbb{R}^n \) is said to be invex with respect to the mapping \(\eta : K \times K \rightarrow \mathbb{R}^n \), if \(x + t\eta(y, x) \in K \) for every \(x, y \in K \) and \(t \in [0, 1] \).

Notice that every convex set is invex with respect to the mapping \(\eta(y, x) = y - x \), but the converse is not necessarily true. For more details (see [39],[40]).

Definition 1.4. (see [41]) The function \(f \) defined on the invex set \(K \subseteq \mathbb{R}^n \) is said to be preinvex with respect \(\eta \), if for every \(x, y \in K \) and \(t \in [0, 1] \), we have that

\[
(1.3) \quad f(x + t\eta(y, x)) \leq (1 - t)f(x) + tf(y).
\]

The concept of preinvexity is more general than convexity since every convex function is preinvex with respect to the mapping \(\eta(y, x) = y - x \), but the converse is not true.

Definition 1.5. For \(k \in \mathbb{R}^+ \) and \(x \in \mathbb{C} \), the \(k \)-gamma function is defined by

\[
(1.3) \quad \Gamma_k(x) = \lim_{n \to \infty} \frac{n!k^n n^{x/k - 1}}{(x)_{n,k}}.
\]

Its integral representation is given by

\[
(1.4) \quad \Gamma_k(x) = \int_0^\infty t^{x - 1} e^{-tk} dt.
\]
One can note that $\Gamma_k(\alpha + k) = \alpha \Gamma_k(\alpha)$.

For $k = 1$, (1.4) gives integral representation of gamma function.

Definition 1.6. For $k \in \mathbb{R}^+$ and $x \in \mathbb{C}$, the k-beta function with two parameters x and y is defined as

\[
\beta_k(x, y) = \frac{1}{k} \int_0^1 t^{x-1} (1 - t)^{y-1} dt.
\]

For $k = 1$, (1.5) gives integral representation of beta function.

Theorem 1.7. Let $x, y > 0$, then for k-gamma and k-beta function the following equality holds

\[
\beta_k(x, y) = \frac{\Gamma_k(x) \Gamma_k(y)}{\Gamma_k(x + y)}.
\]

Definition 1.8. (see [12]) Let $\alpha > 0$ and $\alpha \not\in \{1, 2, 3, \ldots\}$, $n = [\alpha] + 1$, $f \in C^n[a, b]$ such that $f^{(n)}$ exists and are continuous on $[a, b]$. The Caputo fractional derivatives of order α are defined as follows:

\[
cD^\alpha_{a+} f(x) = \frac{1}{\Gamma(n - \alpha)} \int_a^x \frac{f^{(n)}(t)}{(x - t)^{\alpha-n+1}} dt, \quad x > a
\]

and

\[
cD^\alpha_{b-} f(x) = \frac{(-1)^n}{\Gamma(n - \alpha)} \int_x^b \frac{f^{(n)}(t)}{(t - x)^{\alpha-n+1}} dt, \quad x < b.
\]

If $\alpha = n \in \{1, 2, 3, \ldots\}$ and usual derivative of order n exists, then Caputo fractional derivative $cD^\alpha_{a+} f(x)$ coincides with $f^{(n)}(x)$. In particular we have

\[
\left(cD^\alpha_{a+} f\right)(x) = \left(cD^\alpha_{b-} f\right)(x) = f(x)
\]

where $n = 1$ and $\alpha = 0$.

In the following we recall Caputo k-fractional derivatives.

Definition 1.9. (see [13]) Let $\alpha > 0$, $k \geq 1$ and $\alpha \not\in \{1, 2, 3, \ldots\}$, $n = [\alpha] + 1$, $f \in C^n[a, b]$. The Caputo k-fractional derivatives of order α are defined as follows:

\[
cD^{\alpha,k}_{a+} f(x) = \frac{1}{k \Gamma_k(n - \frac{\alpha}{k})} \int_a^x \frac{f^{(n)}(t)}{(x - t)^{\frac{\alpha}{k}-n+1}} dt, \quad x > a
\]
Some new Ostrowski type fractional integral inequalities for ...

and

\[\frac{cD^{\alpha,k}_b f(x)}{k\Gamma_{k\alpha}(n - \frac{n}{k})} = \int_x^b \frac{f^{(n)}(t)}{(t-x)^{\frac{n}{k} - n+1}} dt, \quad x < b. \]

The aim of this paper is to establish some generalizations of Ostrowski type inequalities using new identity given in Section 2 to generalized \((s,m,\varphi)\)-preinvex functions via Caputo \(k\)-fractional derivatives. In Section 3, some applications to special means are given. In Section 4, some conclusions and future research are also given.

2. Main results

Definition 2.1. (see [32]) A set \(K \subseteq \mathbb{R}^n \) is said to be \(m \)-invex with respect to the mapping \(\eta : K \times K \times (0,1] \rightarrow \mathbb{R}^n \) for some fixed \(m \in (0,1] \), if \(m x + t \eta(y,x,m) \in K \) holds for each \(x,y \in K \) and any \(t \in [0,1] \).

Remark 2.2. In Definition 2.1, under certain conditions, the mapping \(\eta(y,x,m) \) could reduce to \(\eta(y,x) \). For example when \(m = 1 \), then the \(m \)-invex set degenerates an invex set on \(K \).

Definition 2.3. (see [2]) Let \(K \subseteq \mathbb{R} \) be an open \(m \)-invex set with respect to \(\eta : K \times K \times (0,1] \rightarrow \mathbb{R} \) and \(\varphi : I \rightarrow K \) a continuous function. For \(f : K \rightarrow \mathbb{R} \) and any fixed \(s,m \in (0,1] \), if

\[f(m\varphi(x) + t\eta(\varphi(y),\varphi(x),m)) \leq m(1-t)^s f(\varphi(x)) + t^s f(\varphi(y)) \]

is valid for all \(x,y \in I, t \in [0,1] \), then we say that \(f(x) \) is a generalized \((s,m,\varphi)\)-preinvex function with respect to \(\eta \).

Remark 2.4. In Definition 2.3, it is worthwhile to note that the class of generalized \((s,m,\varphi)\)-preinvex function is a generalization of the class of \(s \)-convex in the second sense function given in Definition 1.2.

In this section, in order to present some new Ostrowski type integral inequalities to generalized \((s,m,\varphi)\)-preinvex functions via Caputo \(k\)-fractional derivatives, we need the following new interesting lemma to obtain our results.

Lemma 2.5. Let \(\alpha > 0, k \geq 1 \) and \(\alpha \notin \{1,2,3,\ldots\} \), \(n = [\alpha] + 1 \). Let \(\varphi : I \rightarrow K \) be a continuous function. Suppose \(K \subseteq \mathbb{R} \) be an open
m-invex subset with respect to $\eta : K \times K \times (0,1] \rightarrow \mathbb{R}$ for any fixed $m \in (0,1]$. Assume that $f : K \rightarrow \mathbb{R}$ is a function on K° such that $f \in C^{n+1}[m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)]$, where $\eta(\varphi(b), \varphi(a), m) > 0$. Then we have the following equality for Caputo k-fractional derivatives

$$
\frac{\eta^{n-\frac{\alpha}{k}}(\varphi(x), \varphi(a), m)f^{(n)}(m\varphi(a) + \eta(\varphi(x), \varphi(a), m))}{\eta(\varphi(b), \varphi(a), m)}
\quad \frac{\eta^{n-\frac{\alpha}{k}}(\varphi(x), \varphi(b), m)f^{(n)}(m\varphi(b) + \eta(\varphi(x), \varphi(b), m))}{\eta(\varphi(b), \varphi(a), m)}
\quad + (-1)^{n+1}(nk - \alpha)\Gamma_k (n - \frac{\alpha}{k})
\quad \frac{1}{\eta(\varphi(b), \varphi(a), m)}
\quad \times \left[cD^{\alpha,k}_{(m\varphi(a) + \eta(\varphi(x), \varphi(a), m))}f(\varphi(a)) - cD^{\alpha,k}_{(m\varphi(b) + \eta(\varphi(x), \varphi(b), m))}f(\varphi(b)) \right]
\quad = \frac{\eta^{n-\frac{\alpha}{k}+1}(\varphi(x), \varphi(a), m)}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n-\frac{\alpha}{k}}f^{(n+1)}(m\varphi(a) + \eta(\varphi(x), \varphi(a), m))dt
\quad - \frac{\eta^{n-\frac{\alpha}{k}+1}(\varphi(x), \varphi(b), m)}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n-\frac{\alpha}{k}}f^{(n+1)}(m\varphi(b) + \eta(\varphi(x), \varphi(b), m))dt.
$$

Proof. Throughout this paper we denote

$$I_{f,\eta,\varphi}(x; \alpha, k, n, m, a, b)
\quad = \frac{\eta^{n-\frac{\alpha}{k}+1}(\varphi(x), \varphi(a), m)}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n-\frac{\alpha}{k}}f^{(n+1)}(m\varphi(a) + \eta(\varphi(x), \varphi(a), m))dt
\quad - \frac{\eta^{n-\frac{\alpha}{k}+1}(\varphi(x), \varphi(b), m)}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n-\frac{\alpha}{k}}f^{(n+1)}(m\varphi(b) + \eta(\varphi(x), \varphi(b), m))dt.
$$

(2.2)

Integrating by parts, we get

$$I_{f,\eta,\varphi}(x; \alpha, k, n, m, a, b) = \frac{\eta^{n-\frac{\alpha}{k}+1}(\varphi(x), \varphi(a), m)}{\eta(\varphi(b), \varphi(a), m)}
\quad \times \left[\frac{t^{n-\frac{\alpha}{k}}f^{(n)}(m\varphi(a) + \eta(\varphi(x), \varphi(a), m))}{\eta(\varphi(x), \varphi(a), m)} \right]_0^1.$$
Theorem 2.6. Let \(\varphi : I \rightarrow K \) be a continuous function. Suppose \(K \subseteq \mathbb{R} \) be an open \(m\)-invex subset with respect to \(\eta : K \times K \times (0,1) \rightarrow \mathbb{R} \) for any fixed \(s,m \in (0,1] \). Assume that \(f : K \rightarrow \mathbb{R} \) is a function on \(K^o \) such that \(f \in C^{n+1}[m\varphi(a),m\varphi(a)+\eta(\varphi(b),\varphi(a),m)] \), where \(\eta(\varphi(b),\varphi(a),m) > 0 \). If \(|f^{(n+1)}| \) is generalized \((s,m,\varphi)\)-preinvex function on \([m\varphi(a),m\varphi(a)+\eta(\varphi(b),\varphi(a),m)]\) and \(|f^{(n+1)}| \leq M \), then the following inequality for Caputo \(k\)-fractional derivatives holds:

\[
|I_{f,\eta,\varphi}(x;\alpha,k,n,m,a,b)| \leq M \left(m\beta \left(n - \frac{\alpha}{k} + s + 1 \right) + \frac{1}{n + s - \frac{\alpha}{k} + 1} \right)
\]

\[
(2.3) \quad \times \left[\frac{\eta(\varphi(x),\varphi(a),m)^{n-\frac{\alpha}{k}+1} + |\eta(\varphi(x),\varphi(b),m)|^{n-\frac{\alpha}{k}+1}}{\eta(\varphi(b),\varphi(a),m)} \right].
\]
Proof. From Lemma 2.5, generalized \((s, m, \varphi)\)-preinvexity of \(|f^{(n+1)}|\), upper bound of \(|f^{(n+1)}|\) and properties of the modulus, we have

\[
|I_{f, \eta, \varphi}(x; \alpha, k, n, m, a, b)| \\
\leq \frac{|\eta(\varphi(x), \varphi(a), m)|^{n-\frac{\alpha}{k}+1}}{|\eta(\varphi(b), \varphi(a), m)|} \int_0^1 t^{n-\frac{\alpha}{k}} \left|f^{(n+1)}(m\varphi(a) + t\eta(\varphi(x), \varphi(a), m))\right| dt \\
+ \frac{|\eta(\varphi(x), \varphi(b), m)|^{n-\frac{\alpha}{k}+1}}{|\eta(\varphi(b), \varphi(a), m)|} \int_0^1 t^{n-\frac{\alpha}{k}} \left|f^{(n+1)}(m\varphi(b) + t\eta(\varphi(x), \varphi(b), m))\right| dt \\
\leq \frac{|\eta(\varphi(x), \varphi(a), m)|^{n-\frac{\alpha}{k}+1}}{|\eta(\varphi(b), \varphi(a), m)|} \int_0^1 t^{n-\frac{\alpha}{k}} \left[m(1-t)^s |f^{(n+1)}(\varphi(a))| + t^s |f^{(n+1)}(\varphi(x))|\right] dt \\
+ \frac{|\eta(\varphi(x), \varphi(b), m)|^{n-\frac{\alpha}{k}+1}}{|\eta(\varphi(b), \varphi(a), m)|} \int_0^1 t^{n-\frac{\alpha}{k}} \left[m(1-t)^s |f^{(n+1)}(\varphi(b))| + t^s |f^{(n+1)}(\varphi(x))|\right] dt \\
\leq M \left(m\beta \left(n - \frac{\alpha}{k} + 1, s + 1\right) + \frac{1}{n + s - \frac{\alpha}{k} + 1}\right) \\
\times \left[\frac{|\eta(\varphi(x), \varphi(a), m)|^{n-\frac{\alpha}{k}+1} + |\eta(\varphi(x), \varphi(b), m)|^{n-\frac{\alpha}{k}+1}}{|\eta(\varphi(b), \varphi(a), m)|}\right].
\]

\(\square\)

Corollary 2.7. Under the same conditions as in Theorem 2.6, if we choose \(m = k = 1, \eta(\varphi(y), \varphi(x), m) = \varphi(y) - m\varphi(x)\) and \(\varphi(x) = x, \forall x \in I\), we get the following inequality for Caputo fractional derivatives:

\[
\left|\left(\frac{(x-a)^{n-\alpha} - (x-b)^{n-\alpha}}{b-a}\right) f^{(n)}(x) + (-1)^{n+1} \frac{\Gamma(n-\alpha+1)}{b-a} \left[cD_x^\alpha f(a) - cD_x^\alpha f(b)\right]\right| \\
\leq M \left(\beta \left(n - \alpha + 1, s + 1\right) + \frac{1}{n + s - \alpha + 1}\right) \left[\frac{(x-a)^{n-\alpha+1} + (b-x)^{n-\alpha+1}}{b-a}\right].
\]

(2.4)
\textbf{Theorem 2.8.} Let \(\alpha > 0, k \geq 1 \) and \(\alpha \notin \{1, 2, 3, \ldots\}, n = \lceil \alpha \rceil + 1 \). Let \(\varphi : I \rightarrow K \) be a continuous function. Suppose \(K \subseteq \mathbb{R} \) be an open \(m \)-invex subset with respect to \(\eta : K \times K \times (0, 1) \rightarrow \mathbb{R} \) for any fixed \(s, m \in (0, 1] \). Assume that \(f : K \rightarrow \mathbb{R} \) is a function on \(K' \) such that \(f \in C^{n+1}[m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \), where \(+\eta(\varphi(b), \varphi(a), m) \geq 0 \). If \(\left| f^{(n+1)} \right|^q \) is generalized \((s, m, \varphi) \)-preinvex function on \([m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \) \(q > 1, p^{-1} + q^{-1} = 1 \) and \(\left| f^{(n+1)} \right| \leq M \), then the following inequality for Caputo \(k \)-fractional derivatives holds:

\[
|I_{f, n, \varphi}(x; \alpha, k, n, m, a, b)| \leq \frac{M}{\left(n - \frac{\alpha}{k} \right) p + 1} \left(\frac{m + 1}{s + 1} \right) \frac{q}{p}
\]

(2.5)

\[
\times \left[\frac{\eta(\varphi(x), \varphi(a), m)^{n - \frac{\alpha}{k} + 1} + |\eta(\varphi(x), \varphi(b), \varphi(a), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \right].
\]

\textbf{Proof.} Suppose that \(q > 1 \). From Lemma 2.5, generalized \((s, m, \varphi) \)-preinvexity of \(\left| f^{(n+1)} \right|^q \), Hölder inequality, upper bound of \(\left| f^{(n+1)} \right| \) and properties of the modulus, we have

\[
\begin{align*}
|I_{f, n, \varphi}(x; \alpha, k, n, m, a, b)| &
\leq \frac{\eta(\varphi(x), \varphi(a), m)^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n - \frac{\alpha}{k}} \left| f^{(n+1)}(m\varphi(a) + t\eta(\varphi(x), \varphi(a), m)) \right| dt \\
&
+ \frac{\eta(\varphi(x), \varphi(b), \varphi(a), m)^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n - \frac{\alpha}{k}} \left| f^{(n+1)}(m\varphi(b) + t\eta(\varphi(x), \varphi(b), \varphi(a), m)) \right| dt \\
&
\leq \frac{\eta(\varphi(x), \varphi(a), m)^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \left(\int_0^1 t^{(n - \frac{\alpha}{k})p} dt \right)^\frac{1}{p} \\
&
\times \left(\int_0^1 \left| f^{(n+1)}(m\varphi(a) + t\eta(\varphi(x), \varphi(a), m)) \right|^q dt \right)^\frac{1}{q} \\
&
+ \frac{\eta(\varphi(x), \varphi(b), \varphi(a), m)^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \left(\int_0^1 t^{(n - \frac{\alpha}{k})p} dt \right)^\frac{1}{p} \\
&
\times \left(\int_0^1 \left| f^{(n+1)}(m\varphi(b) + t\eta(\varphi(x), \varphi(b), \varphi(a), m)) \right|^q dt \right)^\frac{1}{q}.
\end{align*}
\]
Let \(\varphi : I \rightarrow K \) be a continuous function. Suppose \(K \subseteq \mathbb{R} \) be an open \(m \)-invex subset with respect to \(\eta : K \times K \times (0,1) \rightarrow \mathbb{R} \) for any fixed \(s, m \in (0,1) \). Assume that \(f : K \rightarrow \mathbb{R} \) is a function on \(K^\circ \) such that \(f \in C^{m+1}[m\varphi(a),m\varphi(a)+\eta(\varphi(b),\varphi(a),m)], \) where \(+\eta(\varphi(b),\varphi(a),m) > 0 \).
If $|f^{(n+1)}|^q$ is generalized (s, m, φ)-preinvex function on $[m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)]$ $q \geq 1$ and $|f^{(n+1)}| \leq M$, then the following inequality for Caputo k-fractional derivatives holds:

$$|f_{\eta, \varphi}(x; \alpha, k, n, m, a, b)| \leq M \left(\frac{1}{n - \frac{\alpha}{k} + 1}\right)^{\frac{1}{q}} \left[m \beta \left(n - \frac{\alpha}{k} + 1, s + 1\right) + \frac{1}{n + s - \frac{\alpha}{k} + 1}\right]^{\frac{1}{q}}$$

(2.7)

Proof. Suppose that $q \geq 1$. From Lemma 2.5, generalized (s, m, φ)-preinvexity of $|f^{(n+1)}|^q$, the well-known power mean inequality, upper bound of $|f^{(n+1)}|$ and properties of the modulus, we have

$$|f_{\eta, \varphi}(x; \alpha, k, n, m, a, b)| \leq \frac{|\eta(\varphi(x), \varphi(a), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n - \frac{\alpha}{k}} |f^{(n+1)}(m\varphi(a) + t\eta(\varphi(x), \varphi(a), m))| \, dt$$

$$+ \frac{|\eta(\varphi(x), \varphi(b), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \int_0^1 t^{n - \frac{\alpha}{k}} |f^{(n+1)}(m\varphi(b) + t\eta(\varphi(x), \varphi(b), m))| \, dt$$

$$\leq \frac{|\eta(\varphi(x), \varphi(a), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \left(\int_0^1 t^{n - \frac{\alpha}{k}} \, dt\right)^{1 - \frac{1}{q}}$$

$$\times \left(\int_0^1 t^{n - \frac{\alpha}{k}} |f^{(n+1)}(m\varphi(a) + t\eta(\varphi(x), \varphi(a), m))|^q \, dt\right)^{\frac{1}{q}}$$

$$+ \frac{|\eta(\varphi(x), \varphi(b), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \left(\int_0^1 t^{n - \frac{\alpha}{k}} \, dt\right)^{1 - \frac{1}{q}}$$

$$\times \left(\int_0^1 t^{n - \frac{\alpha}{k}} |f^{(n+1)}(m\varphi(b) + t\eta(\varphi(x), \varphi(b), m))|^q \, dt\right)^{\frac{1}{q}}$$

$$\leq \frac{|\eta(\varphi(x), \varphi(a), m)|^{n - \frac{\alpha}{k} + 1}}{\eta(\varphi(b), \varphi(a), m)} \left(\int_0^1 t^{n - \frac{\alpha}{k}} \, dt\right)^{1 - \frac{1}{q}}$$
Corollary 2.11. Under the same conditions as in Theorem 2.10, if we choose $m = k = 1$, $\eta(\varphi(y), \varphi(x), m) = \varphi(y) - m\varphi(x)$ and $\varphi(x) = x$, $\forall x \in I$, we get the following inequality for Caputo fractional derivatives:

\[
\left\| \frac{(x-a)^{n-\alpha} - (x-b)^{n-\alpha}}{b-a} \right\| f^{(n)}(x) + (-1)^{n+1} \frac{\Gamma(n - \alpha + 1)}{b-a} \left| \frac{cD^\alpha_{x-} f(a) - cD^\alpha_{x-} f(b)}{b-a} \right| \leq M \left(\frac{1}{n - \alpha + 1} \right)^{1 - \frac{1}{q}} \left[\beta(n - \alpha + 1, s + 1) + \frac{1}{n + s - \alpha + 1} \right] \frac{1}{q} \times \left((x-a)^{n-\alpha+1} + (b-x)^{n-\alpha+1} \right) ^{1 - \frac{1}{q}}.
\]

(2.8)

Corollary 2.12. Under the same conditions as in Theorem 2.10 for $q = 1$, we get Theorem 2.6.
3. Applications to special means

In the following we give certain generalizations of some notions for a positive valued function of a positive variable.

Definition 3.1. (see [43]) A function $M : \mathbb{R}_+^2 \rightarrow \mathbb{R}_+$, is called a Mean function if it has the following properties:

1. **Homogeneity:** $M(ax, ay) = aM(x, y)$, for all $a > 0$,

2. **Symmetry:** $M(x, y) = M(y, x)$,

3. **Reflexivity:** $M(x, x) = x$,

4. **Monotonicity:** If $x \leq x'$ and $y \leq y'$, then $M(x, y) \leq M(x', y')$,

5. **Internality:** $\min\{x, y\} \leq M(x, y) \leq \max\{x, y\}$.

We consider some means for arbitrary positive real numbers α, β ($\alpha \neq \beta$).

1. **The arithmetic mean:** $A := A(\alpha, \beta) = \frac{\alpha + \beta}{2}$
2. **The geometric mean:** $G := G(\alpha, \beta) = \sqrt{\alpha\beta}$
3. **The harmonic mean:** $H := H(\alpha, \beta) = \frac{2}{\frac{1}{\alpha} + \frac{1}{\beta}}$
4. **The power mean:** $P_r := P_r(\alpha, \beta) = \left(\frac{\alpha^r + \beta^r}{2}\right)^{\frac{1}{r}}$, $r \geq 1$.
5. **The identric mean:** $I := I(\alpha, \beta) = \left\{ \begin{array}{ll} \frac{\beta^\alpha}{\alpha^\beta}, & \alpha \neq \beta; \\ \alpha, & \alpha = \beta. \end{array} \right.$
6. **The logarithmic mean:** $L := L(\alpha, \beta) = \frac{\beta^\alpha - \alpha^\beta}{\ln(\beta) - \ln(\alpha)}$.
7. **The generalized log-mean:** $L_p := L_p(\alpha, \beta) = \left[\frac{\alpha^{p+1} - \beta^{p+1}}{(p+1)(\beta - \alpha)} \right]^{\frac{1}{p}}$; $p \in \mathbb{R} \setminus \{-1, 0\}$.
8. **The weighted p-power mean:** $M_p \left(\begin{array}{c} \alpha_1, \\ \alpha_2, \\ \cdots, \\ \alpha_n \end{array}, \begin{array}{c} u_1, \\ u_2, \\ \cdots, \\ u_n \end{array} \right) = \left(\sum_{i=1}^{n} \alpha_i u_i^p \right)^{\frac{1}{p}}$
 where $0 \leq \alpha_i \leq 1$, $u_i > 0$ ($i = 1, 2, \ldots, n$) with $\sum_{i=1}^{n} \alpha_i = 1$.
It is well known that L_p is monotonic nondecreasing over $p \in \mathbb{R}$ with $L_{-1} := L$ and $L_0 := I$. In particular, we have the following inequality $H \leq G \leq L \leq I \leq A$. Now, let a and b be positive real numbers such that $a < b$. Consider the function $M := M(\varphi(x), \varphi(y)) : [\varphi(x), \varphi(x) + \eta(\varphi(y), \varphi(x))] \times [\varphi(x), \varphi(x) + \eta(\varphi(y), \varphi(x))] \rightarrow \mathbb{R}_+$, which is one of the above mentioned means and $\varphi : I \rightarrow K$ be a continuous function. Therefore one can obtain various inequalities using the results of Section 2 for these means as follows:

Replace $\eta(\varphi(y), \varphi(x), m)$ with $\eta(\varphi(y), \varphi(x))$ and setting $\eta(\varphi(y), \varphi(x)) = M(\varphi(x), \varphi(y))$ for value $m = 1$ and $\forall x, y \in I$ in (2.5) and (2.7), one can obtain the following interesting inequalities involving means:

$$\left| I_{f,M}(\cdot,\varphi(x;\alpha, k, n, 1, a, b)) \right| \leq \frac{M}{\left(n - \frac{\alpha}{k} \right) p + 1} \left(\frac{2}{s + 1} \right)^{\frac{1}{\frac{k}{n}}}$$

(3.1) $$\times \left[\frac{M^{n-\frac{\alpha}{k}+1}(\varphi(a), \varphi(x)) + M^{n-\frac{\alpha}{k}+1}(\varphi(b), \varphi(x))}{|M(\varphi(a), \varphi(b))|} \right]$$

$$\left| I_{f,M}(\cdot,\varphi(x;\alpha, k, n, 1, a, b)) \right| \leq M \left(\frac{1}{n + s + 1} \right)^{\frac{1}{\frac{k}{n}}} \left[\beta \left(n - \frac{\alpha}{k} + 1, s + 1 \right) + \frac{1}{n + s - \frac{\alpha}{k} + 1} \right]^{\frac{1}{\frac{k}{n}}}$$

(3.2) $$\times \left[\frac{M^{n-\frac{\alpha}{k}+1}(\varphi(a), \varphi(x)) + M^{n-\frac{\alpha}{k}+1}(\varphi(b), \varphi(x))}{|M(\varphi(a), \varphi(b))|} \right].$$

Letting $M(\varphi(x), \varphi(y)) = A, G, H, P, I, L, L_p, M_p$, $\forall x, y \in I$, in (3.1) and (3.2), we get the inequalities involving means for a particular choice of a generalized $(s, 1, \varphi)$-preinvex functions $f^{(n+1)}$. The details are left to the interested reader.

4. Conclusions

In the present paper, the notion of generalized (s, m, φ)-preinvex function was applied to established some new generalizations of Ostrowski type inequalities via Caputo k-fractional derivatives.
Motivated by this new interesting class of generalized \((s, m, \varphi)\)-preinvex functions we can indeed see to be vital for fellow researchers and scientists working in the same domain.

We conclude that our methods considered here may be a stimulant for further investigations concerning Ostrowski and Hermite-Hadamard type integral inequalities for various kinds of preinvex functions involving classical integrals, Riemann-Liouville fractional integrals, \(k\)-fractional integrals, local fractional integrals, fractional integral operators, Caputo \(k\)-fractional derivatives, \(q\)-calculus, \((p, q)\)-calculus, time scale calculus and conformable fractional integrals.

References

Some new Ostrowski type fractional integral inequalities for ... 149

Artion Kashuri
Department of Mathematics,
Faculty of Technical Science,
University "Ismail Qemali",
Vlora, Albania
e-mail : artionkashuri@gmail.com

and

Rozana Liko
Department of Mathematics,
Faculty of Technical Science,
University "Ismail Qemali",
Vlora, Albania
e-mail : rozanaliko86@gmail.com