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Abstract

In this paper, we first prove that every finite nonempty pseudo-
ordered with a least element has the least fixed point property and the
least common fixed point property for every finite commutative family
of self monotone maps. Dually, we establish that a finite nonempty
pseudo-ordered with a greatest element has the greatest fixed point
property and the greatest common fixed point property for every finite
commutative family of self monotone maps. Secondly, we prove that
every monotone map f defined on a nonempty finite pseudo-ordered
(X, ≥) has at least a fixed point if and only if there is at least an
element a of X such that the subset of X defined by {fn(a) : n ∈ IN}
has a least or a greatest element. Furthermore, we show that the
set of all common fixed points of every finite commutative family of
monotone maps defined on a finite nonempty complete trellis is also
a nonempty complete trellis.
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1. Introduction

It is well known that partially ordered sets play an important role in various
fields (for example see: [9]). In the last decades, several authors studied
the fixed point property and the common fixed property for the category
of partially ordered sets and self monotone maps (for examples see: [1-6],
[11], [13-18] and [22, 23]). In 1971, H. Skala [19, 20] gave two fixed points
theorems in the case of pseudo-ordered sets (see [Theorems 36 and 37, 20]).
Later on, S. Parameshwara Bhatta and all [7-10] studied the fixed point
property in pseudo-ordered sets. Recently in [21], the present author and
A. Maaden established some results concerning the existence of the least
and the greatest fixed points in the general case of pseudo-ordered sets.
In the present paper, without using the existence of maximal element or
any other hypothesis of completeness, we study the existence of the least
and the greatest fixed point properties, the common fixed property and the
least and the greatest common fixed point properties for the category of
self monotone maps defined on finite nonempty pseudo-ordered sets. In this
way, we first prove that every finite nonempty pseudo-ordered (X, ≥) with
a least element c has the least fixed point property. More precisely, we prove
that if f : (X, ≥)→ (X, ≥) is a monotone map, then there exists a naturel
number n0 such that f

n0(c) = min(Fix(f)) = max{fn(c) : n ∈ IN} (see
Theorem 3.1). Then, a finite nonempty pseudo-ordered (X, ≥) has the least
fixed point property if and only if (X, ≥) has a least element. Dually, we
establish that if (X, ≥) is a finite pseudo-ordered set with a greatest element
g and f : (X, ≥)→ (X, ≥) is a monotone map, then there exists a naturel
number m0 such that f

m0(g) = max(Fix(f)) = min{fn(g) : n ∈ IN} (see
Theorem 3.5). So, a finite nonempty pseudo-ordered has the greatest fixed
point property if and only if it has a greatest element. Consequently, we
obtain that every nonempty finite pseudo-ordered with a least or a greatest
element has the fixed point property. On the other hand, it is well known
that if (X,≤) is a nonempty finite partially ordered set and f : (X,≤) →
(X,≤) is a monotone map, then f has at least a fixed point if and only if
there exists an element a ∈ X which is comparable with its image f(a) (for
example see: [2] and [17]). In this work, we show that the last result is not
true in the general case of finite pseudo-ordered sets. However, we prove
that if (X, ≥) is a finite pseudo-ordered (X, ≥) and f : (X, ≥)→ (X, ≥) is
a monotone map, then f has a fixed point if and only if there is at least an
element a ofX such that the subset {fn(a) : n ∈ IN} has a least or a greatest
element (see Theorem 4.1). For the existence of the least common fixed
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point of a commutative family {f1, ..., fn} of monotone maps defined on
nonempty finite pseudo-ordered (X, ≥) with a least element, c we establish
that the element (fp11 ◦ f

p2
2 ◦ ... ◦ fpnn ) (c) is the least common fixed point of

the family {f1, ..., fn} where fpii (c) = min(Fix(fi)) for every i = 1, ..., n (see
Theorem 5.3). Dually, we prove that if {f1, ..., fn} is a finite commutative
family of monotone self maps defined on a finite nonempty pseudo-ordered
(X, ≥) with a greatest element g, then the element (f q11 ◦ f

q2
2 ◦ ... ◦ f qnn ) (g)

is the greatest common fixed point of the family {f1, ..., fn} where f qii (g) =
max(Fix(fi)) for every i = 1, ..., n (see Theorem 5.5). Furthermore, we
prove that the set of all common fixed points of every finite commutative
family of monotone maps defined on a nonempty complete trellis is also a
nonempty complete trellis (see Theorem 5.10).

2. Preliminaries

Let X be a nonempty set and ≥ be a binary relation defined on its. If the
binary relation ≥ is reflexive and antisymmetric, we say that (X, ≥) is a
pseudo-ordered set or a psoset.

Let A be a nonempty subset of a psoset (X, ≥).

An element u of X is said to be an upper bound of A if x ≥u for every
x ∈ A. An element s of X is called a greatest element or the maximum of
A and denoted by s = max(A, ≥) if s is an upper bound of A and s ∈ A.

An element v of X is said to be a lower bound of A if v ≥ x for every
x ∈ A. An element c of X is called a least or the minimum element of A
and denoted by c = min(A, ≥) if c is a lower bound of A and c ∈ A.

When the least upper bound (l.u.b.) s of A exists, we shall denoted its
by s = sup(A, ≥). Dually if the greatest lower bound (g.l.b.) of A exists,
we shall denoted its by c = inf(A, ≥).

Note that the greatest lower bound and the least upper bound when
they exist they are unique.

A psoset (X, ≥) is said to be a trellis if every pair of elements of (X, ≥)
has a greatest lower bound (g.l.b) and a least upper bound (l.u.b). A psoset
(X, ≥) is said to be a complete trellis if every nonempty subset of X has
a g.l.b and a l.u.b. For more details for these notions can be found in H.L.
Skala [19, 20].
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Let (X, ≥) be a nonempty pseudo-ordered sets and let f : X → X be
a map. We shall say that f is monotone if for every x, y ∈ X, with x ≥ y,
then we have f(x) ≥ f(y).

An element x of X is said to be a fixed point of a map f : X → X if
f(x) = x. The set of all fixed points of f is denoted by Fix(f).

Example.
Let A the set defined by A = {0, a, b, c}. We define a pseudo-order

relation on A by setting:
(i) for every x ∈ A, we have 0 ≥ x and
(ii) a ≥ b ≥ c ≥ a.

Then, (A, ≥) is a trellis having the minimum element 0 but (A, ≥) is not
complete.

Definition 2.1. Let (X, ≥) be a nonempty pseudo-ordered set. We say
that (X, ≥) has the fixed point property if for every monotone map f :
(X, ≥)→ (X, ≥) the set Fix(f) is nonempty.

Definition 2.2. Let (X, ≥) be a nonempty pseudo-ordered set. We say
that (X, ≥) has the least fixed point property if for every monotone map
f : (X, ≥)→ (X, ≥) the set Fix(f) is nonempty and has a least element.

Definition 2.3. Let (X, ≥) be a nonempty pseudo-ordered set. We say
that (X, ≥) has the greatest fixed point property if for every monotone
map f : (X, ≥) → (X, ≥) the set Fix(f) is nonempty and has a greatest
element.

3. The least and greast fixed point property in finite pseudo-
ordered sets

In this section, we shall study the least and the greatest fixed point prop-
erties for finite nonempty pseudo-ordered sets. First, we shall show the
following.

Theorem 3.1. Let (X, ≥) be a nonempty finite pseudo-ordered set with a
least element c. Then, (X, ≥) has the least fixed point property. Moreover
for every monotone map f : (X, ≥)→ (X, ≥) we have

min(Fix(f), ≥) = max{fn(c) : n ∈ IN} = fn0(c)

where
n0 = min{n : n ∈ IN and fn+1(c) = fn(c)}.
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Proof. Let (X, ≥) be a nonempty pseudo-ordered set with a least element
c and f : (X, ≥)→ (X, ≥) be a monotone map. Let P the following subset
of X defined by:

P = {fn(c) : n ∈ IN}.

As P is a subset of X and by our hypothesis X is finite, so P is a nonempty
finite set. Then, there is n, p ∈ IN such that n 6= p and fn(c) = fp(c).

First case. n < p.

Claim 1. We have: Fix(f) 6= ∅. Indeed, as f is a monotone map,
then by induction for every q ∈ IN the map f q is monotone. Since by our
hypothesis c is the least element of (X, ≥) and n+1 ≤ p, so c ≥fp−n−1(c).
Now, as fn+1 is a monotone map, then we get fn+1(c) ≥ fp(c). On the
other hand, by our hypothesis we know tat fn(c) = fp(c). Hence, we get
fn+1(c) = fp+1(c). So, we obtain fp+1(c) ≥ fp(c). Since c ≥ f(c) and fp

is a monotone map, then fp(c) ≥ fp+1(c). Therefore, by antisymmetry
of the pseudo-order relation ≥, we get fp+1(c) = fp(c). Hence, we have
f(fp(c)) = fp(c). Thus, fp(c) is a fixed point of f. So, Fix(f) 6= ∅.

Claim 2. The set Fix(f) has a least element. Indeed as by Claim 1 we
have f(fp(c)) = fp(c), then the set A = {q ∈ IN : f q+1(c) = f q(c)} is a
nonempty subset of IN. So A has a least element, n0, say. We claim that
fn0(c) is the least fixed point of f. Indeed, if x ∈ Fix(f), so as c ≥ x and
fn0 is a monotone map, hence we get fn0(c) ≥ x. Thus fn0(c) is the least
fixed point of f.

Claim 3. We have: fn0(c) = max{fn(c) : n ∈ IN}. Indeed, as c is the
least element of X, then we have c ≥ fn0(c). Then as fn is monotone for
every n ∈ IN, so we get fn(c) ≥ fn0(c). Hence, we deduce that we have

fn0(c) = max{fn(c) : n ∈ IN}.

Second case. p < n

Then, by a similar proof in Claim 1 as above, we get fn+1(c) = fn(c).
Therefore the set A = {q ∈ IN : fq+1(c)) = f q(c)} is a nonempty subset of
IN. So A has a least element, m0, say. Hence, f

m0(c) is the least fixed point
of f.

As consequences of Theorem 3.1, we get the following results.
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Corollary 3.2. Let (X,≤) be a nonempty finite partially ordered set with
a least element c. Then, (X,≤) has the least fixed point property. Moreover
for every monotone map f : (X,≤)→ (X,≤) we have

min(Fix(f),≤) = max{fn(c) : n ∈ IN} = fn0(c).

Corollary 3.3. Let (X, ≥) be a nonempty finite pseudo-ordered set. Then,
(X, ≥) has the least fixed point property if and only if (X, ≥) has a least
element.

Corollary 3.4. Let (X,≤) be a nonempty finite partially ordered set.
Then, (X, ≥) has the least fixed point property if and only if (X,≤) has a
least element.

Next, we shall show the existence of the greatest fixed point of self
monotone maps defined on nonempty finite pseudo-ordered sets.

Theorem 3.5. Let (X, ≥) be a nonempty finite pseudo-ordered set with
a greatest element g. Then, (X, ≥) has the greatest fixed point property.
Moreover for every monotone map f : (X, ≥)→ (X, ≥) we have

max(Fix(f), ≥) = min{fm(g) : m ∈ IN} = fm0(g)

where
m0 = min{m : m ∈ IN and fm+1(g) = fm(g)}.

Proof. Let (X, ≥) be a nonempty pseudo-ordered set with a greatest ele-
ment g and f : (X, ≥)→ (X, ≥) be a monotone map. Let L the following
subset of X defined by:

L = {fm(g) : m ∈ IN}.

As L is a subset of X and by our hypothesis X is finite, so L is a nonempty
finite set. Then, there is n,m ∈ IN such that n 6= m and fn(g) = fm(g).

First case. n < m.
Claim 1. We have: Fix(f) 6= ∅. Indeed, as f is a monotone map, then

since g is the greatest element of (X, ≥) and n + 1 ≤ m, then we get
fm−n−1(g) ≥ g. As fn+1 is monotone, so we obtain fm(g) ≥ fn+1(g). On
the other hand, we know that fn(g) = fm(g). Hence, we get fn+1(g) =
fm+1(g). So, we have fm(g) ≥ fm+1(g). Since g is the geatest element
of (X, ≥), so f(g) ≥ g. Then as fm is monotone, we obtain fm+1(g) ≥
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fm(g). Therefore, by antisymmetry of the pseudo-order relation ≥, we get
fm+1(g) = fm(g). So, f(fm(g)) = fm(g). Thus, fm(g) is a fixed point of
f. Then, Fix(f) 6= ∅.

Claim 2. The set Fix(f) has a greatest element. Indeed as by Claim 1
we have f(fm(g)) = fm(g), then the set B = {q ∈ IN : fq+1(g) = f q(g)} is
a nonempty subset of IN. So B has a least element, m0, say. We claim that
fm0(g) is the greatest fixed point of f. Indeed, if x ∈ Fix(f), so as x ≥ g
and fm0 is a monotone map, hence we get x ≥ fm0(g). Thus fm0(g) is the
greatest fixed point of f.

Claim 3. We have : fm0(g) = min{fn(g) : n ∈ IN}. Indeed, as g is the
greatest element of X, so we get fm0(g) ≥ g. Then, as fn is monotone for
every n ∈ IN, so we obatin fm0(g) ≥ fn(g). Thus, we have

fm0(g) = min{fn(g) : n ∈ IN}.

Second case. m < n
Then, by a similar proof in Claim 1 as above, we get fn+1(g) = fn(g).

Therefore the set A = {q ∈ IN : f q+1(g)) = fq(g)} is a nonempty subset of
IN. So A has a least element, n0, say. Hence, f

n0(g) is the greatest fixed
point of f.

As consequences of Theorem 3.5, we obtain the following results.

Corollary 3.6. Let (X,≤) be a nonempty finite partially ordered set with
a greatest element g. Then, (X,≤) has the greatest fixed point property.
Moreover for every monotone map f : (X,≤)→ (X,≤) we have

max(Fix(f),≤) = min{fn(g) : n ∈ IN} = fn0(g).

Corollary 3.7. Let (X, ≥) be a nonempty finite pseudo-ordered set. Then,
(X, ≥) has the greatest fixed point property if and only if (X, ≥) has a
greatest element.

Corollary 3.8. Let (X,≤) be a nonempty finite partially ordered set.
Then, (X, ≥) has the greatest fixed point property if and only if (X,≤)
has a greatest element.

As consequences of Theorems 3.1 and 3.5, we obatin the following re-
sults.
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Corollary 3.9. Let (X,≤) be a nonempty finite complete trellis. Then,
the set of all fixed points of every monotone map f : (X,≤) → (X,≤) is
nonempty and has a least and a greatest elements.

Corollary 3.10. Let (X,≤) be a nonempty finite complete lattice. Then,
the set of all fixed points of every monotone map f : (X,≤) → (X,≤) is
nonempty and has a least and a greatest elements.

4. Fixed point property in finite pseudo-ordered sets

It is well known [17] that if (X,≤) is a finite partially ordered set, then for
every monotone map f : X → X for which there exists at least an element
a of X which is comparable with its image f(a), then f has at least a fixed
point. In this section we shall show that the last result is not true in general
case of finite pseudo-ordered sets. However, we shall show that if (X, ≥) is
a finite pseudo-ordered and f : (X, ≥)→ (X, ≥) is a monotone map, then
f has a fixed point if and only if there is at least an element a of X such
that the subset {fn(a) : n ∈ IN} has a least or a greatest element. More
precisely, we shall show the following result.

Theorem 4.1. Let (X, ≥) be a nonempty finite pseudo-ordered and let
f : (X, ≥) → (X, ≥) be a monotone map. Assume that there exists an
element a of X such that the subset {fn(a) : n ∈ IN} has a least or a
greatest element. Then, Fix(f) 6= ∅.

Proof. Let (X, ≥) be a nonempty pseudo-ordered set and let f : (X, ≥)→
(X, ≥) be a monotone map. Assume that there is an elment a of X such
that the subset {fn(a) : n ∈ IN} has a least or a greatest element. Let
f : (X, ≥)→ (X, ≥) be a monotone map.

First case.
The subset {fn(a) : n ∈ IN} has a least element. Indeed, let A be the

following subset of X defined by :

A = {fn(a) : n ∈ IN}.

Then (A, ≥) is a finite pseudo-ordered set with a least element. On
the other hand we have f(A) ⊂ A. Since f is monotone on X, so f/A is
monotone on A. Then, from Theorem 3.1, f/A has a least a fixed point.
Then, Fix(f) 6= ∅. Conversely, if there is a ∈ X such that f(a) = a, then
A = {fn(a) : n ∈ IN} = {a}.
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Second case. The subset {fn(a) : n ∈ IN} has a greatest element. Indeed,
let B be the following subset of X defined by :

B = {fn(a) : n ∈ IN}.

Then (B, ≥) is a finite pseudo-ordered set with a greatest element. On
the other hand we have f(B) ⊂ B. As f is monotone on X, so f/B is
monotone on B. Then, from Theorem 3.5, f/B has a greatest fixed point.
Thus, we get Fix(f) 6= ∅. Conversely, if there is a ∈ X a such that f(a) = a,
then A = {fn(a) : n ∈ IN} = {a}.

As a consequence of Theorem 4.1, we get the following.

Corollary 4.2. Let (X,≤) be a nonempty finite partially ordered set and
let f : (X,≤) → (X,≤) be a monotone map. Assume that there exists at
least an element a of X such that a ≤ f(a) or f(a) ≤ a. Then, Fix(f) 6= ∅.

Next, we shall give a contrexample for the Corolloray 4.2 in the setting
of finite pseudo-ordered sets.

Counterexample.
Let A the set defined by A = {a, b, c}. We define a pseudo-order relation
on A by setting:

(i) for every x ∈ A, we have x ≥ x and
(ii) a ≥ b ≥ c ≥ a.

Then, (A, ≥) is a nonempty pseudo-ordered set without any maximal and
minimal elements. Now, we define the following map f : A→ A by setting:
f(a) = b, f(b) = c and f(c) = a. Note that for every x ∈ A we have
x ≥ f(x) and the map f : (A, ≥)→ (A, ≥) is monotone without any fixed
point. That is a counterexample for the case of monotone maps defined on
nonempty finite ordered sets.

5. Common fixed point property in finite pseudo-ordered sets

In this section we shall study the existence of the least and the geatest com-
mon fixed points of finite commutative family of monotone maps defined on
a nonempty finite pseudo-ordered set. Furthermore, we prove that the set
of all common fixed points of every finite commutative family of monotone
maps defined on a nonempty complete trellis is also a nonempty complete
trellis.

In this section, we shall need the following definition.
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Definition 5.1. Let (X, ≥) be a nonempty pseudo-ordered set and let
F be a family of monotone maps f from X to X. We say that F is a
commutative family if for every f, g ∈ F , we have f ◦ g = g ◦ f.

In this section, we shall need the following lemma whose proof it easy
to see.

Lemma 5.2. Let (X, ≥) be a nonempty finite pseudo-ordered set and F
be a commutative family of maps f from X to X. Then, for every f, g ∈ F
we have the following:
(i) for every n ∈ IN, we have fn ◦ g = g ◦ fn,
(ii) for every n,m ∈ IN, we have fn ◦ gm = gm ◦ fn.
(iii) for every n ∈ IN, we have Fix(f) ⊂ Fix(fn).
(iv) if g = fp11 ◦ f

p2
2 ◦ ... ◦ fpnn with pi ∈ IN, fi ∈ F is monotone for

i = 1, 2, ..., n, and n ∈ IN, then g is a monotone map.
(v) if g = fp11 ◦ f

p2
2 ◦ ... ◦ fpnn with pi ∈ IN, fi ∈ F for i = 1, 2, ..., n, then

g(Fix(f)) ⊂ Fix(f) for any f ∈ F .

By using Theorem 3.1, we get the following result.

Theorem 5.3. Let (X, ≥) be a nonempty finite pseudo-ordered set with
a least element, c and let {f1, ..., fn} be a finite commutative family of
monotone maps defined on X. Then, the set of all common fixed points of
the family {f1, ..., fn} is nonempty and has a least element. Moreover, we
have

min(Fix({f1, ..., fn}) = (fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (c),

where fpii (c) = min(Fix(fi)) for every i = 1, ..., n.

Proof. Let (X, ≥) be a nonempty finite pseudo-ordered set with a least
element, c and let {f1, ..., fn} be a finite commutative family of monotone
maps defined on X. From Theorem 3.1, for each i ∈ {1, ..., n} there exists
pi ∈ IN such that fpii (c) = min(Fix(fi)). Set m = (fp11 ◦ f

p2
2 ◦ ... ◦ fpnn ) (c).

So, we have

f1(m) = f1 ((f
p1
1 ◦ f

p2
2 ◦ f

p3
3 ◦ ... ◦ fpnn )(c)) =

³
fp1+11 ◦ fp22 ◦ f

p3
3 ... ◦ fpnn

´
(c)

= (fp22 ◦ f
p3
3 ... ◦ fpnn ) (f

p1+1
1 (c)).

Since fp1+11 (c) = f(fp11 (c))) = fp11 (c), then we obtain

f1(m) = (f
p1
1 ◦ f

p2
2 ◦ f

p3
3 ◦ ... ◦ fpnn ) (c) = m.



The fixed point and the common fixed point properties in finite... 11

Now, let i ∈ {2, ..., n}, so we have

fi(m) = fi ((f
p1
1 ◦ f

p2
2 ◦ ... ◦ fpnn )(c)) = fi(

³
fp11 ◦ f

p2
2 ◦ f

pi−1
i−1 ◦ f

pi+1
i+1 ... ◦ fpnn (f

pi
i (c))

´
=
³
fp11 ◦ f

p2
2 ◦ f

pi−1
i−1 ◦ f

pi+1
i+1 ... ◦ fpnn

´
(fpi+1i (c))

=
³
fp11 ◦ f

p2
2 ◦ f

pi−1
i−1 ◦ f

pi+1
i+1 ... ◦ fpnn

´
(fpii (c)) = (f

p1
1 ◦ f

p2
2 ◦ ... ◦ fpnn ) (c) = m.

Thus,m ∈ Fix(fi) for every i ∈ {1, ..., n}.Hence, we getm ∈
i=n\
i=1

Fix(fi).

On the other hand, we know that Fix({f1, ..., fn}) =
i=n\
i=1

Fix(fi). There-

fore, we obtain m ∈ Fix({f1, ..., fn}).
Next, we shall prove thatm = minFix({f1, ..., fn}). Let x ∈ Fix({f1, ..., fn}).

As c is the least element of X and the map fp11 is monotone, so, we get
fp11 (c) ≥x for every x ∈ Fix({f1, ..., fn}). By Lemma 5.2 we know that the
map fp22 ◦ f

p3
3 ◦ ... ◦ fpnn is monotone, so

(fp22 ◦ f
p3
3 ◦ ... ◦ fpnn )(f

p1
1 (c)) ≥ (f

p2
2 ◦ f

p3
3 ◦ ... ◦ fpnn )(x).

Thus, we getm ≥x for every x ∈ Fix({f1, ..., fn}). Therefore, we obtain
m = minFix({f1, ..., fn}).

As a consequence of Theorem 5.3, we get the following result.

Corollary 5.4. Let (X,≤) be a nonempty finite partially ordered set with
a least element, c and let {f1, ..., fn} be a commutative family of monotone
maps defined on X. Then, the set of all common fixed points of the family
{f1, ..., fn} is nonempty and has a least element. Moreover, we have

min(Fix({f1, ..., fn}) = (fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (c),

where fpii (c) = min(Fix(fi)) for every i = 1, ..., n.

Next, by using Theorem 3.5 we obtain the following result.

Theorem 5.5. Let (X, ≥) be a nonempty finite pseudo-ordered set with
a greatest element, g and let {f1, ..., fn} be a finite commutative family of
monotone maps defined on X. Then, the set of all common fixed points of
the family {f1, ..., fn} is nonempty and has a greatest element. Moreover,
we have

max(Fix({f1, ..., fn}) = (fq11 ◦ f
q2
2 ◦ ... ◦ fqnn ) (g),

where fqii (g) = max(Fix(fi)) for every i = 1, ..., n.
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Proof. Let (X, ≥) be a nonempty finite pseudo-ordered set with a greatest
element, g and let {f1, ..., fn} be a finite commutative family of monotone
maps defined on X. From Theorem 3.5, for each i ∈ {1, ..., n} there exists
qi ∈ IN such that f qii (g) = max(Fix(fi)). Set m = (fq11 ◦ f

q2
2 ◦ ... ◦ f qnn ) (g).

So, we have

f1(m) = f1 ((f
q1
1 ◦ f

q2
2 ◦ f

q3
3 ◦ ... ◦ f qnn )(g)) =

³
fq1+11 ◦ fq22 ◦ f

q3
3 ... ◦ f qnn

´
(g)

= (fq22 ◦ f
q3
3 ... ◦ fqnn ) (f

q1+1
1 (g)).

Since fq1+11 (g) = f(fq11 (g))) = f q11 (g), then we obtain

f1(m) = (f
q1
1 ◦ f

q2
2 ◦ f

q3
3 ◦ ... ◦ f qnn ) (g) = m.

Now, let i ∈ {2, ..., n}, so we have

fi(m) = fi (f
q1
1 ◦ f

q2
2 ◦ ... ◦ f qnn )(g)) = fi(

³
fq11 ◦ f

q2
2 ◦ f

qi−1
i−1 ◦ f

qi+1
i+1 ... ◦ f qnn (f

qi
i (g))

´
=
³
f q11 ◦ f

q2
2 ◦ f

qi−1
i−1 ◦ f

qi+1
i+1 ... ◦ fqnn

´
(f qi+1i (g))

=
³
f q11 ◦ f

q2
2 ◦ f

qi−1
i−1 ◦ f

qi+1
i+1 ... ◦ f qnn

´
(f qii (g))

= (f q11 ◦ f
q2
2 ◦ ... ◦ f qnn ) (g) = m.

Thus, m ∈ Fix(fi) for every i ∈ {1, ..., n}. Hence, we get m ∈
i=n\
i=1

Fix(fi).

On the other hand, we know that we have Fix({f1, ..., fn}) =
i=n\
i=1

Fix(fi).

Therefore, we obtain m ∈ Fix({f1, ..., fn}).
Next, we shall show thatm = maxFix({f1, ..., fn}). Let x ∈ Fix({f1, ..., fn}).

As g is the greatest element of X and by Lemma 5.2 we know that the
map fp11 is monotone, so we get x ≥ fq11 (g). From Lemma 5.2 the map
fp22 ◦ f

p3
3 ◦ ... ◦ fpnn is monotone, then we obtain

(f q22 ◦ f
q3
3 ◦ ... ◦ f qnn )(x) ≥ (f

q2
2 ◦ f

q3
3 ◦ ... ◦ fqnn )(f

q1
1 (g)).

Thus, we get x ≥m for every x ∈ Fix({f1, ..., fn}). Therefore, we deduce
that we have m = maxFix({f1, ..., fn}).

As a consequence of Theorem 5.5, we get the following.
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Corollary 5.6. Let (X,≤) be a nonempty finite partially ordered set with
a greatest element, g and let {f1, ..., fn} be a finite commutative family of
monotone maps defined on X. Then, the set of all common fixed points of
the family {f1, ..., fn} is nonempty and has a greatest element. Moreover,
we have

max(Fix({f1, ..., fn}) = (fq11 ◦ f
q2
2 ◦ ... ◦ fqnn ) (g),

where fqii (g) = max(Fix(fi)) for every i = 1, ..., n.

From Theorems 5.3 and 5.5, we get the following result.

Theorem 5.7. Let (X, ≥) be a nonempty finite pseudo-ordered set and
let {f1, ..., fn} be a finite commutative family of monotone maps defined on
X. Then, the family {f1, ..., fn} has at least a common fixed point if and
only if there exists at least an element a ∈ X such that the subset

{(fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (a) : pi ∈ IN for i = 1, ..., n}

has a least or a greatest element.

Proof. Let (X, ≥) be a nonempty finite partially ordered set and let
{f1, ..., fn} be a finite commutative family of monotone maps defined on
X. Let A be the following subset of X defined by:

A = {(fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (a) : pi ∈ IN for i = 1, ..., n} .

By our hypothesis, we know that A a least or a greatest element.

Claim 1. We have: fi(A) ⊂ A for every i = 1, ..., n. Indeed, if pi ∈ IN
for i = 1, ..., n, then

f1 (f
p1
1 ◦ f

p2
2 ◦ ... ◦ fpnn ) (a) =

³
fp1+11 ◦ fp22 ◦ ... ◦ fpnn

´
(a) ∈ A.

Now, let i ∈ {2, ..., n}, so we have

fi((f
p1
1 ◦ f

p2
2 ◦ ... ◦ fpnn ) (a)) =

fi(
³
fp11 ◦ f

p2
2 ◦ f

pi−1
i−1 ◦ f

pi+1
i+1 ... ◦ fpnn

´
(a)) =³

fp11 ◦ f
p2
2 ◦ f

pi−1
i−1 ◦ f

pi+1
i ◦ fpi+1i+1 ... ◦ fpnn

´
(a)) ∈ A.

Hence, fi(A) ⊂ A for every i = 1, ..., n.
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Claim 2. The family {f1, ..., fn} has at least a common fixed point.
Indeed, by Claim 1 we know that fi(A) ⊂ A for every i = 1, ..., n. So,
{f1/A , ..., fn/A} is a commutative family of monotone maps defined on A.
As by our hypothesis A has a least or a greatest element, then from Theo-
rems 5.3 or 5.5 we deduce that the family {f1/A , ..., fn/A} has a least or a
greatest common fixed point. Therefore, the family {f1, ..., fn} has at least
a common fixed point.

By using Theorem 5.7, we obtain the following consequence.

Corollary 5.8. Let (X,≤) be a nonempty finite partially ordered set and
let {f1, ..., fn} be a finite commutative family of monotone maps defined on
X. Then, the family {f1, ..., fn} has at least a common fixed point if and
only if there exists at least an element a ∈ X such that the subset

{(fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (a) : pi ∈ IN for i = 1, ..., n}

has a least or a greatest element.

Next, without using the existence of maximal element in finite partially
ordered sets we obtain the fllowing result.

Corollary 5.9. Let (X,≤) be a nonempty finite partially ordered set and
let {f1, ..., fn} be a finite commutative family of monotone maps defined on
X. Assume that there exists at least an element a ∈ X such that (a ≤ fi(a)
for every i = 1, ..., n) or (fi(a) ≤ a for every i = 1, ..., n). Then, the family
{f1, ..., fn} has at least a common fixed point.

Proof. Let (X,≤) be a nonempty finite partially ordered set and let
{f1, ..., fn} be a finite commutative family of monotone maps defined on
X. Assume that there exists at least an element a ∈ X such that a ≤ fi(a)
for every i = 1, ..., n or fi(a) ≤ a for every i = 1, ..., n. Let A be the
following subset of X defined by:

A = {(fp11 ◦ f
p2
2 ◦ ... ◦ fpnn ) (a) : pi ∈ IN for i = 1, ..., n} .

First case. We have: a ≤ fi(a) for every i = 1, ..., n. Then, by induction
we get a ≤ fp11 (a) for every p1 ∈ IN. So, we obtain f

p2
2 (a) ≤ fp22 (f

p1
1 (a)) for

every p1, p2 ∈ IN. As by our hypothesis we know that fp22 ◦ f
p1
1 = fp11 ◦ f

p2
2 ,

so we get fp22 (a) ≤ (f
p1
1 ◦f

p2
2 )(a) for every p1, p2 ∈ IN. Since a ≤ fp22 (a) and

from the transivity of the order relation ≤, we obtain a ≤ (fp11 ◦ f
p2
2 )(a).
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Now assume by induction that we have a ≤ (fp11 ◦f
p2
2 ◦ ...◦f

pn−1
n−1 )(a). Then,

we get
fpnn (a) ≤ fpnn ((f

p1
1 ◦ f

p2
2 ◦ ... ◦ f

pn−1
n−1 )(a)).

On the other hand, we know that fpnn ◦f
pi
i = fpii ◦fpnn for every i = 1, ..., n−

1. Hence, we obtain fpnn (a) ≤ (f
p1
1 ◦f

p2
2 ◦...◦fpnn )(a). As a ≤ fpnn (a) and from

the transitivity of the order relation ≤, we get a ≤ (fp11 ◦ f
p2
2 ◦ ... ◦ fpnn )(a).

Therefore, we obtain a = min(A). Then, from Corollary 5.8 the family
{f1, ..., fn} has at least a common fixed point.

Second case. We have: fi(a) ≤ a for every i = 1, ..., n. Then by a similar
proof as above we get (fp11 ◦ f

p2
2 ◦ ... ◦ fpnn )(a)) ≤ a for every pi ∈ IN and

i = 1, ..., n. Thus, we obtain a = max(A). Then by Corollary 5.8 we deduce
the family {f1, ..., fn} has at least a common fixed point.

Next, we shall prove that the set of all common fixed points of a finite
commutative familyF of monotone maps f defined on a nonempty complete
trellis is also a nonempty complete trellis.

Theorem 5.10. Let (X, ≥) be a nonempty complete trellis and F be a
finite commutative family of monotone maps f : (X, ≥)→ (X, ≥). Then,
the set of all common fixed points Fix(F) of F is a nonempty complete
trellis.

Proof. Let (X, ≥) be a nonempty finite complete trellis and let F =
{f1, ..., fn} be a finite commutative family of monotone maps fi : (X, ≥)→
(X, ≥) for i = 1, ..., n. From Theorem 5.4, we know that Fix(F) is nonempty
and has a least and a greatest element. On the other hand by [Theo-
rem 3.8, 10], we know that Fix(f1) is a nonempty complete trellis. Now,
we shall show that the set of common fixed points of the family {f1, f2}
is a nonempty complete trellis. Indeed, if x ∈ Fix(f1), then f2(x) =
f2(f1(x)) = f1(f2(x)). So, for every x ∈ Fix(f1) we have f2(x) ∈ Fix(f1).
So, f2(Fix(f1)) ⊂ Fix(f1). Then as Fix(f1) is a nonempty complete trellis,
hence from [Theorem 3.8, 10] the set of all fixed points of f2 in Fix(f1)
is a nonempty complete trellis. On the other hand, the set of all fixed
points of f2 in Fix(f1) is equal to Fix({f1, f2}). Thus, the set of common
fixed points of the family {f1, f2} is a nonempty complete trellis. By in-
duction, assume that for every k ∈ {2, ..., n − 1} the set of all common
fixed points of the family {f1, ..., fk} is a nonempty complete trellis. Let
x ∈ Fix({f1, ..., fn−1}). Then, fn(x) = fn(fk(x)) = fk(fn(x)) for every
k ∈ {1, ..., n − 1}. So, fn(x) ∈ Fix(fk) for every k ∈ {1, ..., n − 1}. Thus,
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fn(Fix({f1, ..., fn−1})) ⊂ Fix({f1, ..., fn−1}). As by the hypothesis of in-
duction Fix({f1, ..., fn−1}) is a nonempty complete trellis and x ≥ fn(x)
for every x ∈ Fix({f1, ..., fn−1}), then from [Theorem 3.8, 10] we deduce

that the set Fix({f1, ..., fn}) =
i=n\
i=1

Fix(fi) is a nonempty complete trellis.
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