ON SOME NONLINEAR EQUATIONS

IOANNIS K. ARGYROS*

Abstract.

A new method for finding large solutions of quadratic equations is presented.

Key words and phrases. Quadratic equation Banach space, large solutions.
A.M.S. subject classification codes. $46(B 15), 65$.

Introduction.

Consider the quadratic equation

$$
\begin{equation*}
x=y+\lambda B(x, x) \tag{1}
\end{equation*}
$$

[^0]in a Banach space X, where $y \varepsilon X$ is fixed, λ is a positive number and B is a bounded symmetric bilinecr operator on X [1], [5], [7].

The above equation has already been studied in [1], [2], [3], [5] and the references there. Briefly, it is known that if

$$
\begin{equation*}
4 \lambda||B|| \cdot||y||<1 \tag{2}
\end{equation*}
$$

then a small solution x of (1) exists (i.e., a solution tending to 0 with $y)$ such that

$$
\begin{equation*}
||x|| \leq \frac{1 \sqrt{1-4 \lambda| | B| | \cdot| | y| |}}{2 \lambda| | B| |} \tag{3}
\end{equation*}
$$

The problem of finding a not necessarily small solution x of (1) is of great importance. The best known approach to this problem is the application of the Newton's Kantorovich iteration [6]

$$
\begin{equation*}
x_{n+1}=x_{n}-\left(I-2 \lambda B\left(x_{n}\right)\right)^{-1}\left(y+\lambda B\left(x_{n}, x_{n}\right)-x_{n}\right), \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

for some $x_{0} \in X$. The application of the above iteration, however, does not necessarily guarantee that the obtained solution x is not the small solution.

Here motivated by the solution of the real quadratic equation and the work in [5] and [6], we seek a solution x of (1) expressed as

$$
\begin{equation*}
x=\frac{1}{\lambda} v+\sum_{n=0}^{\infty} \lambda^{n} x_{n} \tag{5}
\end{equation*}
$$

where, $v, X_{n} \varepsilon X, n=0,1,2, \ldots$ are to be specified. Under certain assumptions on v we show that if (2) holds the solution x of (1) given by (5) is such that

$$
\begin{equation*}
\|x\| \geq \frac{1+\sqrt{1-4 \lambda| | B\||\cdot| \mid y\|}}{2 \lambda| | B \|} \tag{6}
\end{equation*}
$$

We now state the main results.

Theorem. Assume:
(a) there exists $v \varepsilon X$ satisfying

$$
\begin{equation*}
B(v, v)=v, v \neq 0 \tag{7}
\end{equation*}
$$

and such that the linear operator $(I-2 B(v))^{-1}$ exists or X.
(b) Let k denote the norm of $(I-2 B(v))^{-1}$ and set

$$
\begin{align*}
& x_{0}=(I-2 B(v))^{-1}(y) \\
& x_{n}=\sum_{j=0}^{n-1}(I-2 B(v))^{-1} B\left(x_{j}, x_{n-j-1}\right), \quad n=1,2, \ldots \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
4 \lambda k^{2}| | B| | \cdot| | y| |<1 \text { and }||B|| \neq 0 \text {. } \tag{9}
\end{equation*}
$$

Then there exists a solution x of (1) given by (5) and satisfying

$$
\begin{equation*}
\| x| | \leq \frac{1}{\lambda}| | v| |+\frac{1-\sqrt{1-4 \lambda k^{2}| | B| | \cdot| | y| |}}{2 \lambda| | B| | \cdot k} \tag{10}
\end{equation*}
$$

Proof. As in [5], formal substitution of (5) into (1) and aqua lion of like powers of λ shows that if x is a solution then v, x_{n}, $n=0,1,2, \ldots$ must be given by (7) and (8).

The real series

$$
\frac{1}{\lambda}\|v\|+\sum_{n=0}^{\infty} \lambda^{n} z_{n}
$$

where

$$
\begin{aligned}
& z_{0}=k| | y| | \\
& z_{n}=\sum_{j=0}^{n-1} k| | B| | z_{j} z_{n-j-1},
\end{aligned}
$$

obviously dominates the series given by (5). Moreover, by (9), we have

$$
\sum_{n=0}^{\infty} \lambda^{n} z_{n}=\frac{1-\sqrt{1-4 \lambda k^{2}| | B| | \cdot| | y| |}}{2 \lambda| | B| | \cdot k} .
$$

Therefore, the series given by (5) converges to a solution x of (1) satisfying (10) and the proof is completed.

We now prove the existence of a not small solution. For simplecity we take $\lambda=1$.

Proposition. If the hypotheses of the theorem are satisfied, k is such that

$$
0<k \leq 1 \text { and } 1-4| | B| | \cdot| | y| |>0 \text {. }
$$

then there exists a solution x of (1) given by (5) and satisfying

$$
\begin{equation*}
\|x\| \geq \frac{1+\sqrt{1-4| | B| | \cdot \| y| |}}{2| | B| |} . \tag{11}
\end{equation*}
$$

Proof. The solution x of (1) given by (5) is guaranteed by the theorem. Hence, it is enough to show (11). By (5) we have

If v is a nonzero solution of (7), then

$$
\|v\| \mid=\|B(v, v)\| \leq\|B\|_{\cdot} \cdot\|v\|^{2}
$$

Therefore,

$$
\begin{equation*}
\|v\| \geq \frac{1}{\|B\|} \tag{13}
\end{equation*}
$$

Now, (12), because of (13), becomes

$$
\begin{equation*}
\|x\| \geq \frac{1}{\|B\|}-\frac{1-\sqrt{1-4 k^{2}| | B| | \cdot| | y| |}}{2| | B| | k} \tag{14}
\end{equation*}
$$

By (14), to show (11), it is enough to show

$$
\begin{equation*}
\frac{(2 k-1)+\sqrt{1-4 k^{2}| | B\|\cdot\| y \|}}{2|\mid B \| \cdot k} \geq \frac{1+\sqrt{1-4\|B\| \cdot| | y| |}}{2| | B \|} \tag{15}
\end{equation*}
$$

After the simplifications showing (15) becomes easily equivalent to showing

$$
0<k \leq 1,
$$

which is true by hypothesis and the proof is completed.

Note that in the case of the real quadratic equation

$$
r=\alpha+\lambda \beta r^{2}
$$

where $\alpha=||y||$ and $\beta=||B||$ equality is achieved (3) and (6). The solutions are then given by

$$
\begin{aligned}
& r^{-}=\frac{1-\sqrt{1-4 \lambda \alpha \beta}}{2 \lambda \beta} \\
&=\sum_{n=0}^{\infty} \lambda^{n} z_{n} \\
&=\sum_{n=0}^{\infty} 2^{n} \lambda^{n} \alpha^{n+1} \beta^{n} \frac{13 \ldots(2 n-1)}{12 \ldots(n+1)} . \\
& r^{+}=\frac{1}{\lambda \beta}{ }^{-} r^{-}
\end{aligned}
$$

and

Finally, note that for $v=0$ in theorem 2, we obtain the result in [5].

REFERENCES.

1 Argyros, I.K. Quadratic equations and applicctions to Chandrasekhar's and related equations. Bull. Austral. Math. Soc. Vol. 32, № 2, (1985), pp. 275-292.

2 Kantorovich, L.V. Functional analysis and applied mathematics. Uspe ki Mat. Nauk, (1948), pF. 89-185.

3 Kelley,C. T. Approximation of solutions of some quadratic integral equations in transport theory. Journal of Integral Equations, 4, (1982), pp. 221-237.

4
McFarland, J. An iterative solution of the quadratic equation. Proc. Amer. Math. Soc., 9, (1958), pp. 824-830.

Rall, L.B. Quadratic equations in Banach space. Rerd. Circ. Math. Palermo, 10, (1961), pp. 314-332.
-----. Solution of abstract polynomial equations by iterative methods. University of Wisconsin, Technical report № 892, (1968).

7 -----. Nonlinear functional analysis and applications. Academic Press, New York, (1971).

[^0]: * Department of Mathematics, New Mexico State University. Las Cruces, New Mexico 88003, U.S.A.

