Proyecciones Journal of Mathematics
Vol. 37, ${ }^{o}$ 1, pp. 85-101, March 2018.
Universidad Católica del Norte
Antofagasta - Chile

Fine spectrum of the upper triangular matrix $U(r, 0,0, s)$ over the sequence spaces c_{0} and c

Binod Chandra Tripathy
Tripura University, India and
Rituparna Das
Sikkim Manipal Institute of Technology, India
Received : March 2017. Accepted : March 2017

Abstract

Fine spectra of various matrices have been examined by several authors. In this article we have determined the fine spectrum of the upper triangular matrix $U(r, 0,0, s)$ on the sequence spaces c_{0} and c.

Key Words : Spectrum of an operator; matrix mapping; sequence space; upper triangular matrix; fine spectrum.

AMS Classification : 47A10; 47B37; 40C05; 40C15; 40D20; $40 H 05$.

1. Introduction

The study of spectrum and fine spectrum for various operators are made by various authors. Okutoyi [15] determined the spectrum of the Cesàro operator C_{1} on the sequence space $b v_{0}$. The fine spectra of the Cesàro operator C_{1} over the sequence space $b v_{p},(1 \leq p<\infty)$ was determined by Akhmedov and Başar [2]. Altay and Başar [3, 4] determined the fine spectrum of the difference operator Δ and the generalized difference operator $B(r, s)$ on the sequence spaces c_{0} and c. The spectrum and fine spectrum of the Zweier Matrix on the sequence spaces ℓ_{1} and $b v$ were studied by Altay and Karakus [5]. Altun [6, 7] determined the fine spectra of triangular Toeplitz operators and tridiagonal symmetric matrices over some sequence spaces. Fine spectra of operator $B(r, s, t)$ over the sequence spaces ℓ_{1} and $b v$ and generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<\infty)$ were studied by Bilgiç and Furkan [9, 10]. Akhmedov and El-Shabrawy [1] determined the fine spectrum of the operator $\Delta_{a, b}$ on the sequence space c. Panigrahi and Srivastava [16, 17] studied the spectrum and fine spectrum of the second order difference operator $\Delta_{u v}^{2}$ on the sequence space c_{0} and generalized second order forward difference operator $\Delta_{u v w}^{2}$ on the sequence space ℓ_{1}. Fine spectrum of the generalized difference operator Δ_{v} on the sequence space ℓ_{1} was investigated by Srivastava and Kumar [19]. Fine spectra of upper triangular double-band matrix $U(r, s)$ over the sequence spaces c_{0} and c were studied by Karakaya and Altun [14]. The spectra of some matrix classes has been investigated recently by Rhoades [18], Tripathy and Das [20, 21, 22], Tripathy and Pal [23, 24, 25, 26, 27] and Tripathy and Saikia [28].

In this paper, we shall determine the spectrum and fine spectrum of the upper triangular matrix $U(r, 0,0, s)$ over the sequence spaces c_{0} and c, where $U(r, 0,0, s)=$

$$
u_{n k} \text { such that } u_{n} k=\left\{\begin{array}{ll}
r, & \text { if } n=k \\
s, & \text { if } n+3=k \\
0, & \text { otherwise }
\end{array} \text { for all } n, k \in \mathbf{N}_{0} \text { and } s \neq 0 .\right.
$$

2. Preliminaries and Background

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. By $R(T)$, we denote the range of T, i.e.

$$
R(T)=\{y \in Y: y=T x, x \in X\} .
$$

By $B(X)$, we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*} of X defined by $\left(T^{*} f\right)(x)=f(T x)$, for all $f \in X^{*}$ and $x \in X$. Let $X \neq\{\theta\}$ be a complex normed linear space, where θ is the zero element and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator

$$
T_{\lambda}=T-\lambda I,
$$

where λ is a complex number and I is the identity operator on $D(T)$. If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1}, that is

$$
T_{\lambda}^{-1}=(T-\lambda I)^{-1},
$$

and call it the resolvent operator of T.
A regular value λ of T is a complex number such that
(R1): T_{λ}^{-1} exists,
(R2): T_{λ}^{-1} is bounded
(R3): T_{λ}^{-1} is defined on a set which is dense in X i.e. $\overline{R\left(T_{\lambda}\right)}=X$.
The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X)=\mathbf{C}-\rho(T, X)$ in the complex plane \mathbf{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point(discrete) spectrum $\sigma_{p}(T, X)$ is the set such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_{p}(T, X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_{c}(T, X)$ is the set such that T_{λ}^{-1} exists and satisfies ($R 3$), but not ($R 2$), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_{r}(T, X)$ is the set such that T_{λ}^{-1} exists (and may be bounded or not), but does not satisfy ($R 3$), that is, the domain of T_{λ}^{-1} is not dense in X.

From Goldberg [13], if X is a Banach space and $T \in B(X)$, then there are three possibilities for $R(T)$ and T^{-1} :
(I) $R(T)=X$,
(II) $R(T) \neq \overline{R(T)}=X$
(III) $\overline{R(T)} \neq X$
and
(1) T^{-1} exists and is continuous,
(2) T^{-1} exists but is discontinuous,
(3) T^{-1} does not exist.

Applying Goldberg [13] classification to T_{λ}, we have three possibilities for T_{λ} and T_{λ}^{-1};
(I) T_{λ} is surjective,
(II) $R\left(T_{\lambda}\right) \neq \overline{R\left(T_{\lambda}\right)}=X$,
(III) $\overline{R\left(T_{\lambda}\right)} \neq X$,
and
(1) T_{λ} is injective and T_{λ}^{-1} is continuous,
(2) T_{λ} is injective but T_{λ}^{-1} is discontinuous,
(3) T_{λ} is not injective.

If these possibilities are combined in all possible ways, nine different states are created which may be shown as in the Table 2.1.

	I	II	III
1	$\rho(T, X)$	$\rho(T, X)$	$\sigma_{r}(T, X)$
2	\cdots	$\sigma_{c}(T, X)$	$\sigma_{r}(T, X)$
3	$\sigma_{p}(T, X)$	$\sigma_{p}(T, X)$	$\sigma_{p}(T, X)$

Table 2.1: Subdivisions of spectrum of a linear operator

These are labeled by: $I_{1}, I_{2}, I_{3}, I I_{1}, I I_{2}, I I_{3}, I I I_{1}, I I I_{2}$ and $I I I_{3}$. If λ is a complex number such that $T_{\lambda} \in I_{1}$ or $T_{\lambda} \in I_{2}$, then λ is in the resolvent set $\rho(T, X)$ of T. The further classification gives rise to the fine spectrum of T. If an operator is in state $I I_{2}$ for example, then $R(T) \neq \overline{R(T)}=X$ and T^{-1} exists but is discontinuous and we write $\lambda \in I I_{2} \sigma(T, X)$.

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w is called a sequence space. Throughout the paper c, $c_{0}, \ell_{1}, \ell_{\infty}$ represent the spaces of all convergent, null, absolutely summable and bounded sequences respectively.

Let λ and μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbf{N}_{0}=\{0,1,2, \ldots\}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n \in \mathbf{N}_{0} \tag{2.1}
\end{equation*}
$$

By $(\lambda: \mu)$, we denote the class of all matrices such that $A: \lambda \rightarrow$ μ. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right hand side of equation (2.1) converges for each $n \in \mathbf{N}_{0}$ and every $x \in \lambda$ and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbf{N}_{0}} \in \mu$ for all $x \in \lambda$.

The upper triangular matrix $U(r, 0,0, s)$ is an infinite matrix of the form

$$
U(r, 0,0, s)=\left\{\begin{array}{ccccccc}
r & 0 & 0 & s & 0 & 0 & \cdots \\
0 & r & 0 & 0 & s & 0 & \cdots \\
0 & 0 & r & 0 & 0 & s & \cdots \\
0 & 0 & 0 & r & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right.
$$

where $s \neq 0$.
The following results will be used in order to establish the results of this article.

Lemma 2.1. [Wilansky [29] Theorem 1.3.6, Page 6] The matrix $A=$ $\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B(c)$ from c to itself if and only if:
(i) the rows of A are in ℓ_{1} and their ℓ_{1} norms are bounded,
(ii) the columns of A are in c,
(iii) the sequence of row sums of A is in c.

The operator norm T is the supremum of ℓ_{1} norms of the rows.
Corollary 2.1. $U(r, 0,0, s): c \rightarrow c$ is a bounded linear operator and $\|U(r, 0,0, s)\|_{(c: c)}=|r|+|s|$.

Lemma 2.2. [Wilansky [29] Example 8.4.5 A, Page 129] The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(c_{0}\right)$ from c_{0} to itself if and only if:
(i) the rows of A are in ℓ_{1} and their ℓ_{1} norms are bounded,
(ii) the columns of A are in c.

The operator norm T is the supremum of ℓ_{1} norms of the rows.
Corollary 2.2. $U(r, 0,0, s): c_{0} \rightarrow c_{0}$ is a bounded linear operator and $\|U(r, 0,0, s)\|_{\left(c_{0}: c_{0}\right)}=|r|+|s|$.

Lemma 2.3. [Goldberg [13], Page 59] T has a dense range if and only if T^{*} is one to one.

Lemma 2.4. [Goldberg [13], Page 60] T has a bounded inverse if and only if T^{*} is onto.

3. Fine spectrum of the operator $U(r, 0,0, s)$ on the sequence space c_{0}

From now onwards we denote the matrix $U(r, 0,0, s)$ by U.
The following result will be used for establishing some results of this section.
Lemma 3.1. [Akhmedov and El-Shabrawy [1], Lemma 2.1] Let (c_{n}) and $\left(d_{n}\right)$ be two sequences of complex numbers such that $\lim _{n \rightarrow \infty} c_{n}=c$ and $|c|<1$. Define the sequence $\left(z_{n}\right)$ of complex numbers such that $z_{n+1}=$ $c_{n+1} z_{n}+d_{n+1}$ for all $n \in \mathbf{N}_{0}$. Then
(i) if $\left(d_{n}\right)$ is bounded, then $\left(z_{n}\right)$ is bounded.
(ii) if $\left(d_{n}\right)$ is convergent then $\left(z_{n}\right)$ is convergent.
(iii) if $\left(d_{n}\right)$ is a a null sequence, then $\left(z_{n}\right)$ is a null sequence.

In view of Lemma 3.1 we can formulate the following result:
Lemma 3.2. Let $\left(c_{n}\right)$ and (d_{n}) be two sequences of complex numbers such that $\lim _{n \rightarrow \infty} c_{n}=c$ and $|c|<1$. Define the sequence $\left(z_{n}\right)$ of complex numbers such that $z_{n+k}=c_{n} z_{n}+d_{n}$ for all $n \in \mathbf{N}_{0}$. Then
(i) if $\left(d_{n}\right)$ is bounded, then $\left(z_{n}\right)$ is bounded.
(ii) if $\left(d_{n}\right)$ is convergent then $\left(z_{n}\right)$ is convergent.
(iii) if $\left(d_{n}\right)$ is a a null sequence, then $\left(z_{n}\right)$ is a null sequence.

Theorem 3.1. The point spectrum of the operator U over c_{0} is given by

$$
\sigma_{p}\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r|<|s|\} .
$$

Proof. Let λ be an eigenvalue of the operator U. Then there exists $x \neq \theta=(0,0,0,0, \ldots)$ in c_{0} such that $U x=\lambda x$. Then, we have

$$
\begin{aligned}
r x_{0}+s x_{3} & =\lambda x_{0} \\
r x_{1}+s x_{4} & =\lambda x_{1} \\
r x_{2}+s x_{5} & =\lambda x_{2} \\
& \cdots \\
r x_{n}+s x_{n+3} & =\lambda x_{n}, \quad n \geq 0
\end{aligned}
$$

Without loss of any generality we may assume that $x_{0} \neq 0$. Then, by using the recurrence relation $r x_{n}+s x_{n+3}=\lambda x_{n}, \quad n \geq 0$, we have

$$
\begin{aligned}
x_{3} & =\frac{\lambda-r}{s} x_{0} \\
x_{6} & =\frac{\lambda-r}{s} x_{3}=\left(\frac{\lambda-r}{s}\right)^{2} x_{0} \\
x_{9} & =\frac{\lambda-r}{s} x_{6}=\left(\frac{\lambda-r}{s}\right)^{3} x_{0} \\
& \ldots \\
x_{3 n} & =\left(\frac{\lambda-r}{s}\right)^{n} x_{0}, \quad n \geq 0
\end{aligned}
$$

Since, $x=\left(x_{n}\right) \in c_{0}$, so the subsequence $\left(x_{3 n}\right)$ also converges to 0 . But $\left(x_{3 n}\right)$ converges to 0 if and only if $|\lambda-r|<|s|$.

Hence, $\sigma_{p}\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r|<|s|\}$.
If $T: c_{0} \rightarrow c_{0}$ is a bounded linear operator represented by a matrix A, then it is known that the adjoint operator $T^{*}: c_{0}^{*} \rightarrow c_{0}^{*}$ is defined by the transpose A^{t} of the matrix A. It should be noted that the dual space c_{0}^{*} of c_{0} is isometrically isomorphic to the Banach space ℓ_{1} of all absolutely summable sequences normed by $\|x\|=\sum_{n=0}^{\infty}\left|x_{n}\right|$.

Theorem 3.2. The point spectrum of the operator U^{*} over c_{0}^{*} is given by

$$
\sigma_{p}\left(U^{*}, c_{0}^{*} \cong \ell_{1}\right)=\emptyset .
$$

Proof. Let λ be an eigenvalue of the operator U^{*}. Then there exists $x \neq \theta=(0,0,0, \ldots)$ in ℓ_{1} such that $U^{*} x=\lambda x$. Then, we have

$$
\begin{aligned}
r x_{0} & =\lambda x_{0} \\
r x_{1} & =\lambda x_{1} \\
r x_{2} & =\lambda x_{2} \\
s x_{0}+r x_{3} & =\lambda x_{3} \\
s x_{1}+r x_{4} & =\lambda x_{4} \\
s x_{2}+r x_{5} & =\lambda x_{5} \\
\cdots & \\
s x_{n-3}+r x_{n} & =\lambda x_{n}, \quad n \geq 3
\end{aligned}
$$

If x_{k} is the first non-zero entry of the sequence $\left(x_{n}\right)$, then $\lambda=r$. Then from the relation $s x_{k}+r x_{k+3}=\lambda x_{k+3}$, we have $s x_{k}=0$. But $s \neq 0$ and hence, $x_{k}=0$, a contradiction. Hence, $\sigma_{p}\left(U^{*}, c_{0}^{*} \cong \ell_{1}\right)=\emptyset$.

Theorem 3.3. For any $\lambda \in \mathbf{C}, U-\lambda I$ has a dense range.
Proof. By Theorem 3.2, $\sigma_{p}\left(U^{*}, c_{0}^{*} \cong \ell_{1}\right)=\emptyset$.
Hence, $U^{*}-\lambda I$ i.e. $(U-\lambda I)^{*}$ is one to one for all $\lambda \in \mathbf{C}$. So, by applying Lemma 2.3, we get the required result.

Corollary 3.1. The residual spectrum of the operator U over c_{0} is given by $\sigma_{r}\left(U, c_{0}\right)=\emptyset$.

Proof. Since, $U-\lambda I$ has a dense range for all $\lambda \in \mathbf{C}$, so $\sigma_{r}\left(U, c_{0}\right)=\emptyset$.

Theorem 3.4. The continuous spectrum and the spectrum of the operator U over c_{0} are respectively given by $\sigma_{c}\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r|=|s|\}$ and $\sigma\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r| \leq|s|\}$.

Proof. Let $y=\left(y_{n}\right) \in \ell_{1}$ be such that $U_{\lambda}^{*} x=y$ for some $x=\left(x_{n}\right)$. Then we have following system of linear equations:

$$
\begin{aligned}
(r-\lambda) x_{0} & =y_{0} \\
(r-\lambda) x_{1} & =y_{1} \\
(r-\lambda) x_{2} & =y_{2} \\
s x_{0}+(r-\lambda) x_{3} & =y_{3} \\
s x_{1}+(r-\lambda) x_{4} & =y_{4} \\
\cdots & \\
s x_{n-3}+(r-\lambda) x_{n} & =y_{n}, \quad n \geq 3
\end{aligned}
$$

Solving these equations we get,

$$
\begin{aligned}
x_{0} & =\frac{1}{r-\lambda} y_{0} \\
x_{1} & =\frac{1}{r-\lambda} y_{1} \\
x_{2} & =\frac{1}{r-\lambda} y_{2} \\
x_{3} & =\frac{1}{r-\lambda}\left(y_{3}-s x_{0}\right)=\frac{1}{r-\lambda} y_{3}-\frac{s}{(r-\lambda)^{2}} y_{0} \\
x_{4} & =\frac{1}{r-\lambda}\left(y_{4}-s x_{1}\right)=\frac{1}{r-\lambda} y_{4}-\frac{s}{(r-\lambda)^{2}} y_{1} \\
x_{5} & =\frac{1}{r-\lambda}\left(y_{5}-s x_{2}\right)=\frac{1}{r-\lambda} y_{5}-\frac{s}{(r-\lambda)^{2}} y_{2} \\
x_{6} & =\frac{1}{r-\lambda}\left(y_{6}-s x_{3}\right)=\frac{1}{r-\lambda} y_{6}-\frac{s}{(r-\lambda)^{2}} y_{3}+\frac{s^{2}}{(r-\lambda)^{3}} y_{0} \\
x_{7} & =\frac{1}{r-\lambda}\left(y_{7}-s x_{4}\right)=\frac{1}{r-\lambda} y_{7}-\frac{s}{(r-\lambda)^{2}} y_{4}+\frac{s^{2}}{(r-\lambda)^{3}} y_{1} \\
x_{8} & =\frac{1}{r-\lambda}\left(y_{8}-s x_{5}\right)=\frac{1}{r-\lambda} y_{8}-\frac{s}{(r-\lambda)^{2}} y_{5}+\frac{s^{2}}{(r-\lambda)^{3}} y_{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|x_{n}\right| & \leq \frac{1}{|r-\lambda|} \sum_{n=0}^{\infty}\left|y_{n}\right|+\frac{|s|}{|r-\lambda|^{2}} \sum_{n=0}^{\infty}\left|y_{n}\right|+\frac{|s|^{2}}{|r-\lambda|^{3}} \sum_{n=0}^{\infty}\left|y_{n}\right|+\cdots \\
& =\frac{1}{|r-\lambda|}\left(1+\frac{|s|}{|r-\lambda|}+\frac{|s|^{2}}{|r-\lambda|^{2}}+\cdots\right) \| y| |
\end{aligned}
$$

as $y=\left(y_{n}\right) \in \ell_{1}$.
Let $\lambda \in \mathbf{C}$ be such that $|r-\lambda|>|s|$. Then $\sum_{n=0}^{\infty}\left|x_{n}\right| \leq \frac{1}{|r-\lambda|-|s|}| | y| |$. Therefore, $x=\left(x_{n}\right) \in \ell_{1}$ and hence, for $|r-\lambda|>|s|$ the operator $U_{\lambda}^{*}=$ $(U-\lambda I)^{*}$ is onto. So, by Lemma 2.4, $U_{\lambda}=U-\lambda I$ has a bounded inverse for all $\lambda \in \mathbf{C}$ be such that $|r-\lambda|>|s|$.
Therefore, $\lambda \notin\{\lambda \in \mathbf{C}:|r-\lambda| \leq|s|\} \Rightarrow \lambda \notin \sigma_{c}\left(U, c_{0}\right)$ and so, $\sigma_{c}\left(U, c_{0}\right) \subseteq\{\lambda \in \mathbf{C}:|r-\lambda| \leq|s|\}$.

Now,

$$
\sigma\left(U, c_{0}\right)=\sigma_{p}\left(U, c_{0}\right) \cup \sigma_{r}\left(U, c_{0}\right) \cup \sigma_{c}\left(U, c_{0}\right) \subseteq\{\lambda \in \mathbf{C}:|r-\lambda| \leq|s|\}
$$

By Theorem 3.1, we have

$$
\{\lambda \in \mathbf{C}:|r-\lambda|<|s|\}=\sigma_{p}\left(U, c_{0}\right) \subset \sigma\left(U, c_{0}\right)
$$

Since $\sigma\left(U, c_{0}\right)$ is a compact set, so it is closed and hence,

$$
\overline{\{\lambda \in \mathbf{C}:|r-\lambda|<|s|\}} \subset \overline{\sigma\left(U, c_{0}\right)}=\sigma\left(U, c_{0}\right)
$$

and therefore, $\{\lambda \in \mathbf{C}:|r-\lambda| \leq|s|\} \subset \sigma\left(U, c_{0}\right)$.
Hence, $\sigma\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r| \leq|s|\}$.
Since $\sigma\left(U, c_{0}\right)$ is disjoint union of $\sigma_{p}\left(U, c_{0}\right), \sigma_{r}\left(U, c_{0}\right)$ and $\sigma_{c}\left(U, c_{0}\right)$, therefore $\sigma_{c}\left(U, c_{0}\right)=\{\lambda \in \mathbf{C}:|\lambda-r|=|s|\}$.

Theorem 3.5. If $|\lambda-r|<|s|$, then $\lambda \in I_{3} \sigma\left(U, c_{0}\right)$.

Proof. Let $|\lambda-r|<|s|$. Then by Theorem 3.1, $\lambda \in \sigma_{p}\left(U, c_{0}\right)$.So λ satisfies Goldberg's condition 3.

To get the result we need to show that $U-\lambda I$ is surjective when $|\lambda-r|<|s|$.
Let $y=\left(y_{n}\right) \in c_{0}$ be such that $U_{\lambda} x=y$ for some $x=\left(x_{n}\right)$.

Then

$$
\begin{aligned}
(r-\lambda) x_{3 n}+s x_{3 n+3} & =y_{3 n} ; & & n \geq 0 \\
(r-\lambda) x_{3 n+1}+s x_{3 n+4} & =y_{3 n+1} ; & & n \geq 0 \\
(r-\lambda) x_{3 n}+s x_{3 n+3} & =y_{3 n+2} ; & & n \geq 0
\end{aligned}
$$

Now,

$$
\begin{aligned}
& (r-\lambda) x_{3 n}+s x_{3 n+3}=y_{3 n} \\
\Rightarrow & x_{3 n+3}=-\frac{(r-\lambda)}{s} x_{3 n}+\frac{1}{s} y_{3 n}
\end{aligned}
$$

Let $x_{3 n}=z_{n}, x_{3 n+3}=x_{3(n+1)}=z_{n+1}, c_{n}=-\frac{(r-\lambda)}{s}, d_{n+1}=\frac{1}{s} y_{3 n}$.
Then $z_{n+1}=c_{n+1} z_{n}+d_{n+1}$. Now, $\lim _{n \rightarrow \infty} c_{n}=-\frac{(r-\lambda)}{s}=c$ and $|c|=\left|\frac{r-\lambda}{s}\right|<$ 1.

Also, as $y=\left(y_{n}\right) \in c_{0}$, so $\left(d_{n+1}\right) \in c_{0}$.
Hence, by Lemma 3.1(iii), $\left(z_{n}\right)=\left(x_{3 n}\right) \in c_{0}$.
Similarly we can show that $\left(x_{3 n+1}\right),\left(x_{3 n+2}\right) \in c_{0}$. Therefore, $\left(x_{n}\right) \in c_{0}$ if and only if $|\lambda-r|<|s|$. Therefore, $U-\lambda I$ is onto if $|\lambda-r|<|s|$. So, λ satisfies Goldberg's condition I.Hence the result.

4. Fine spectrum of the operator $U(r, 0,0, s)$ on the sequence space c

Theorem 4.1. The point spectrum of the operator U over c is given by

$$
\sigma_{p}(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r|<|s|\} \cup\{r+s\} .
$$

Proof. Let λ be an eigenvalue of the operator U. Then there exists $x \neq \theta=(0,0,0,0, \ldots)$ in c such that $U x=\lambda x$. Then, we have

$$
\begin{aligned}
r x_{0}+s x_{3} & =\lambda x_{0} \\
r x_{1}+s x_{4} & =\lambda x_{1} \\
r x_{2}+s x_{5} & =\lambda x_{2} \\
& \cdots \\
r x_{n}+s x_{n+3} & =\lambda x_{n}, \quad n \geq 0
\end{aligned}
$$

If $x=\left(x_{n}\right) \in c$ is a constant sequence, then $\lambda=r+s$. Then $\lambda=r+s$ is an eigen value of the operator U.
If $x=\left(x_{n}\right) \in c$ is not a constant sequence, then proceeding exactly as Theorem 3.1 we get a subsequence of $x=\left(x_{n}\right)$ which is also convergent if and only if $|\lambda-r|<|s|$.

Hence, $\sigma_{p}(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r|<|s|\} \cup\{r+s\}$.
If $T: c \rightarrow c$ is a bounded linear operator represented by a matrix A, then $T^{*}: c^{*} \rightarrow c^{*}$ acting on $\mathbf{C} \oplus \ell_{1}$ has a matrix representation of the form $\left(\begin{array}{ll}\chi & 0 \\ b & A^{t}\end{array}\right)$
where is χ the limit of the sequence of row sums of A minus the sum of the limit of the columns of A, and b is the column vector whose $k^{\text {th }}$ entry is the limit of the $k^{t h}$ column of A for each $n \in \mathbf{N}_{0}$.

For $U=U(r, 0,0, s): c \rightarrow c$, the matrix of the operator $U^{*}=U(r, 0,0, s)^{*} \in$ $B\left(\ell_{1}\right)$ is of the form

$$
U^{*}=U(r, 0,0, s)^{*}=\left(\begin{array}{ll}
r+s & 0 \\
0 & U(r, 0,0, s)^{t}
\end{array}\right)=\left(\begin{array}{lllllll}
r+s & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & r & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & r & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & r & 0 & 0 & \cdots \\
0 & s & 0 & 0 & r & 0 & \cdots \\
0 & 0 & s & 0 & 0 & r & \cdots \\
0 & 0 & 0 & s & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Theorem 4.2. The point spectrum of the operator U^{*} over c^{*} is given by

$$
\sigma_{p}\left(U^{*}, c^{*} \cong \mathbf{C} \oplus \ell_{1}\right)=\{r+s\}
$$

Proof. Let λ be an eigenvalue of the opertaor U^{*}. Then there exists $x \neq \theta=(0,0,0, \cdots)$ in ℓ_{1} such that $U^{*} x=\lambda x$.
Then, we have

$$
\begin{aligned}
(r+s) x_{0} & =\lambda x_{0} \\
r x_{1} & =\lambda x_{1} \\
r x_{2} & =\lambda x_{2} \\
r x_{3} & =\lambda x_{3} \\
s x_{1}+r x_{4} & =\lambda x_{4} \\
s x_{2}+r x_{5} & =\lambda x_{5} \\
\ldots \cdots & \\
s x_{n-3}+r x_{n} & =\lambda x_{n}, \quad n \geq 4
\end{aligned}
$$

If $x_{0} \neq 0$, then $\lambda=r+s$. Thus, $\lambda=r+s$ is an eigenvalue of U^{*} corresponding to the eigenvector $\left(x_{0}, 0,0, \cdots\right)$ with $x_{0} \neq 0$.
Let $\lambda \neq r+s$. Then, $x_{0}=0$.
Let x_{k} be the first non-zero entry of the sequence $x=\left(x_{n}\right)$. Then from the relation $s x_{k-3}+r x_{k}=\lambda x_{k}$, we get $\lambda=r$. Now from the relation $s x_{k}+r x_{k+3}=\lambda x_{k+3}$, we get $s x_{k}=0$. Since, $s \neq 0$ so we have $x_{k}=0$, a contradiction. So, U^{*} does not have any other eigenvalue other than $\lambda=r+s$.
Hence, $\sigma_{p}\left(U^{*}, c^{*} \cong \mathbf{C} \oplus \ell_{1}\right)=\{r+s\}$.
Theorem 4.3. $U_{\lambda}: c \rightarrow c$ has a dense range if and only if $\lambda \neq r+s$.

Proof. By Theorem 4.2, $\sigma_{p}\left(U^{*}, c^{*} \cong \mathbf{C} \oplus \ell_{1}\right)=\{r+s\}$.
Hence, $U^{*}-\lambda I$ i.e. $U_{\lambda}^{*}=(U-\lambda I)^{*}$ is one to one for all $\lambda \in \mathbf{C} \backslash\{r+s\}$. So, by applying Lemma 2.3 , we get the result.

Corollary 4.1. The residual spectrum of the operator U over c is given by
$\sigma_{r}(U, c)=\emptyset$.

Proof. Let $\lambda \in \sigma_{r}(U, c)$. Then, U_{λ} does not have a dense range. By Theorem 4.3, we get $\lambda=r+s$. Therefore, $\sigma_{r}(U, c)=\{r+s\}$ and hence, $r+s \in \sigma_{p}(U, c) \cap \sigma_{r}(U, c)$, a contradiction. Hence, the result.

Theorem 4.4. The continuous spectrum and the spectrum of the operator U over c are respectively given by $\sigma_{c}(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r|=|s|\} \backslash\{r+s\}$ and
$\sigma(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r| \leq|s|\}$.
Proof. Proceeding exactly as in Theorem 3.4, we can show that $\sigma(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r| \leq|s|\}$. Since, $\sigma(U, c)$ is disjoint union of $\sigma_{p}(U, c)$, $\sigma_{r}(U, c)$ and $\sigma_{c}(U, c)$, thefore using Theorem 4.1 and Corollary 4.1, we get $\sigma_{c}(U, c)=\{\lambda \in \mathbf{C}:|\lambda-r|=|s|\} \backslash\{r+s\}$.

It is known from Cartlidge [11] that, if a matrix operator A is bounded in c, then $\sigma(A, c)=\sigma\left(A, \ell_{\infty}\right)$. Therefore, we have the following result:

Corollary 4.2. The spectrum of the operator U over ℓ_{∞} is given by $\sigma\left(U, \ell_{\infty}\right)=\{\lambda \in \mathbf{C}:|\lambda-r| \leq|s|\}$.

Theorem 4.5. If $|\lambda-r|<|s|$, then $\lambda \in I_{3} \sigma(U, c)$.
Proof. The proof of the theorem is analogous to the proof of the Theorem 3.5.

References

[1] A. M. Akhmedov and S. R. El-Shabrawy: On the fine spectrum of the operator $\Delta_{a, b}$ over the sequence space c, Comput. Math. Appl., 61(10), pp. 2994-3002, (2011).
[2] A. M. Akhmedov and F. Başar: The fine spectra of the Cesàro operator C_{1} over the sequence space $b v_{p}(1 \leq p<\infty)$, Math. J. Okayama Univ., 50, pp. 135-147, (2008).
[3] B. Altay and F. Başar: On the fine spectrum of the difference operator Δ on c_{0} and c, Inf. Sci., 168, pp. 217-224, (2004).
[4] B. Altay and F. Başar: On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Math. Sci., 2005:18, pp. 3005-3013, (2005).
[5] B. Altay and M. Karakuş: On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math., 3(2), pp. 153-162, (2005).
[6] M. Altun: On the fine spectra of triangular Toeplitz operators, Appl. Math. Comput., 217, pp. 8044-8051, (2011).
[7] M. Altun: Fine spectra of tridiagonal symmetric matrices, Int. J. Math. Math. Sci., 2011, Article ID 161209, 10 pages, (2011).
[8] F. Başar: Summability Theory and Its Applications, Bentham Science Publishers,e-books, Monographs, Istanbul, 2012, ISBN: 978-1-60805-420-6.
[9] H. Bilgiç and H.Furkan: On the fine spectrum of operator $B(r, s, t)$ over the sequence spaces ℓ_{1} and $b v$, Math Comput. Model., 45, pp. 883-891, (2007).
[10] H. Bilgiç and H.Furkan: On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v_{p}(1<p<\infty)$, Nonlinear Anal., 68, pp. 499-506, (2008).
[11] J. P. Cartlitdge, Weighted mean matrices as operators on ℓ^{p}, Ph.D dissertation,Indiana University,Indiana,(1978).
[12] H. Furkan, H. Bilgiç and B. Altay: On the fine spectrum of operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl., 53, pp. 989-998, (2007).
[13] S. Goldberg: Unbounded Linear Operators-Theory and Applications, Dover Publications, Inc, New York, (1985).
[14] V. Karakaya and M. Altun: Fine spectra of upper triangular doubleband matrices, J. Comp. Appl. Math., 234, pp. 1387-1394, (2010).
[15] J. I. Okutoyi: On the spectrum of C_{1} as an operator on $b v_{0}$, J. Austral. Math. Soc. (Series A) 48, pp. 79-86, (1990).
[16] B. L. Panigrahi and P. D. Srivastava: Spectrum and the fine spectrum of the generalised second order difference operator $\Delta_{u v}^{2}$ on sequence space c_{0}, Thai J. Math., 9(1), pp. 57-74, (2011).
[17] B. L. Panigrahi and P. D. Srivastava: Spectrum and fine spectrum of the generalized second order forward difference operator $\Delta_{u v w}^{2}$ on the sequence space ℓ_{1}, Demonstration Mathematica, XLV(3), pp.593-609, (2012).
[18] B. E. Rhoades: The fine spectra for weighted mean operators, Pac. J. Math., 104(1), pp. 219-230, (1983).
[19] P. D. Srivastava and S. Kumar: Fine spectrum of the generalized difference operator Δ_{v} on the sequence space ℓ_{1}, Thai J. Math., 8(2), pp. 221-233, (2010).
[20] B. C. Tripathy and R. Das: Spectra of the Rhaly operator on the sequence space $\overline{b v_{0}} \cap \ell_{\infty}$, Bol. Soc. Parana. Mat., 32(1), pp. 263-275, (2014).
[21] B. C. Tripathy and R. Das: Spectrum and fine spectrum of the lower triangular matrix $B(r, 0, s)$ over the sequence space $c s$, Appl. Math. Inf. Sci., 9(4), pp. 2139-2145, (2015).
[22] B. C. Tripathy and R. Das: Spectrum and fine spectrum of the upper triangular matrix $U(r, s)$ over the sequence space $c s$, Proyecciones J. Math., 34(2), pp. 107-125, (2015).
[23] B. C. Tripathy and A. Paul: Spectra of the operator $B(f, g)$ on the vector valued sequence space $c_{0}(X)$, Bol. Soc. Parana. Mat., 31(1), pp. 105-111, (2013).
[24] B. C. Tripathy and A. Paul: Spectrum of the operator $D(r, 0,0, s)$ over the sequence spaces ℓ_{p} and $b v_{p}$, Hacet. J. Math. Stat., 43(3), pp. 425-434, (2014).
[25] B. C. Tripathy and A. Paul: The spectrum of the operator $D(r, 0,0, s)$ over the sequence space $b v_{0}$, Georgian J. Math., 22(3), pp. 421-426, (2015).
[26] B.C. Tripathy and A. Paul: The spectrum of the operator $D(r, 0, s, 0, t)$ over the sequence spaces ℓ_{p} and $b v_{p}$, Afrika Mat., 26(5-6), pp. 11371151, (2015).
[27] B. C.Tripathy and A. Paul: The spectrum of the operator $D(r, 0,0, s)$ over the Sequence Space c_{0} and c, Kyungpook Math. J., 53 (2), pp. 247-256, (2013).
[28] B. C. Tripathy and P. Saikia: On the spectrum of the Cesàro operator C_{1} on $\overline{b v} \cap \ell_{\infty}$, Math. Slovaca, 63(3), pp. 563-572, (2013).
[29] A. Wilansky: Summability Through Functional Analysis, North Holland, 1984.

Fine spectrum of the upper triangular matrix $U(r, 0,0, s)$ over the... 101
[30] M. Yeşilkayagil and F. Başar: On the fine spectrum of the operator defined by the lambda matrix over the spaces of null and convergent sequences, Abstr. Appl. Anal., 2013, Art. ID 687393, 13pages, (2013).

Binod Chandra Tripathy

Department of Mathematics
Tripura University
Suryamaninagar, Agartala-799022
Tripura,
India
e-mail : tripathybc@rediffmail.com
and

Rituparna Das

Department of Mathematics
Sikkim Manipal Institute of Technology
Sikkim - 737136,
India
e-mail : rituparnadas_ghy@rediffmail.com

