Proyecciones Journal of Mathematics Vol. 37, N^o 1, pp. 85-101, March 2018. Universidad Católica del Norte Antofagasta - Chile

Fine spectrum of the upper triangular matrix U(r, 0, 0, s) over the sequence spaces c_0 and c

Binod Chandra Tripathy Tripura University, India and Rituparna Das Sikkim Manipal Institute of Technology, India Received : March 2017. Accepted : March 2017

Abstract

Fine spectra of various matrices have been examined by several authors. In this article we have determined the fine spectrum of the upper triangular matrix U(r, 0, 0, s) on the sequence spaces c_0 and c.

Key Words : Spectrum of an operator; matrix mapping; sequence space; upper triangular matrix; fine spectrum.

AMS Classification : 47A10; 47B37; 40C05; 40C15; 40D20; 40H05.

1. Introduction

The study of spectrum and fine spectrum for various operators are made by various authors. Okutoyi [15] determined the spectrum of the Cesàro operator C_1 on the sequence space bv_0 . The fine spectra of the Cesàro operator C_1 over the sequence space bv_p , $(1 \le p < \infty)$ was determined by Akhmedov and Başar [2]. Altay and Başar [3, 4] determined the fine spectrum of the difference operator Δ and the generalized difference operator B(r, s) on the sequence spaces c_0 and c. The spectrum and fine spectrum of the Zweier Matrix on the sequence spaces ℓ_1 and by were studied by Altay and Karakus [5]. Altun [6, 7] determined the fine spectra of triangular Toeplitz operators and tridiagonal symmetric matrices over some sequence spaces. Fine spectra of operator B(r, s, t) over the sequence spaces ℓ_1 and bv and generalized difference operator B(r,s) over the sequence spaces ℓ_p and bv_p , $(1 \le p < \infty)$ were studied by Bilgic and Furkan [9, 10]. Akhmedov and El-Shabrawy [1] determined the fine spectrum of the operator $\Delta_{a,b}$ on the sequence space c. Panigrahi and Srivastava [16, 17] studied the spectrum and fine spectrum of the second order difference operator Δ_{uv}^2 on the sequence space c_0 and generalized second order forward difference operator Δ^2_{uvw} on the sequence space ℓ_1 . Fine spectrum of the generalized difference operator Δ_v on the sequence space ℓ_1 was investigated by Srivastava and Kumar [19]. Fine spectra of upper triangular double-band matrix U(r, s) over the sequence spaces c_0 and c were studied by Karakaya and Altun [14]. The spectra of some matrix classes has been investigated recently by Rhoades [18], Tripathy and Das [20, 21, 22], Tripathy and Pal [23, 24, 25, 26, 27] and Tripathy and Saikia [28].

In this paper, we shall determine the spectrum and fine spectrum of the upper triangular matrix U(r, 0, 0, s) over the sequence spaces c_0 and c, where U(r, 0, 0, s) =

$$u_{nk} \text{ such that } u_n k = \begin{cases} r, & \text{if } n = k \\ s, & \text{if } n+3 = k \\ 0, & \text{otherwise} \end{cases} \text{ for all } n, k \in \mathbf{N}_0 \text{ and } s \neq 0.$$

2. Preliminaries and Background

Let X and Y be Banach spaces and $T : X \to Y$ be a bounded linear operator. By R(T), we denote the range of T, i.e.

$$R(T) = \{ y \in Y : y = Tx, x \in X \}.$$

By B(X), we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^* of T is a bounded linear operator on the dual X^* of X defined by $(T^*f)(x) = f(Tx)$, for all $f \in X^*$ and $x \in X$. Let $X \neq \{\theta\}$ be a complex normed linear space, where θ is the zero element and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator

$$T_{\lambda} = T - \lambda I,$$

where λ is a complex number and I is the identity operator on D(T). If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1} , that is

$$T_{\lambda}^{-1} = (T - \lambda I)^{-1},$$

and call it the *resolvent* operator of T.

A regular value λ of T is a complex number such that

- (R1): T_{λ}^{-1} exists,
- (R2): T_{λ}^{-1} is bounded
- (R3): T_{λ}^{-1} is defined on a set which is dense in X i.e. $\overline{R(T_{\lambda})} = X$.

The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X) = \mathbf{C} - \rho(T, X)$ in the complex plane \mathbf{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point(discrete) spectrum $\sigma_p(T, X)$ is the set such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_p(T, X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_c(T, X)$ is the set such that T_{λ}^{-1} exists and satisfies (R3), but not (R2), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_r(T, X)$ is the set such that T_{λ}^{-1} exists (and may be bounded or not), but does not satisfy (R3), that is, the domain of T_{λ}^{-1} is not dense in X.

From Goldberg [13], if X is a Banach space and $T \in B(X)$, then there are three possibilities for R(T) and T^{-1} :

- (I) R(T) = X,
- (II) $R(T) \neq \overline{R(T)} = X$
- (III) $\overline{R(T)} \neq X$

and

- (1) T^{-1} exists and is continuous,
- (2) T^{-1} exists but is discontinuous,
- (3) T^{-1} does not exist.

Applying Goldberg [13] classification to T_{λ} , we have three possibilities for T_{λ} and T_{λ}^{-1} ;

- (I) T_{λ} is surjective,
- (II) $R(T_{\lambda}) \neq \overline{R(T_{\lambda})} = X$,
- (III) $\overline{R(T_{\lambda})} \neq X$,

and

- (1) T_{λ} is injective and T_{λ}^{-1} is continuous,
- (2) T_{λ} is injective but T_{λ}^{-1} is discontinuous,
- (3) T_{λ} is not injective.

If these possibilities are combined in all possible ways, nine different states are created which may be shown as in the Table 2.1.

	Ι	II	III
1	$\rho(T, X)$	$\rho(T, X)$	$\sigma_r(T, X)$
2	••••	$\sigma_c(T, X)$	$\sigma_r(T, X)$
3	$\sigma_p(T, X)$	$\sigma_p(T, X)$	$\sigma_p(T, X)$

Table 2.1: Subdivisions of spectrum of a linear operator

These are labeled by: $I_1, I_2, I_3, II_1, II_2, II_3, III_1, III_2$ and III_3 . If λ is a complex number such that $T_{\lambda} \in I_1$ or $T_{\lambda} \in I_2$, then λ is in the resolvent set $\rho(T, X)$ of T. The further classification gives rise to the fine spectrum of T. If an operator is in state II_2 for example, then $R(T) \neq \overline{R(T)} = X$ and T^{-1} exists but is discontinuous and we write $\lambda \in II_2\sigma(T, X)$.

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is called a sequence space. Throughout the paper c, c_0 , ℓ_1 , ℓ_∞ represent the spaces of all convergent, null, absolutely summable and bounded sequences respectively.

Let λ and μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}_0 = \{0, 1, 2, ...\}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$, the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ , where

(2.1)
$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, n \in \mathbf{N}_0.$$

By $(\lambda : \mu)$, we denote the class of all matrices such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right hand side of equation (2.1) converges for each $n \in \mathbf{N}_0$ and every $x \in \lambda$ and we have $Ax = \{(Ax)_n\}_{n \in \mathbf{N}_0} \in \mu$ for all $x \in \lambda$.

The upper triangular matrix U(r, 0, 0, s) is an infinite matrix of the form

$$U(r,0,0,s) = \begin{cases} r & 0 & 0 & s & 0 & 0 & \cdots \\ 0 & r & 0 & 0 & s & 0 & \cdots \\ 0 & 0 & r & 0 & 0 & s & \cdots \\ 0 & 0 & 0 & r & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}$$

where $s \neq 0$.

The following results will be used in order to establish the results of this article.

Lemma 2.1. [Wilansky [29] Theorem 1.3.6, Page 6] The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(c)$ from c to itself if and only if:

(i) the rows of A are in ℓ_1 and their ℓ_1 norms are bounded,

- (ii) the columns of A are in c,
- (iii) the sequence of row sums of A is in c.

The operator norm T is the supremum of ℓ_1 norms of the rows.

Corollary 2.1. $U(r, 0, 0, s) : c \to c$ is a bounded linear operator and $||U(r, 0, 0, s)||_{(c;c)} = |r| + |s|.$

Lemma 2.2. [Wilansky [29] Example 8.4.5 A, Page 129] The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(c_0)$ from c_0 to itself if and only if:

- (i) the rows of A are in ℓ_1 and their ℓ_1 norms are bounded,
- (ii) the columns of A are in c.

The operator norm T is the supremum of ℓ_1 norms of the rows.

Corollary 2.2. $U(r, 0, 0, s) : c_0 \to c_0$ is a bounded linear operator and $||U(r, 0, 0, s)||_{(c_0:c_0)} = |r| + |s|.$

Lemma 2.3. [Goldberg [13], Page 59] T has a dense range if and only if T^* is one to one.

Lemma 2.4. [Goldberg [13], Page 60] T has a bounded inverse if and only if T^* is onto.

3. Fine spectrum of the operator U(r, 0, 0, s) on the sequence space c_0

From now onwards we denote the matrix U(r, 0, 0, s) by U. The following result will be used for establishing some results of this section.

Lemma 3.1. [Akhmedov and El-Shabrawy [1], Lemma 2.1] Let (c_n) and (d_n) be two sequences of complex numbers such that $\lim_{n\to\infty} c_n = c$ and |c| < 1. Define the sequence (z_n) of complex numbers such that $z_{n+1} = c_{n+1}z_n + d_{n+1}$ for all $n \in \mathbf{N}_0$. Then

- (i) if (d_n) is bounded, then (z_n) is bounded.
- (ii) if (d_n) is convergent then (z_n) is convergent.

(iii) if (d_n) is a null sequence, then (z_n) is a null sequence.

In view of Lemma 3.1 we can formulate the following result:

Lemma 3.2. Let (c_n) and (d_n) be two sequences of complex numbers such that $\lim_{n\to\infty} c_n = c$ and |c| < 1. Define the sequence (z_n) of complex numbers such that $z_{n+k} = c_n z_n + d_n$ for all $n \in \mathbf{N}_0$. Then

- (i) if (d_n) is bounded, then (z_n) is bounded.
- (ii) if (d_n) is convergent then (z_n) is convergent.
- (iii) if (d_n) is a null sequence, then (z_n) is a null sequence.

Theorem 3.1. The point spectrum of the operator U over c_0 is given by

$$\sigma_p(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| < |s|\}.$$

Proof. Let λ be an eigenvalue of the operator U. Then there exists $x \neq \theta = (0, 0, 0, 0, ...)$ in c_0 such that $Ux = \lambda x$. Then, we have

$$rx_0 + sx_3 = \lambda x_0$$

$$rx_1 + sx_4 = \lambda x_1$$

$$rx_2 + sx_5 = \lambda x_2$$

$$\dots$$

$$rx_n + sx_{n+3} = \lambda x_n, \quad n \ge 0$$

Without loss of any generality we may assume that $x_0 \neq 0$. Then, by using the recurrence relation $rx_n + sx_{n+3} = \lambda x_n$, $n \geq 0$, we have

$$x_{3} = \frac{\lambda - r}{s} x_{0}$$

$$x_{6} = \frac{\lambda - r}{s} x_{3} = \left(\frac{\lambda - r}{s}\right)^{2} x_{0}$$

$$x_{9} = \frac{\lambda - r}{s} x_{6} = \left(\frac{\lambda - r}{s}\right)^{3} x_{0}$$

$$\dots$$

$$x_{3n} = \left(\frac{\lambda - r}{s}\right)^{n} x_{0}, \quad n \ge 0$$

Since, $x = (x_n) \in c_0$, so the subsequence (x_{3n}) also converges to 0. But (x_{3n}) converges to 0 if and only if $|\lambda - r| < |s|$.

Hence, $\sigma_p(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| < |s|\}.$

If $T: c_0 \to c_0$ is a bounded linear operator represented by a matrix A, then it is known that the adjoint operator $T^*: c_0^* \to c_0^*$ is defined by the transpose A^t of the matrix A. It should be noted that the dual space c_0^* of c_0 is isometrically isomorphic to the Banach space ℓ_1 of all absolutely summable sequences normed by $||x|| = \sum_{n=0}^{\infty} |x_n|$.

Theorem 3.2. The point spectrum of the operator U^* over c_0^* is given by

$$\sigma_p(U^*, c_0^* \cong \ell_1) = \emptyset.$$

Proof. Let λ be an eigenvalue of the operator U^* . Then there exists $x \neq \theta = (0, 0, 0, ...)$ in ℓ_1 such that $U^*x = \lambda x$. Then, we have

$$rx_{0} = \lambda x_{0}$$

$$rx_{1} = \lambda x_{1}$$

$$rx_{2} = \lambda x_{2}$$

$$sx_{0} + rx_{3} = \lambda x_{3}$$

$$sx_{1} + rx_{4} = \lambda x_{4}$$

$$sx_{2} + rx_{5} = \lambda x_{5}$$

$$\dots$$

$$sx_{n-3} + rx_{n} = \lambda x_{n}, \quad n \ge 3$$

If x_k is the first non-zero entry of the sequence (x_n) , then $\lambda = r$. Then from the relation $sx_k + rx_{k+3} = \lambda x_{k+3}$, we have $sx_k = 0$. But $s \neq 0$ and hence, $x_k = 0$, a contradiction. Hence, $\sigma_p(U^*, c_0^* \cong \ell_1) = \emptyset$. \Box

Theorem 3.3. For any $\lambda \in \mathbf{C}$, $U - \lambda I$ has a dense range.

Proof. By Theorem 3.2, $\sigma_p(U^*, c_0^* \cong \ell_1) = \emptyset$. Hence, $U^* - \lambda I$ i.e. $(U - \lambda I)^*$ is one to one for all $\lambda \in \mathbb{C}$. So, by applying Lemma 2.3, we get the required result. \Box

Corollary 3.1. The residual spectrum of the operator U over c_0 is given by $\sigma_r(U, c_0) = \emptyset$.

Proof. Since, $U - \lambda I$ has a dense range for all $\lambda \in \mathbf{C}$, so $\sigma_r(U, c_0) = \emptyset$.

Theorem 3.4. The continuous spectrum and the spectrum of the operator U over c_0 are respectively given by $\sigma_c(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| = |s|\}$ and $\sigma(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| \le |s|\}.$

Proof. Let $y = (y_n) \in \ell_1$ be such that $U_{\lambda}^* x = y$ for some $x = (x_n)$. Then we have following system of linear equations:

$$\begin{array}{rclrcl} (r-\lambda)x_{0} & = & y_{0} \\ (r-\lambda)x_{1} & = & y_{1} \\ (r-\lambda)x_{2} & = & y_{2} \\ sx_{0}+(r-\lambda)x_{3} & = & y_{3} \\ sx_{1}+(r-\lambda)x_{4} & = & y_{4} \\ & & \\ sx_{n-3}+(r-\lambda)x_{n} & = & y_{n}, \quad n \geq 3 \end{array}$$

Solving these equations we get,

$$\begin{aligned} x_0 &= \frac{1}{r-\lambda}y_0 \\ x_1 &= \frac{1}{r-\lambda}y_1 \\ x_2 &= \frac{1}{r-\lambda}y_2 \\ x_3 &= \frac{1}{r-\lambda}(y_3 - sx_0) = \frac{1}{r-\lambda}y_3 - \frac{s}{(r-\lambda)^2}y_0 \\ x_4 &= \frac{1}{r-\lambda}(y_4 - sx_1) = \frac{1}{r-\lambda}y_4 - \frac{s}{(r-\lambda)^2}y_1 \\ x_5 &= \frac{1}{r-\lambda}(y_5 - sx_2) = \frac{1}{r-\lambda}y_5 - \frac{s}{(r-\lambda)^2}y_2 \\ x_6 &= \frac{1}{r-\lambda}(y_6 - sx_3) = \frac{1}{r-\lambda}y_6 - \frac{s}{(r-\lambda)^2}y_3 + \frac{s^2}{(r-\lambda)^3}y_0 \\ x_7 &= \frac{1}{r-\lambda}(y_7 - sx_4) = \frac{1}{r-\lambda}y_7 - \frac{s}{(r-\lambda)^2}y_4 + \frac{s^2}{(r-\lambda)^3}y_1 \\ x_8 &= \frac{1}{r-\lambda}(y_8 - sx_5) = \frac{1}{r-\lambda}y_8 - \frac{s}{(r-\lambda)^2}y_5 + \frac{s^2}{(r-\lambda)^3}y_2 \end{aligned}$$

Now,

. . .

$$\sum_{n=0}^{\infty} |x_n| \leq \frac{1}{|r-\lambda|} \sum_{n=0}^{\infty} |y_n| + \frac{|s|}{|r-\lambda|^2} \sum_{n=0}^{\infty} |y_n| + \frac{|s|^2}{|r-\lambda|^3} \sum_{n=0}^{\infty} |y_n| + \cdots$$
$$= \frac{1}{|r-\lambda|} \left(1 + \frac{|s|}{|r-\lambda|} + \frac{|s|^2}{|r-\lambda|^2} + \cdots \right) ||y||$$

as $y = (y_n) \in \ell_1$.

Let $\lambda \in \mathbf{C}$ be such that $|r - \lambda| > |s|$. Then $\sum_{n=0}^{\infty} |x_n| \le \frac{1}{|r-\lambda|-|s|} ||y||$. Therefore, $x = (x_n) \in \ell_1$ and hence, for $|r - \lambda| > |s|$ the operator $U_{\lambda}^* = (U - \lambda I)^*$ is onto. So, by Lemma 2.4, $U_{\lambda} = U - \lambda I$ has a bounded inverse for all $\lambda \in \mathbf{C}$ be such that $|r - \lambda| > |s|$. Therefore, $\lambda \notin \{\lambda \in \mathbf{C} : |r - \lambda| \le |s|\} \Rightarrow \lambda \notin \sigma_c(U, c_0)$ and so, $\sigma_c(U, c_0) \subseteq \{\lambda \in \mathbf{C} : |r - \lambda| \le |s|\}$.

Now,

$$\sigma(U,c_0) = \sigma_p(U,c_0) \cup \sigma_r(U,c_0) \cup \sigma_c(U,c_0) \subseteq \{\lambda \in \mathbf{C} : |r-\lambda| \le |s|\}.$$

By Theorem 3.1, we have

$$\{\lambda \in \mathbf{C} : |r - \lambda| < |s|\} = \sigma_p(U, c_0) \subset \sigma(U, c_0)$$

Since $\sigma(U, c_0)$ is a compact set, so it is closed and hence,

$$\overline{\{\lambda \in \mathbf{C} : |r - \lambda| < |s|\}} \subset \overline{\sigma(U, c_0)} = \sigma(U, c_0)$$

and therefore, $\{\lambda \in \mathbf{C} : |r - \lambda| \le |s|\} \subset \sigma(U, c_0).$

Hence, $\sigma(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| \le |s|\}.$ Since $\sigma(U, c_0)$ is disjoint union of $\sigma_p(U, c_0), \sigma_r(U, c_0)$ and $\sigma_c(U, c_0)$, therefore $\sigma_c(U, c_0) = \{\lambda \in \mathbf{C} : |\lambda - r| = |s|\}.$

Theorem 3.5. If $|\lambda - r| < |s|$, then $\lambda \in I_3 \sigma(U, c_0)$.

Proof. Let $|\lambda - r| < |s|$. Then by Theorem 3.1, $\lambda \in \sigma_p(U, c_0)$. So λ satisfies Goldberg's condition 3.

To get the result we need to show that $U - \lambda I$ is surjective when $|\lambda - r| < |s|$. Let $y = (y_n) \in c_0$ be such that $U_{\lambda}x = y$ for some $x = (x_n)$.

Let $y = (y_n) \in Q$ be such that $O_\lambda x = y$ for some .

Then

$$(r - \lambda)x_{3n} + sx_{3n+3} = y_{3n}; \quad n \ge 0$$

$$(r - \lambda)x_{3n+1} + sx_{3n+4} = y_{3n+1}; \quad n \ge 0$$

$$(r - \lambda)x_{3n} + sx_{3n+3} = y_{3n+2}; \quad n \ge 0$$

Now,

$$(r-\lambda)x_{3n} + sx_{3n+3} = y_{3n}$$
$$\Rightarrow x_{3n+3} = -\frac{(r-\lambda)}{s}x_{3n} + \frac{1}{s}y_{3n}$$

Let $x_{3n} = z_n$, $x_{3n+3} = x_{3(n+1)} = z_{n+1}$, $c_n = -\frac{(r-\lambda)}{s}$, $d_{n+1} = \frac{1}{s}y_{3n}$. Then $z_{n+1} = c_{n+1}z_n + d_{n+1}$. Now, $\lim_{n \to \infty} c_n = -\frac{(r-\lambda)}{s} = c$ and $|c| = |\frac{r-\lambda}{s}| < 1$.

Also, as $y = (y_n) \in c_0$, so $(d_{n+1}) \in c_0$. Hence, by Lemma 3.1(iii), $(z_n) = (x_{3n}) \in c_0$.

Similarly we can show that $(x_{3n+1}), (x_{3n+2}) \in c_0$. Therefore, $(x_n) \in c_0$ if and only if $|\lambda - r| < |s|$. Therefore, $U - \lambda I$ is onto if $|\lambda - r| < |s|$. So, λ satisfies Goldberg's condition I. Hence the result.

4. Fine spectrum of the operator U(r, 0, 0, s) on the sequence space c

Theorem 4.1. The point spectrum of the operator U over c is given by

$$\sigma_p(U,c) = \{\lambda \in \mathbf{C} : |\lambda - r| < |s|\} \cup \{r + s\}.$$

Proof. Let λ be an eigenvalue of the operator U. Then there exists $x \neq \theta = (0, 0, 0, 0, ...)$ in c such that $Ux = \lambda x$. Then, we have

$$rx_{0} + sx_{3} = \lambda x_{0}$$

$$rx_{1} + sx_{4} = \lambda x_{1}$$

$$rx_{2} + sx_{5} = \lambda x_{2}$$

$$\dots$$

$$rx_{n} + sx_{n+3} = \lambda x_{n}, \quad n \ge 0$$

If $x = (x_n) \in c$ is a constant sequence, then $\lambda = r + s$. Then $\lambda = r + s$ is an eigen value of the operator U.

If $x = (x_n) \in c$ is not a constant sequence, then proceeding exactly as Theorem 3.1 we get a subsequence of $x = (x_n)$ which is also convergent if and only if $|\lambda - r| < |s|$.

Hence, $\sigma_p(U,c) = \{\lambda \in \mathbf{C} : |\lambda - r| < |s|\} \cup \{r + s\}.$

If $T: c \to c$ is a bounded linear operator represented by a matrix A, then $T^*: c^* \to c^*$ acting on $\mathbf{C} \oplus \ell_1$ has a matrix representation of the form $\begin{pmatrix} \chi & 0 \\ b & A^t \end{pmatrix}$

where is χ the limit of the sequence of row sums of A minus the sum of the limit of the columns of A, and b is the column vector whose k^{th} entry is the limit of the k^{th} column of A for each $n \in \mathbf{N}_0$.

For $U = U(r, 0, 0, s) : c \to c$, the matrix of the operator $U^* = U(r, 0, 0, s)^* \in B(\ell_1)$ is of the form

$$U^* = U(r, 0, 0, s)^* = \begin{pmatrix} r+s & 0\\ 0 & U(r, 0, 0, s)^t \end{pmatrix} = \begin{pmatrix} r+s & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & r & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & r & 0 & 0 & 0 & \cdots \\ 0 & 0 & s & 0 & 0 & r & 0 & \cdots \\ 0 & 0 & s & 0 & 0 & r & \cdots \\ 0 & 0 & 0 & s & 0 & 0 & \cdots \\ \vdots & \ddots \end{pmatrix}$$

Theorem 4.2. The point spectrum of the operator U^* over c^* is given by

$$\sigma_p(U^*, c^* \cong \mathbf{C} \oplus \ell_1) = \{r+s\}.$$

Proof. Let λ be an eigenvalue of the opertaor U^* . Then there exists $x \neq \theta = (0, 0, 0, \cdots)$ in ℓ_1 such that $U^*x = \lambda x$. Then, we have

$$(r+s)x_0 = \lambda x_0$$

$$rx_1 = \lambda x_1$$

$$rx_2 = \lambda x_2$$

$$rx_3 = \lambda x_3$$

$$sx_1 + rx_4 = \lambda x_4$$

$$sx_2 + rx_5 = \lambda x_5$$

$$\dots$$

$$sx_{n-3} + rx_n = \lambda x_n, \quad n \ge 4$$

If $x_0 \neq 0$, then $\lambda = r + s$. Thus, $\lambda = r + s$ is an eigenvalue of U^* corresponding to the eigenvector $(x_0, 0, 0, \cdots)$ with $x_0 \neq 0$. Let $\lambda \neq r + s$. Then, $x_0 = 0$.

Let x_k be the first non-zero entry of the sequence $x = (x_n)$. Then from the relation $sx_{k-3} + rx_k = \lambda x_k$, we get $\lambda = r$. Now from the relation $sx_k + rx_{k+3} = \lambda x_{k+3}$, we get $sx_k = 0$. Since, $s \neq 0$ so we have $x_k = 0$, a contradiction. So, U^* does not have any other eigenvalue other than $\lambda = r + s$.

Hence, $\sigma_p(U^*, c^* \cong \mathbf{C} \oplus \ell_1) = \{r+s\}$. \Box

Theorem 4.3. $U_{\lambda}: c \to c$ has a dense range if and only if $\lambda \neq r + s$.

Proof. By Theorem 4.2, $\sigma_p(U^*, c^* \cong \mathbf{C} \oplus \ell_1) = \{r+s\}$. Hence, $U^* - \lambda I$ i.e. $U^*_{\lambda} = (U - \lambda I)^*$ is one to one for all $\lambda \in \mathbf{C} \setminus \{r+s\}$. So, by applying Lemma 2.3, we get the result. \Box

Corollary 4.1. The residual spectrum of the operator U over c is given by $\sigma_r(U, c) = \emptyset$.

Proof. Let $\lambda \in \sigma_r(U, c)$. Then, U_{λ} does not have a dense range. By Theorem 4.3, we get $\lambda = r + s$. Therefore, $\sigma_r(U, c) = \{r + s\}$ and hence, $r + s \in \sigma_p(U, c) \cap \sigma_r(U, c)$, a contradiction. Hence, the result. \Box **Theorem 4.4.** The continuous spectrum and the spectrum of the operator U over c are respectively given by $\sigma_c(U, c) = \{\lambda \in \mathbf{C} : |\lambda - r| = |s|\} \setminus \{r+s\}$ and

 $\sigma(U,c) = \{\lambda \in \mathbf{C} : |\lambda - r| \le |s|\}.$

Proof. Proceeding exactly as in Theorem 3.4, we can show that $\sigma(U,c) = \{\lambda \in \mathbf{C} : |\lambda - r| \le |s|\}$. Since, $\sigma(U,c)$ is disjoint union of $\sigma_p(U,c)$, $\sigma_r(U,c)$ and $\sigma_c(U,c)$, thefore using Theorem 4.1 and Corollary 4.1, we get $\sigma_c(U,c) = \{\lambda \in \mathbf{C} : |\lambda - r| = |s|\} \setminus \{r + s\}$. \Box

It is known from Cartlidge [11] that, if a matrix operator A is bounded in c, then $\sigma(A, c) = \sigma(A, \ell_{\infty})$. Therefore, we have the following result:

Corollary 4.2. The spectrum of the operator U over ℓ_{∞} is given by $\sigma(U, \ell_{\infty}) = \{\lambda \in \mathbf{C} : |\lambda - r| \le |s|\}.$

Theorem 4.5. If $|\lambda - r| < |s|$, then $\lambda \in I_3\sigma(U, c)$.

Proof. The proof of the theorem is analogous to the proof of the Theorem 3.5. \Box

References

- [1] A. M. Akhmedov and S. R. El-Shabrawy: On the fine spectrum of the operator $\Delta_{a,b}$ over the sequence space c, Comput. Math. Appl., 61(10), pp. 2994-3002, (2011).
- [2] A. M. Akhmedov and F. Başar: The fine spectra of the Cesàro operator C_1 over the sequence space bv_p $(1 \le p < \infty)$, Math. J. Okayama Univ., 50, pp. 135-147, (2008).
- [3] B. Altay and F. Başar: On the fine spectrum of the difference operator Δ on c₀ and c, Inf. Sci., 168, pp. 217-224, (2004).
- [4] B. Altay and F. Başar: On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces c_0 and c, Int. J. Math. Math. Sci., 2005:18, pp. 3005-3013, (2005).
- [5] B. Altay and M. Karakuş: On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, *Thai J. Math.*, 3(2), pp. 153-162, (2005).

- [6] M. Altun: On the fine spectra of triangular Toeplitz operators, Appl. Math. Comput., 217, pp. 8044-8051, (2011).
- [7] M. Altun: Fine spectra of tridiagonal symmetric matrices, Int. J. Math. Math. Sci., 2011, Article ID 161209, 10 pages, (2011).
- [8] F. Başar: Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, Istanbul, 2012, ISBN: 978-1-60805-420-6.
- [9] H. Bilgiç and H.Furkan: On the fine spectrum of operator B(r, s, t) over the sequence spaces ℓ_1 and bv, Math Comput. Model., 45, pp. 883-891, (2007).
- [10] H. Bilgiç and H.Furkan: On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces ℓ_1 and bv_p (1 , Nonlinear Anal., 68, pp. 499-506, (2008).
- [11] J. P. Cartlitdge, Weighted mean matrices as operators on ℓ^p , Ph.D dissertation, Indiana University, Indiana, (1978).
- [12] H. Furkan, H. Bilgiç and B. Altay: On the fine spectrum of operator B(r, s, t) over c_0 and c, Comput. Math. Appl., 53, pp. 989-998, (2007).
- [13] S. Goldberg: Unbounded Linear Operators-Theory and Applications, Dover Publications, Inc, New York, (1985).
- [14] V. Karakaya and M. Altun: Fine spectra of upper triangular doubleband matrices, J. Comp. Appl. Math., 234, pp. 1387-1394, (2010).
- [15] J. I. Okutoyi: On the spectrum of C_1 as an operator on bv_0 , J. Austral. Math. Soc. (Series A) 48, pp. 79-86, (1990).
- [16] B. L. Panigrahi and P. D. Srivastava: Spectrum and the fine spectrum of the generalised second order difference operator Δ_{uv}^2 on sequence space c_0 , *Thai J. Math.*, 9(1), pp. 57-74, (2011).
- [17] B. L. Panigrahi and P. D. Srivastava: Spectrum and fine spectrum of the generalized second order forward difference operator Δ^2_{uvw} on the sequence space ℓ_1 , Demonstration Mathematica, XLV(3), pp.593-609, (2012).
- [18] B. E. Rhoades: The fine spectra for weighted mean operators, *Pac. J. Math.*, 104(1), pp. 219-230, (1983).

- [19] P. D. Srivastava and S. Kumar: Fine spectrum of the generalized difference operator Δ_v on the sequence space ℓ_1 , Thai J. Math., 8(2), pp. 221-233, (2010).
- [20] B. C. Tripathy and R. Das: Spectra of the Rhaly operator on the sequence space $\overline{bv_0} \cap \ell_{\infty}$, Bol. Soc. Parana. Mat., 32(1), pp. 263-275, (2014).
- [21] B. C. Tripathy and R. Das: Spectrum and fine spectrum of the lower triangular matrix B(r, 0, s) over the sequence space cs, Appl. Math. Inf. Sci., 9(4), pp. 2139-2145, (2015).
- [22] B. C. Tripathy and R. Das: Spectrum and fine spectrum of the upper triangular matrix U(r, s) over the sequence space cs, Proyecciones J. Math., 34(2), pp. 107-125, (2015).
- [23] B. C. Tripathy and A. Paul: Spectra of the operator B(f,g) on the vector valued sequence space $c_0(X)$, Bol. Soc. Parana. Mat., 31(1), pp. 105-111, (2013).
- [24] B. C. Tripathy and A. Paul: Spectrum of the operator D(r, 0, 0, s) over the sequence spaces ℓ_p and bv_p , *Hacet. J. Math. Stat.*, 43(3), pp. 425-434, (2014).
- [25] B. C. Tripathy and A. Paul: The spectrum of the operator D(r, 0, 0, s) over the sequence space bv_0 , *Georgian J. Math.*, 22(3), pp. 421-426, (2015).
- [26] B.C. Tripathy and A. Paul: The spectrum of the operator D(r, 0, s, 0, t) over the sequence spaces ℓ_p and bv_p , Afrika Mat., 26(5-6), pp. 1137-1151, (2015).
- [27] B. C.Tripathy and A. Paul: The spectrum of the operator D(r, 0, 0, s) over the Sequence Space c_0 and c, Kyungpook Math. J., 53 (2), pp. 247-256, (2013).
- [28] B. C. Tripathy and P. Saikia: On the spectrum of the Cesàro operator C_1 on $\overline{bv} \cap \ell_{\infty}$, Math. Slovaca, 63(3), pp. 563-572, (2013).
- [29] A. Wilansky: Summability Through Functional Analysis, North Holland, 1984.

[30] M. Yeşilkayagil and F. Başar: On the fine spectrum of the operator defined by the lambda matrix over the spaces of null and convergent sequences, *Abstr. Appl. Anal.*, 2013, Art. ID 687393, 13pages, (2013).

Binod Chandra Tripathy

Department of Mathematics Tripura University Suryamaninagar, Agartala-799022 Tripura, India e-mail : tripathybc@rediffmail.com

and

Rituparna Das

Department of Mathematics Sikkim Manipal Institute of Technology Sikkim - 737136, India e-mail : rituparnadas_ghy@rediffmail.com