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Abstract

M. sova [10] proved that the infinitesimal generator of all uni-
formly continuous cosine family, of operators in Banach space, is a
bounded operator. We show by counter-example that the result men-
tioned above is not true in general on Fréchet spaces, and we prove
that the infinitesimal generator of an uniformly continuous cosine
family of operators in a class of Fréchet spaces (quojection) is neces-
sarily continuous.

Keywords : Strongly continuous cosine families. Semi-groups of
operators. Locally convex space. Quojection Fréchet space.
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1. Introduction

A strongly continuous cosine family, of bounded operators in Banach space
X, appear as solution of the abstract Cauchy problem of second order [2][5]
:

U 00 = AU, U(0) = x, and U 0(0) = 0.

A link between the family {C(t)}t∈R and the operator A is given by
the Laplace transform : λ(λ2I − A)−1 =

R∞
0 e−λsC(s)ds, and A is called

the infinitesimal generator of the cosine family {C(t)}t∈R [2][4].

We know, in classical theory, that the infinitesimal generator A of an
uniformly continuous cosine family {C(t)}t∈R, of bounded operators in X
(Banach space), is a bounded operator [4][10], moreover for all t ∈ R we
have :

C(t) = Cosh(t
√
A) =

∞X
n=0

t2n

(2n)!
An.

In section 1, We give the definition of cosine family of operators in lo-
cally convex spaces, and some propositions important for our results.

An example, of uniformly continuous cosine family, of operators in a
Fréchet space, whose infinitesimal generator is a closed operator, densely
defined and not continuous on the space everywhere, is given in the second
section; and we demonstrate that in the case where the Fréchet space is
quojection [Definition 3.1], the infinitesimal generator of all uniformly con-
tinuous cosine family of operators is necessarily continuous.

2. Cosine families of operators in locally convex space :

Let X be a locally convex Hausdorff space, and ΓX a system of continuous
semi-norms determining the topology of X. The strong topology τs in
the space L(X), of all continuous linear operators from X into itself, is
determined by the family of seminorms :

qx(S) = q(Sx), S ∈ L(X),

for each x ∈ X and q ∈ ΓX , L(X) equipped with this topology is noted
Ls(X).
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Let B(X) the collection of all bounded subsets of X. The topology τb
of uniform convergence on the elements of B(X) is defined by the family
of semi-norms :

qB(S) = sup
x∈B

q(Sx), S ∈ L(X),

for each B ∈ B(X) and q ∈ ΓX , L(X) equipped with this topology is noted
Lb(X).

Definition 1. Let {C(t)}t∈R ⊆ L(X) be a family of operators verifying
the following properties:

1. C(0) = I.

2. 2C(t)C(s) = C(t+ s) + C(t− s), ∀s, t ∈ R.

• We say that {C(t)}t∈R is a strongly continuous cosine family if :

C(t) −→ C(t0) in Ls(X), as t −→ t0, ∀t0 ∈ R.

• we say that {C(t)}t∈R is an uniformly continuous cosine family if :

C(t) −→ C(t0) in Lb(X), as t −→ t0, ∀t0 ∈ R.

Definition 2. Let X be a sequentially complete locally convex Hausdorff
space and {C(t)}t∈R be a strongly continuous cosine family on X .
Let A the operator defined on D(A) by :

Ax = lim
t−→0

2

t2
(C(t)x−x), where D(A) = {x ∈ X/ lim

t−→0
2

t2
(C(t)x−x) exists in X}.

A is called the infinitesimal generator of {C(t)}t∈R.

Remark 1. • According to 2. of the Definition 1., we have C(.) is even.

Indeed, for t = 0 we have 2C(s) = C(s) + C(−s) which implies that
C(s) = C(−s), ∀s ∈ R.

• For all t, s ∈ R, we have C(t)C(s) = C(s)C(t).

Indeed, 2C(t)C(s)=C(t+s)+C(t-s)
=C(s+t)+C(s-t)=2C(s)C(t), ∀t, s ∈ R.
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We always denote byX a sequentially complete locally convex Hausdorff
space, and ΓX a system of continuous semi-norms determining the topology
of X . We recall that a family H ⊂ L(X) is called equicontinuous if for
all neighborhood U of 0, there exists a neighborhood V of 0 such that
T (V) ⊆ U, ∀T ∈ H [6]; and we say that a family {C(t)}t∈R ⊂ L(X) is
locally equicontinuous, if for all s ∈ R+, the set {C(t), −s ≤ t ≤ s} is
equicontinuous.

Proposition 1. Let {C(t)}t∈R be a strongly continuous cosine family on
X. Then for all x ∈ X and t ∈ R we have :

lim
h−→0

2

h2

Z t+h

t
(t+ h− s)C(s)xds = C(t)x.

Proof. Let t ∈ R, x ∈ X and p ∈ ΓX . Thus for all h ∈ R∗+ we have :
p( 2

h2
R t+h
t (t+ h− s)C(s)xds− C(t)x)

= p( 2h2
R t+h
t (t+ h− s)(C(s)x− C(t)x)ds)

≤ 2
h2
R t+h
t (t+ h− s)p(C(s)x−C(t)x)ds

≤ 2
h2
R t+h
t (t+ h− s)ds sups∈[t,t+h] p(C(s)x− C(t)x)

≤ sups∈[t,t+h] p(C(s)x−C(t)x).

Since C(t)x is continuous on R, Then sups∈[t,t+h] p(C(s)x−C(t)x) −→
0, as h −→ 0.

Similarly, for h ∈ R∗− we have sups∈[t+h,t] p(C(s)x − C(t)x) −→ 0, as
h −→ 0.
Hence the result.

2

Remark 2. If {C(t)}t∈R is an uniformly continuous cosine family, then
for all t ∈ R we have:

2

h2

Z t+h

t
(t+ h− s)C(s)ds −→ C(t) in Lb(X), as h −→ 0.

Corollary 1. Let {C(t)}t∈R be a strongly continuous cosine family on X,
and A its infinitesimal generator. For all t ∈ R, and x ∈ X we have :Z t

0
(t− s)C(s)xds ∈ D(A), and A

Z t

0
(t− s)C(s)xds = C(t)x− x.
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Proof. Let h ∈ R∗, for all x ∈ X we have :
2
h2 (C(h)− I)

R t
0(t− s)C(s)xds

= 2
h2
R t
0(t− s)C(h)C(s)xds− 2

h2
R t
0(t− s)C(s)xds

= 1
h2
R t
0(t− s)C(s+ h)xds+ 1

h2
R t
0(t− s)C(s− h)xds

− 2
h2
R t
0(t− s)C(s)xds

= 1
h2
R t+h
h (t+ h− s)C(s)xds+ 1

h2
R t−h
−h (t− h− s)C(s)xds

− 2
h2
R t
0(t− s)C(s)xds

= 1
h2
R t+h
t (t+ h− s)C(s)xds+ 1

h2
R t−h
t (t− h− s)C(s)xds

− 1
h2
R h
0 (h− s)C(s)xds− 1

h2
R−h
0 (−h− s)C(s)xds.

According to proposition 1. we obtain
R t
0(t− s)C(s)xds ∈ D(A), and

A

Z t

0
(t− s)C(s)xds = C(t)x− x.

2

Proposition 2. Let {C(t)}t∈R be a strongly continuous cosine family on
X, and A its infinitesimal generator.

Then D(A) is dense in X.

Proof. Let (hn)n∈N ⊆ R∗ be a sequence such that hn −→ 0, as n −→∞.

Let x ∈ X, put :

xn =
2

h2n

Z hn

0
(hn − s)C(s)xds.

According to corollary 1. we have (xn)n ⊆ D(A), and for t = 0 in the
Proposition 1. we have xn −→ x, as n −→∞.

Then D(A) is dense in X. 2

Proposition 3. If X is tonnelé , Then every strongly continuous cosine
family {C(t)}t∈R on X is locally equicontinuous.
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Proof. Let s > 0, and U be any convex circular closed neighborhood of
0, then V = T

−s≤t≤s(C(t))
−1(U) is a convex circular closed set.

Let x ∈ X, the set {C(t)x,−s ≤ t ≤ s} is bounded in X, because the
strongly continuity of the family {C(t)}t∈R on X; since U is a neighbor-
hood of 0, ∃λ ≥ 0 such that : {C(t)x,−s ≤ t ≤ s} ⊆ λU . Which implies
that x ∈ λV, this means that V is absorbing, and C(t)(V) ⊆ U , ∀t ∈ [−s, s].

SinceX is tonnelé, V is a neighborhood of 0, which means that {C(t)x,−s ≤
t ≤ s} is equicontinuous. 2

Proposition 4. Let {C(t)}t∈R be a locally equicontinuous strongly con-
tinuous cosine family on X. Let x and y in X, then :
x ∈ D(A), and Ax = y, if and only if, C(t)x−x =

R t
0(t− s)C(s)yds. ∀t ∈

R.

Proof. ⇐ Evident (proposition 1).
⇒ Let x, y ∈ X, such that Ax = y.

Firstly, we have for all t ∈ R,
R t
0(t− s)C(s)xds ∈ D(A) and :

C(t)x− x = A

Z t

0
(t− s)C(s)xds = lim

h−→0

Z t

0
(t− s)C(s)

2

h2
(C(h)x− x)ds.

Let t ∈ R∗+, since {C(t)}t∈R is locally equicontinuous on X, ∀p ∈ ΓX ,
∃q ∈ ΓX , ∃M ≥ 0 such that :

p(C(t)x) ≤Mq(x), ∀s ∈ [−2t, 2t].(∗)

Then, for all h ∈ R∗, with |h| ≤ t

p(
R t
0(t− s)C(s) 2h2 (C(h)x− x)ds)

= p( 1h2
R t−h
t (t− h− s)C(s)xds+ 1

h2
R t+h
t (t+ h− s)C(s)xds

− 2
h2
R h
0 (h− s)C(s)xds)

≤ 3 sup[−2t,2t] p(C(s)x).

According to (*), ∀p ∈ ΓX , ∃q ∈ ΓX , ∃M ≥ 0 we have :

p(

Z t

0
(t− s)C(s)

2

h2
(C(h)x− x)ds) ≤ 3Mq(x).
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Therefore,

lim
h−→0+

Z t

0
(t− s)C(s)

2

h2
(C(h)x− x)ds

=

Z t

0
(t− s)C(s) lim

h−→0

2

h2
(C(h)x− x)ds =

Z t

0
(t− s)C(s)yds.

Hence,

C(t)x− x =

Z t

0
(t− s)C(s)yds, t ∈ R.

2

Corollary 2. The infinitesimal generator of all locally equicontinuous strongly
continuous cosine family on X is closed.

Proof. Let (xn)n∈N ⊆ D(A) such that lim
n−→∞

xn = x, and lim
n−→∞

Axn =
y.

Let t ∈ R fix, then we have C(t)xn−xn =
R t
0(t−s)C(s)Axnds, ∀n ∈N.

Since C(t) ∈ L(X), lim
n−→∞

(C(t)xn − xn) = C(t)x− x.

As {C(t)}t∈R is locally equicontinuous, lim
n−→∞

R t
0(t − s)C(s)Axnds =R t

0(t− s)C(s)yds.

Indeed, let p ∈ ΓX and t ∈ R+, we have :

p(
R t
0(t− s)C(s)Axnds−

R t
0(t− s)C(s)yds) = p(

R t
0(t− s)C(s)(Axn − y)ds)

≤ t2

2 sup0≤s≤t p(C(t)(Axn − y)).

Since {C(s)}s∈R is locally equicontinuous, ∃q ∈ ΓX , ∃M > 0 such that
:

p(C(t)x) ≤Mq(x), ∀x ∈ X et ∀s ∈ [−t, t].

Consequently,

p(

Z t

0
(t− s)C(s)Axnds−

Z t

0
(t− s)C(s)yds) ≤ t2

2
Mq(Axn − y).

And since lim
n−→∞

Axn = y, t2

2Mq(Axn − y) −→ 0, as n −→∞.
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Similarly, we obtain the result for t ∈ R−.
Then,

C(t)x− x =

Z t

0
(t− s)C(s)yds

which implies x ∈ D(A) and Ax = y.
Hence, A is closed. 2

3. Strongly continuous cosine families in Quojection :

Exapmle 1. we give an example of uniformly continuous cosine family on
Fréchet space whose infinitesimal generator is not everywhere defined.
A matrix (an(i))i,n∈N of non-negative numbers is called a Köthe matrix if
it satisfies the following conditions :

1. ∀i ∈N, ∃n ∈ N such that : an(i) > 0.

2. an(i) ≤ an+1(i), ∀i, n ∈N.

Let k = (an(i))i,n∈N be a Köthe matrix satisfies :

an(i) ≥ 1 and
X
i∈N

an(i)

an+1(i)
<∞,∀n ∈ N.

.

We consider the space

λ1(K) = {x = (xi)i∈N ∈ CN : pn(x) =
X
i∈N

an(i)|xi| <∞,∀n ∈ N}.

λ1(K) equipped with the family of semi-norms {pn}∞n=1 is a nuclear Fréchet
space [7].

Let (µi)i∈N be a sequence of real numbers such that each µi > 0 and
lim

i−→∞
µi =∞.

For each t ∈ R, define a linear operator C(t) on λ1(K) by :

C(t)x = (Cos(
√
µit)xi)

∞
i=1 , x ∈ λ1(K).

Let x ∈ λ1(K), and ε > 0; for given n ∈ N, ∃i0 ∈N such that :X
i>i0

an(i)|xi| <
ε

4
.
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On the other hand, ∃η > 0 such that ∀h ∈ R∗, with |h| < η, we have :X
i≤i0

|cos(√µi(t+ h))− cos(
√
µit)|an(i)|xi| <

ε

2
.

Then, for all h ∈ R∗, with |h| < η we have :
pn(C(t+ h)x− C(t)x) =

P
i∈N |cos(

√
µi(t+ h))− cos(

√
µit)|an(i)|xi|

≤ ε
2 + 2

P
i>i0 an(i)|xi| ≤

ε
2 + 2

ε
4 = ε.

Then {C(t)}t∈R is a strongly continuous cosine family on λ1(K), and hence,
it is also uniformly continuous as λ1(K) is Montel, since it is nuclear [8].

Let A the infinitesimal generator of the family {C(t)}t∈R, then we have:

Ax = (−µixi)∞i=1, and D(A) = {x ∈ λ1(K); tel que (−µixi)∞i=1 ∈ λ1(K)}.

Indeed, let x ∈ D(A), i-e lim
t−→0

2
t2 (C(t)x− x) exist on X. Thus ∃y ∈ λ1(K)

such that for all n ∈ N we have: lim
t−→0

P∞
i=0 an(i)|( 2t2 (Cos(

√
µit)xi − xi) −

yi)| = 0.

Hence yi = lim
t−→0

( 2t2 (Cos(
√
µit)xi − xi) = −µixi, ∀i ∈ N.

Therefore,

D(A) ⊂ {(xn)n∈N ∈ λ1(K); (−µixi)i∈N ∈ λ1(K)}, and A(xi)i∈N = (−µixi)i∈N.

Conversely, let x ∈ λ1(K) such that (−µixi)i∈N ∈ λ1(K), let n ∈ N
then for all t ∈ R∗ we have :

pn(
2

t2
(C(t)x− x) + (µixi)i∈N) =

∞X
i=0

an(i)|
2

µit2
(cos(

√
µit)− 1) + 1||µixi|.

Put g(t) = 2(cos(t)−1)
t2 + 1, t ∈ R. The function g is even, then it is enough

to study g on R+. Since 1− t2

2 ≤ cos(t) ≤ 1 for all t ∈ R+, which means
0 ≤ g(t) ≤ 1 ∀t ∈ R.
Hence :

pn(
2

t2
(C(t)x− x) + (µixi)i∈N) ≤

∞X
i=0

an(i)|µixi| <∞.
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Therefore,

lim
t−→0

pn(
2

t2
(C(t)x− x) + (µixi)i∈N)

=
∞X
i=0

lim
t−→0

| 2
µit2

(cos(
√
µit)− 1) + 1|an(i)|µixi| = 0.

Then

{(xn)n∈N ∈ λ1(K); (−µixi)i∈N ∈ λ1(K)} ⊂ D(A) , and

A(xi)i∈N = (−µixi)i∈N.

Finally, for each n ∈ N we put µi =
Pi

n=1 an(i), ∀i ∈N.

we have µi −→ ∞ and the sequence 1
µ = (

1
µi
)i∈N ∈ λ1(K), because for all

m ∈ N,
pm(

1
µ) =

P
i∈N am(i)

1
µi

=
Pm

i=1 am(i)
1
µi
+
P∞

i=m+1
am(i)Pi

n=1
an(i)

≤Pm
i=1 am(i)

1
µi
+
P∞

i=m+1
am(i)
am+1(i)

<∞.

but, (−µi. 1µi )i∈N = (−1)i∈N /∈ λ1(K), then
1
µ /∈ D(A) and D(A) 6= λ1(K).

Proposition 5. Suppose that X is a Fréchet space which contains a com-
plemented copy of some nuclear Köthe sequence space λ1(K). Then there
exists an equicontinuous, uniformly continuous cosine family in X whose
infinitesimal generator is not everywhere defined.

Proof. Let P : X −→ X be any projection satisfying Im(P ) = λ1(K),
and define Ker(P ) = Y . According to Example 1., for each t ∈ R, define
a linear operator C1(t) on λ1(K) by :

C1(t)x = (Cos(
√
µit)xi)

∞
i=1 , x ∈ λ1(K).

The family {C1(t)}t∈R is an equicontinuous, uniformly continuous cosine
family in λ1(K).

Let A ∈ L(Y ), such that {An}∞n=1 is equicontinuous in L(Y ). i.e. ∀p ∈
ΓX , ∃q ∈ ΓX , ∃M ≥ 0, such that :

p(Anx) ≤Mq(x), ∀n ∈N, ∀x ∈ X. (∗)
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for each t ∈ R, define a linear operator C2(t) on Y by :

C2(t)x =
e−tetA + ete−tA

2
=

e−t

2

∞X
n=0

tn

n!
An +

et

2

∞X
n=0

(−t)n
n!

An , x ∈ Y.

According to (∗), the family {C2(t)}t∈R is an equicontinuous, uniformly
continuous cosine family in Y .

Then, the family {C(t)}t∈R of continuous linear operators in X defined
via:

C(t)x = C1(t)Px+C2(t)(I − P )x, t ∈ R, x ∈ X.

is an equicontinuous, uniformly continuous cosine family in X whose in-
finitesimal generator is not everywhere defined. 2

Definition 3. A Fréchet space X is a quojection if it is the projective
limit of a projective system of Banach spaces ((Xn, ||.||n)∞n=1, (Πmn )n≤m),
with Πmn : Xm −→ Xn is surjective,∀m ≥ n.(i.e X = Projn(Xn,Π

m
n )).

Theorem 1. Let X be a quojection.

The infinitesimal generator of every uniformly continuous cosine family
is continuous, (i.e. A ∈ L(X)). Moreover, we have :

C(t)x =
∞X
k=1

t2k

(2k)!
Akx, ∀x ∈ X.

Proof. Since X is a quojection, then it is the projective limit of projec-
tive system ((Xn, ||.||n)∞n=1, (Πmn )n≤m) of Banach spaces, with Πmn : Xm −→
Xn is surjective, ∀n ≤ m ∈ N, and we have Πm : X −→ Xm is sujective,
∀m ∈ N.

X is tonnelé, according to proposition 3. the family {C(t)}t∈R is
locally equicontinuous.

i.e. : for all t0 > 0 fix, ∀n ∈ N, ∃m ∈ N, m ≥ n, ∃M > 0 such that :

||Πn(C(t)x)||n ≤M ||Πm(x)||m, ∀t ∈ [−t0, t0], ∀x ∈ X.(3.1)

On the other hand, for all 0 < |t| ≤ t0 we define the operator :

ϕt(y) =
2

t2

Z t

0
(t− s)C(s)yds, y ∈ X.
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According to Corollary 1. we have ϕt(y) ∈ D(A), ∀y ∈ X, and
Aϕt(y) =

2
t2 (C(t)y − y).

Since the family {C(t)}t∈R is uniformly continuous, According to Re-
mark 2. we have : ϕt −→ I, as t −→ 0, uniformly on bounded subsets of
X.

For all t ∈ [−t0, t0], we define the operator ϕ̃t on Xm by :
ϕ̃t : Xm −→ Xn (m ≥ n)

Πm(x) −→ Πn(ϕt(x)).

ϕ̃t is continuous, Indeed, let x ∈ X we have :

||ϕ̃t(Πm(x))||n = ||Πn(ϕtx)||n = ||
2

t2

Z t

0
(t− s)Πn(C(s)x)ds||n.

We obtain

||ϕ̃t(Πm(x))||n ≤M ||Πm(x)||n, ∀t ∈ [−t0, t0].

Since X is a quojection, ∃B ∈ B(X) such that Bm ⊆ Πm(B), with Bm

is the unit ball of Xm [3].

Thus, we have :
supz∈Bm

||ϕ̃t(z)−Πmn (z)||n ≤ supz∈Πm(B) ||ϕ̃t(z)−Πmn (z)||n
≤ supy∈ B ||ϕ̃t(Πm(y))−Πmn (Πm(y))||n
≤ supy∈ B ||Πn(ϕt(y)− y)||n

Since ϕt −→ I, as t −→ 0, uniformly on bounded subsets of X, ϕ̃t is
uniformly converges on Bm to Πmn .

Since the set of surjective operators is open in L(Xm,Xn) [9], ∃t1 ∈ R∗
such that ϕ̃t1 is surjective (for small |t1| ).

Let n,m ∈ N, with m ≥ n, such that (3.1) is verified, and we take
m0 ≥ m again with (3.1) satisfies.
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Let x ∈ X, then ∃y ∈ X such that Πm(x) = ϕ̃t1(Πm0(y)) = Πm(ϕt1(y)).

Which implies, Πn(C(h)x) = Πn(C(h)ϕt1(y)), h ∈ [−t0, t0]. In particu-
lar, for h = 0 we have Πn(x) = Πn(ϕt1(y)).

Thus, for all 0 < |h| ≤ t0 we have :

Πn(
2

h2
(C(h)x− x)) = Πn(

2

h2
(C(h)ϕt1(y)− ϕt1(y))).

Since,

A(ϕt(y)) =
2

t2
(C(t)y − y)), ∀y ∈ X.

Then, as h −→ 0 we obtain :

Πn(Ax) = Πn(
2

t21
(C(t1)y − y)).

Since n is arbitrary, A is defined for every x ∈ X. Moreover, A is closed
because {C(t)}t∈R is locally equicontinuous.

Hence, A belongs to L(X).

For each n ∈ N∗, we define the family {Cn(t)}t∈R, of operators, in Xn

by :
Cn(t)Πnx = ΠnC(t)x, t ∈ R, x ∈ X.

Each {Cn(t)}t∈R, n ∈ N, form a strongly continuous cosine family in
Xn. Actually, it is also uniformly continuous in Xn, indeed, let Bn the unit
ball of Xn, then ∃B ∈ B(X) such that Bn ⊆ Πn(B), and we have :

sup
xn∈Bn

||Cn(t)xn−xn||n ≤ sup
Πnx∈Bn

||Cn(t)Πnx−Πnx||n ≤ sup
x∈B

||Πn(C(t)x−x)||n.

Since the family {C(t)}t∈R is uniformly continuous in X, {Cn(t)}t∈R
is uniformly continuous in Xn. Hence An, the infinitesimal generator of
{Cn(t)}t∈R, is a bounded operator in Xn, moreover, for each n ∈ N∗, we
have :

AnΠnx = ΠnAx, ∀x ∈ X.

Since Xn is a Banach space, the family {Cn(t)}t∈R is written in the
form :

Cn(t)Πnx =
∞X
k=1

t2k

(2k)!
Ak
nΠnx, ∀x ∈ X.
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Therefore,

ΠnC(t)x = Πn

∞X
k=1

t2k

(2k)!
Akx, ∀x ∈ X.

Since n is arbitrary, and X = Projn(Xn,Π
m
n ),

C(t)x =
∞X
k=1

t2k

(2k)!
Akx, ∀x ∈ X.

2

Corollary 3. Let X be a prequojection, then the infinitesimal generator
of every uniformly continuous cosine family is continuous. (i.e. A ∈ L(X)).

Proof. Since X is prequojection, Xtt
β is a quojection.

Let {C(t)}t∈R be a uniformly continuous cosine family on X, then, ac-
cording to Lemma 2.1. [1], the bi-dual operators {C(t)tt}t∈R form an
uniformly continuous cosine family in Xtt

β .

Hence, According toTheorem 1, the infinitesimal generator of {C(t)tt}t∈R,
is belong to L(Xtt

β ).

Actually, the infinitesimal generator of {C(t)tt}t∈R, noted byAtt (D(Att) =
Xtt
β ), is the bi-dual of infinitesimal generator A of {C(t)}t∈R.

Since Att/D(A) = A, and D(A) dense in X, it follows that A is also
everywhere defined, and A ∈ L(X). 2
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