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l. INTRODUCCION. 

ON THE MULTIPLICATIVE INVERSE 

EIGENV ALUE PROBLEM 

RICARDO SOTO M.* 

An importont inverse eigenvolue problem is the problem of finding 

o density 
u" 

q(x) such thot the operotor f(u) = q(x) , with the opproprio-

te boundory conditions, possesses o prescribed spectrum, thot is, the inver 

se vibroting string problem: 

( 1.1) 

Let h = 
11 

n+l 
ond 

U 11 (X) 
- q(x) = A.u(x). 

u(O) = u(II) =O. 

u . = u(ih), 
1 

qi = q(ih), i = 1,2, ... ,n. 

finite differences to opproximote u"(x), (1 .1) becomes 

Then, by using 

* Académico Departamento de Matemáticas, Facultad de Ciencias y Humanida
des, Universidad del Norte - Chile. 

• 

rvidal
Máquina de escribir
DOI: 10.22199/S07160917.1988.0015.00001

http://dx.doi.org/10.22199/S07160917.1988.0015.00001


2 

-u + 2u. - ui+1 i-1 1 AU = 
h2 i 

qi 

u o = u = o 
n+1 

or in matrix notation 

-1 
V Au = AU, 

where 

2 -1 o 
-1 2 -1 

( 1 .2) A 
-1 2 -1 

-
h2 

-1 
o 

-1 2 

and 

The problem es therefore: Given an n by n real symmetric matrix A, find 

a real diagonal matrix D, with positive diagonal entries, such that DA 
n 

has a given spectrum {Ai}
1

. This problem is called the Multiplicative In 

verse Eigenvalue Problem (MIEP). 

We note that the matrix DA is not symmetric and therefore its 

eigenvalues need not to be real. However, since D is positive definite, 

DAx = AX implies 
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is now o symmetric matri x . Then, the problem of fi nding 

D such that 

finding 0
112 

DA has eigenvalues 

such that o
112

Ao
112 

{A } is equivalent to the problem of 
i 

has eigenvalues {A . } • 
1 

number 

( 1 . 3) 

has the 

A o = o 

and r 
i 

A more general problem is the following: 

Given n+l real .symmetric matrices A
0

,A
1

, ... , An an d n reo ~ 

Al .::_ A
2 

.::_ •... .::_ \, find the entries of the vector d = (d
1

,d
2

, ... ,dn ) 

such that the matrix 

11 

A(d) = A ¿; -' • 
O 

+ u /"\ 
. 1 i i 
1= 

given numbers A:s as its eigenvaJ.ues. The MIEP is obtoined when 
1 

th 
A = e r i = 1, 2, ... , n, where e is the i unit vector 

i i i i 

the 
. th 

of A. 1 row 

The MIEP was posed by Downing and Householder [4] in 1956. To 

compute o solution to this problem, they proposed a numerical olgorithm ba 

sed on the Newton's method in which they assume the existence of o so lution, 

olthough the y did not discuss whether a solution is posible. We quote 

them ( [4], p. 203, 1956): "Criterio for the existence of solutions do not 

oppear to be known. In practical applications, however, circunstantial e v2_ 

dence may be sufficient to justify the assumption thot at least one solu-

tion exists". 

There hove been important advances in the question of the exis-

tence of a solution to this problem in the last 20 years. Necessory ond 

sufficient conditions are known, which we shall discuss in the f oll owing 

sections. 

• 
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Co nsi de r the Multiplicative Inverse Eigenvalue Problem as defi-

ned abo ve. lf the diagonal entries of A are nonzero, we may assume , 

without loss of generality, that they are all one, since we can divide each 

row of A by its diagonal element and the · solution to this modified pro-

blem will be of the form d = d. a .. , whence we may compute the d ~S. 
i 1 1 1 1 

We c a n easily f ind some trivial examples, which show that there 

are cases in which for a given matrix A we can reoch any desired spectrum, 

that i s, if .\ (DA ) denotes the vector of eigenvalues of DA, then 

t X E: IRn .\( DA ) = X} = IR 
n 

We can al so show that there are matrices for 

which certain 

trix with o . . 
1 1 

t r ix} = lRn. 

f o r a ll i . 

X = {x E: IRn 

D su eh tha t 

spectra are inaccessible. In fact, if A is a diagonal ma-

f. o fo r all ·i, then {.\(DA) : D is a real diagona l ma-

This is also true if A is a triangular matri x with a .. f. O 
11 

On the other hand, let A be any real singular ma tri x ond 

X. f. 0 \Ld. 
1 

Then, we cannot find any real diagonal matri x 

n 
A.( DA ) e: X, for ll ,\ (DA) = det(DA) = det(D)det (A ) 

. 1 i 
o. 

1= 

I n the MIEP, the 2 by 2 case is easy to analyze completely, whic h 

we do in section 2. In section 3 we discuss the 3 by 3 case an d we show 

that it can be completely determined when A is nonsingular or the desired 

spectrum is balanced. In section 4 we discuss necessary an d sufficient 

conditions fo r matrices of order n. In most applications it is supposed 

that A is symme tric and positive definite and the desired spectrum is non 

negative. 

2. THE 2 BY 2 CASE. 

Let A be the real matrix A [~ ~J' and 

• 
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The characteristic polynomial of DA is 

p(A) = A 
2 

- ( d + d ) A + d d ( 1 - be ) . 
1 2 1 2 

If be = O, we are dealing with the trivial situation of a triangular ma-

trix. If be = 1, A is singular with spectrum {Q,2}, and DA is sin-

gular with spectrum {o 1 dl + d2}. Excluding these cases, · we note that if 

we want p( A) to hove the real zeros Al and A2, dl and d
2 

must sati~ 

fy dl d = Al and 
>¡~ 

that dl and d2 must be + + A2 dld2 = 1-bc is, 
2 

roots of 

A A 
q(A) 

1 2 
= O, + 

1-bc 

and the question boils down to whether or not the zeros of q(A) are real 

2 4A/2 
or imaginary. They are real i f and only i f (A + A ) > or equ.!_ 

1 2 1- be' 
valently 

( 2. 1) 

The inequality (2. 1) always holds if be <O, so in that case Al and A
2 

can be chosen arbitrarily. 

be > O. Let a = \lbc' and 

There is 
A 

1 
X=~ • 

2 

only a restriction on 

Then (2. 1) becomes 

Al and A
2 

i f 

lf(x) 1 ~a, whe 

f (x) = a when re f (x) 
X - 1 
=~· Now, X = X 

o 

1 + a 
= ---

1 - a 
and f(x) = - a 

when X = As f(x) is 
X 

an increasing function, ( 2. 1 ) holds as long 
o 

as X does not lie in the interval whose end points are X and If, 
o X 

1 1 
o 

for example, be = - then a = 1 X = 3 and D can be formed su eh 
4 2 o 

that DA has spectrum {A 1, A2} unless 1 < Al < 3. 
3 .. 2 

Similary, if be =4, 
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A. 

~ = 2 and x = -3 and in this case D can be obtained unless 
o 

1 -1 
3 <- < 

- "2 3. 

The situation can be summarized as follows: 

Given A=[~ 7] and {A. 
1 1 

/..2} 1 the problem is to find 

D = diag{d
1 

1 d2} such that DA has eigenvalues {A.l 1 >..2}. Then: 

If A. or A. 
1 2 

is zero 1 the problem has no solution with d
1 

and 

d
2 

distinct from zero unless be= 1 1 in which case there are infinitely 

many solutions. 

If neither A. 
1 

less be~ l. There is 

re is a solution unless 

+ 'v'b2 
and 

- v'bZ' 
T 

- ·Jbc' +Vk 
since dl and d2 can 

d 1 = d2, where dl and 

3. THE 3 BY 3 CASE. 

nor A. is zero 1 the problem has no solution un-
2 

always a solution if be < O 
- 1 

and if be > o the-
A. 
1 

líes inside the interval whose endpoints T are 
2 

In these cases there are generally two solutions, 

be interchanged. The solution is unique only when 

d
2 

are the zeros of the polynomial. 

A. A. 
2 1 2 

A. - (A. + A. )A.+---
1 2 1 - be 

We denote by M(S
3

) the following problem: Given the real symm~ 

trie matrix 

(3. 1) 

• 



with eigenvalues ~-~ and the real numbers 
1 

gonal matrix D = diag{d 11 d21 d
3
}, such that 

o(DM) denotes the spectrum of the matrix DM. 

( 3. 2) 

The characteristic polynomial of DM is 

A
3

- (¿d. )A
2 

+ ( ¿ d .d. - b~d 2 d 3 - b
2
2

d
1
d

3
- b

2
d d )A-

1 . <" 1 J 3 1 2 
1 J 

-Ild(1+2Ilb _¿b~). 
i i 1 

Since Il(A -A . ) = A3 - (¿ A )A
2 

+ ( ¿A. A. )A- Il A. 1 we hove 
1 i ·<· 1 J 1 

1 J 

Proposition 3. l. 

7 

A necessary and sufficient condition for the problem M(S
3

l to 

hove a solution is 

i) ¿ d = ¿ A . . 
i 1 

( 3. 3) i i) ¿ d. d ¿ b
2

d j dk = ¿ A A j. 
1 j 

j<k 
i i 

i < j i<j 
j 1 kii 

i i i) II d . ( 1 + 2Il b - ¿ b2) = II A 
1 i 1 i 

Let us assume that M is symmetric and nonsingular. 

and det(M) = 1 + 2II bi - ¿ b~ i O. By (3.3) iii) we hove 

liA. 
1 

nd i = -d-e t_(_M_) = L. 

• 

The ~ . i O lfi 
1 
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Let S = r A.i and for simplicity let d
1 

= x, d
2 

= y, d
3 

= S - x - y. By 

(3.3) iii) and ii), we hove after sorne simplification 

2 2 
xyS - x y - xy = L. 

- S(b
2

- l)x- S(b
2

- 1)y = T 
2 1 

or 

i) 
2 2 

x y + xy - xyS + L = O. 

(3 .4) 

i i ) 

where n1 = b~- 1, n2 = b~- l, n
3 

= b~- b~, T = 

the following 

Proposition 3.2. 

¿ A. .A. .• 
i< j 1 J 

Then, we hove, 

Let M be a symmetric nonsingular matrix and let d
1 

= x, d
2 

= y, 

d
3 

= S- x-y. The problem M(S
3

) has a solution D = diag{d
1
,d

2
,d

3
} if 

and only if the nonlinear system (3.4) has a solution {x,y,S- x -y}. 

We note that if M is singular, then it is clear from (3.3) iii) 

that a nonzero desired spectrum (A. . i O Vi) cannot be reached for any dio 
1 

gonol motrix D. 

• 
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Exomple 3. 1. 

1/2 

1 ~ 2 ] and '-¡ = 1- 1 , O, 1 l. The equotions 

1/2 

(3.4) ore 

i) 
2 2 o. X y + xy = 

i i) 
2 3 2 o. -x - ¡Y - xy + 1 = 

Since D = O is not o solution, we can ossume thot d. ~ O for ot least 

one i, soy d = y ~ 
2 

2 
1 

3 2 
O. Then from i) we hove x = -xy ond from ii) 4 y = 1, 

whence y=±2'[Y. Thus, X = O, ± Therefore, o solution is given 

d = {O + 2 '1/3'} i , - 3 . by If y = O, then 
2 

X = 1, whence di = {0 , ± 1} is 

olso o solution. 

The desired spectrum of the exomple 3.1 is bolonced ond has o ni 

ce behoviour in general, which ollows us to obt9in better conditions for 

the existence of o solution, even when the given motrix is not symmetric. 

Proposition 3.3 

Let B = (b .. ) 
1 J 

be on orbitrory real motrix with b 
ii 

ond 

let the desired spectrum be {-a, O, a}. A sufficient condition for the 

existence of o real diagonal motrix D su eh thot DB has the spectrum 

{- Ct, O, a} is thot b b 
1 J j i 

< 1 for at leost one off-diagonal entry of B. 

In this case the solution is given by D = diog{-c, O, e}, where 

Ct 
ond o is in position (k, k) in D with k ~ i, j. e = 

v/1 - b b 
i j j i 

• 
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Proof: 

Suppose b b < 1 ond 
i j j i 

o has the position (k, k) 1 k = i 1 j 1 

in D. Then, the kth row of DB is o row of only zeros ond the choroete 
2 

ristie equotion of DB is A(A.2 - e2) + e b . . b .. A= o. Thus, the eigen-

volues of DB 

Corollary 3.4. 

Let 

problem M(S
3

) 

= 1, 2, 3). 

ore 

M 

±e V1 
~ J Jl 

O, ond - b b •• 1 thot is, {O, ± a}. 
i j J 1 

be the motrix'in (3. 1). A suffieient condition for 

to hove o solution is thot b
2 

< 1 for leost one 
i 

A solution is D = diog{O, ± e}, where i ( i 

ond o has the position (i,i) in D. 

Corollory 3.5. 

the 

The spectrum ~~ O, a}, a E ffi , is olwoys obtoinoble for o 3 

by 3 tridiogonol motrix ond o solution is D = diog{-~ O, a}. 

Exomple 3.2. 

l. Let M be the motrix in (3.1) with b~ <l. Then , if 

[~~2 
-cb 

-c~2] 3 
D = diag{-c, O, el, DM = o has the ehorocteristie equation 

cb
1 

'('
2

- e
2
l + e

2
b

2
2

' --O , 'th t O d + "' ' d d th t "" " w1 roo s . , an - ..... , prov1 e o b
2 -1/2 

e = a( 1 -
2

) 

Vil 2 o 
2. M = 1/2:12 1 fil2 A 

i = {-Vil, O, Vi7l. M is 

o v2!2 

• 



singular. A solution is D( 
1

) = diag{-3, -2, S}, and if we apply 

ry 3.4 we find two more solutions D(
2

) = diag{- Vll, O, Vll} and 

diag{O, -·J34, v'34}. 

11 

corolla 
D(3) : 

3 . B = r- 21 1 /2 32 J . , . = 
1\ {-a, O, a}, a E 

_1/4 o 1 
1 

~. B is not symm~ 

trie. According to proposition 3.3 we must hove at least 3 different solu 

tions. In fact, they are D(
1

) = 

(3) ,¡- ,r,:;-
and D = diag{-v2 a, O, v2 a}. 

Remark 3.3. 

-1/2 fi 
diog{-

2
-a, 2a. O}, o( 2

) = diag{O,-a,a} 

We comment that the MIEP for matrices of order 3 can be explici-

tly solved when the desired spectrum is of the form {-a, O, a}. In this 

cose the matrix M con be nonsymmetric and also singular. In the case 

that the desired spectrum is not of the form {-a, O, a}, but it contoins 

one zero eigenvalue, we olso hove an explicit solution from (3.4) if we 

as sume that M is symmetric nonsingular. In fact, if A. = o for some i, 
2 

1 

then d. = o for· some j, which leads to 11 1Y - S11 1Y = T (if X = o and 
J 2 

111 i O) or 112X - sl12x = T (if y = o and 112 i O) or (113 - 111 ) xy = T 

(if X + y = S and 113 - 111 i o). 

For an orbitrary spectrum Ai i O ~i, we hove a necessary cond~ 

tion, which says that the matrix M must be nonsingular. In this case we 

can still find an explicit solution (if it exists) from (3.4), as it is 

shown in the following example: 

• 
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Example 3.4. 

o -1 

M = o A 
i 

= -1' 1' 2. He re, 111 = 112 = o' 113 = 1' 

-1 

T = -1, L = S = 2. By (3.4) 

2 2 
x y + xy - 2xy = -2 

xy = -1 , 

whence x,y Thus, d 1 = 2 - v'5, d2 = 2 + v'S: and d3 = -2. 

4. NECESSARY ANO SUFFICIENT CONDITIONS FOR MATRICES OF ORDER n. 

In this section we shall discuss necessary and sufficient condi-

tions for the solvability of the problem M( S ) , 
n 

that is, the problem of 

finding a real diagonal matrix D such that DA has a prescribed spectrum 

{ ' }n f l A or a given nxn reo symmetric matrix 
i i=1 

A = (a .. ). 
1J 

We assume 

that a . . = 
11 

\Li. 

Necessory Conditions. 

The simplest necessary condition can be derived from the fact that 

det(DA) = det(D)det(A). That is, 

Proposition 4.1. 

Let the desired spectrum 

and assume that the problem M(S ) 
n 

• 

{A } be such that A i O for all i 
i i 

has a solution. Then A is a nonsin-
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gulor motrix. 

Proposition 4.2. 

If the problem M(S ) has o solution 
n 

D = diog{d
1

, .... ,dn}, then 

(4. 1) 
n 2 

2 ¿ d . d . < ( ¿ X. ) 
. . 1 J 1 1 
1 <J 

Proof: 

Let X = ( x 
1 

, x
2

, •• • , x n) ond let Ek(x) denote the elementary 

symmetric function of degree k of the n elements that 
n n 

is, E
1 

(x) = L X . E
2

(x) = L X. X., ond so on . 
i=l 

1 
i<j 

1 

the principal submatrix of A 

lying in rows ond columns i
1
,i

2
, .•. , ik. Then we hove, 

det (XI - DA) 

Since 
n 
II (X 

i=l 

= X n + 

x(d . d . ..... d . ) ) . 
11 12 1k 

X.) 
1 

k 

then 

l: detA[i 1, ... ,ikji 1, ... ik] II di = Ek(x1, ... ,xnl. 
l.s_i 1 < ... <i k_.s.n j = 1 j 

Thus, for k = 1 1 2 1 we hove 
n n 
¿ d 
1 i 

= ¿ X 
i 

ond 

• 
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(4.2) 

Sine e 

(4.3) 

By (4 . 2) and (4 . 3) 1 

Thus 1 2 

2 
Ld,d.(1- a ) = 

. . 1 J i j 
1<J 

¿ A. A. · 
i<j 1 J 

n 
/ ¿ - 2 

1 
1 

2 
¿ d . d . a . . 

. . 1 J 1 J 
1 <J 

2 
¿ d . d . a .. > 

i<j 
1 J 1 J 

2 
= L A. 

1 

o. 

¿ d . d.a~ . = ¿ d d ¿ A. A. 
i j 1 J 1 J 1 J i<j i<j i<j 

n 
A~ ¿ - 2 ¿ d . d . + 2 ¿ A.A. > 

1 1 J 1 J -
1 i<j i < j ~ 

n 
A~ 

n 
2 

¿ d . d. < ¿ + 2 ¿ A. A. = ( ¿ A. ) 
1 J - 1 1 J 1 

i<j i <j 

n 
2 

2 ¿ d . d . < ( ¿ A. ) 
1 J 1 

i< j 

Theorem 4.3. (Friedlond, 1977, [5]). 

o. 

or 

Let A = (a .. ) 
1 J 

be a real symmetric positive definite matrix ond 

let 

(4.4) 

M = (m .. ) 1 

1 J 
with m .. = 

11 
o .. 

11 
lfil be any real symmetric matrix 1 then 

n _
1 

n 

¿ A. A. (A M) > ¿ A. 
. 1 1 1 1 
1= i=1 

is a necessary condition for the existence of o real diagonal matrix D such 

that DA has the prescribed spectrum 
• 

{A· } 
1 
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Friedland [5] also showed that if A. ~O, the assumption m = 
1 ii 

a .. can be removed. In this case (4.4) becomes 
11 

(4.5) 
n . _

1 
n 

¿ A.A. (A M) > ( l: . A. )[min m .. J. 
. 1 1 1 1 J J 
1 = i= 1 j 

Proposition 4.4. 

Let A be a nonnegative matrix with a = 
ii 

1 d. 1 < 1 \Li. 
1 

If 

(4.6) IA.I ~ p(A) 1 

1 
for all i. 

Proof: 

1 \Li. Suppose that 

o(DA) = {Ai}~, then 

Since 1 d . 1 < 1 \Li, 1 d. a .. 1 < a .. \Li, j. Then by a theorem of Ky 
1 - 1 1J - 1J 

Fan (see Marcus and Mine, [7], p. 152), each eigenvalues of DA lies in at 

least one of the discs C.: lz - d.J < p(A) - l. Hence, JA.-d . l _< p(A)- 1, 
1 1 - 1 1 

whence d - p(A) + 1 < A. <d. + p(A) - 1 and (4.6) follows. 
i - 1 - 1 

Example 4. l. 

1/2 o] 1~2 has eigenvalues 

1/2 

1, 1 + v2 
2 . Let the desired spectrum be {-2, O, 2}, so that for A = ± 2 

we hove lA .1 
ITA 

1 

i 
IId.=-=0 

1 n~. 
1 

{2 
> p(A) = 1 + --. 

2 

and Ld. = LA = O, 
1 i 

Any solution d 
1
, d 

2
, d 

3
, must satisfy 

which implies that at least one of the 

d~s must be zero, soy d2 = O. Then d 1 = -d 3 . By (4.2) we hove 

• 
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2 
¿ d .d.(l- a .. l 

i <j 1 J l J 
¿ A. . A. . 

. . 1 J 
1<J 

= -4, 

which contradicts id.l < 1 Vi. Thus, the given spectrum is inaccessible 
1 -

if the con9ition ld . l < 1 Vi must be satisfied. 
1 -

Sufficient Conditions. 

All the known sufficient conditions for the MIEP hove been deri-

ved by the use of the Brouwer fixed point theorem: 

Theorem 4.5. (Hadeler, 1969, [6]). 

Let A = (a . . ) be an 
1 J 

n by n symrretric positive definí te 

trix with a = for all i and let o < Al < A-2 < ...... < A be 
ii n 

prescribed spectrum. Let A. = (A.l,A.2, ... ,A.n). if 

(4 .7) min (A.. l - A. . ) ~ 411 A. 
. 1+ 1 

n 2 1 /2 
11 max ( ¿ a .. ) , 

CD • • 
1 

l j 
l J = 1 

j ii 

then there exists D = (d. o .. ) 
l l J 

such that (DA) = {A. }n 
i i= 1. 

Theorem 4.6. (de Oliveira, 1972, [2]). 

ma-

the 

Let A = (a .. ) be an n by n real matrix with a .. = for 
lJ ll 

all i. If 

n 
<2. (4.8) max S. = max ¿ la . . 1 

l l J - 2 
i i j =1 

jii 

• 
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and the intervals 

(4.9) 

k= 1,2, ... ,n, are pairwise disjoint, then there exists a real diagonal 

matrix D = (d . 6 .. ) such that O(DA) = {.A.}~ 
1

. 
1 1J 1 1= 

Next, we derive a sufficient condition for the problem M(S ) 

using the Brouwer fixed point theorem. 

n 
Let K = II I . , where = [.A . - r, .A +. r L .where r >O 

j = 1 J j J j 

be determined. Let d = (d1,d2, ... ,dn ) E K. Then 11 d - .A 11 Cl) ~ r, 

ce 11 d 11(1) ~ 11 .A 11 Cl) + r. We consider the Gerschgorin circles of 

C · {z E ([: 1 Z - d. 1 < 1 d. 1 L 1 a. k ll 
j. J J k=1 J 

kfj 

which are disjoint if miniA. . 
1
- .A.I > 2r + 2m(DA), where 

. 1 + 1 
1 

n n 

m(DA) = max ¿ ld.lla .. 1 
. . 1 1 1 J 

= m a x 1 d . 1 ¿ 1 a . . 1 
. 1 . 1 1 J 

and .A < .A . 
1 

, 1 < i < n- 1 
i 1+ 

1 J= 1 J = 
jh j ti 

the Gerschgorin circles of DA are disjoint if 

(4. 10) min 1 \ + 1- \ 1 > 2r + 2 ( 11 A 11 a> + r) ( 11 A 11 a> 1 1) . 
i 

n 

will 

when 

DA 

With the assumption (4. 10) and by the Gerschgorin theorem, DA has n real 
• 
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eigenvolues * A. , 
J 

such thot 

* 
Id . - A.l < 

J J 

n 

\di\¿ lojkl ~ 11 d 11)11 A IICX)- 1) 
k=1 
kij 

<(IIAII +r)(\\AII-1l. 
- (X) (X) 

* He re we os sume thot A. 1 ies in C. . The mopping T: K > 1Rn , de 
J J 

fined by T(d) = A+ d- A* maps K into a subset of itself. In fact, 

* \ T ( d) . - A. \ = \d. - A. \ < ( \1 A \1 + r )( \1 A \1 - 1 ) · 
J J J J - (X) (X) 

Now, we define r in such a way thot (\\ A \la>+ r)(\\ A \la>- 1) < r, 

that is, 

r = 
11 A 11 (X)( 11 A \1 (X)- 1) 

2 - 11 A 11 
(X) 

With r defined in that form, (4.10) becomes 

< 2. 

min \A. - A. 1 > 2r 11 A 11 + 2\\ A 11 ( 11 A 11 - 1) = 4r 
l + 1 l (X) (X) (X) 

* and also T(d) E K, whence T has o fixed point d in K. Hence, the 

* problem M( S ) has o solution D = (d. ó .. ). Thus we hove, 
n 1 lJ 

• 
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Theorem 4.5. 

Let the desired spectrum in the problem M(S ) 
n 

11 A 11 <X> ( 11 A II<X>- 1 ) 

be such thot 

A < A. 
1 1 i = 1 1 2 1 ••• 1 n- 1 ond r = 

i 1+ 
. 2 - 11 A II<X> 

If 11 A II<X> <21 

ond 

( 4. 11 ) miniA . 
1
- A. l > 4r 1 

1+ 1 
i 

then the problem M(S ) 
n 

is salvable. 

The inequolity (4. 11) is equivolent to thot given by Biegler-Ko-

nig [1]. We note from the definition of r ond since 1 ~ 11 A II<X> < 21 

thot the best situotion is when 11 A II<X> = 1 1 thot isl the cose A equols 

the identity motrix 1 which olwoys has o solution. If 11 A II<X> is clase 

to 2 1 then the condition (4. 11) is not useful ony more. We olso note thot 

we moy choose o different volue for r. For exomple we con set r = ~ = 

mox{~.l~ 
i 1 

volues of 

(4. 12) 

and 

(4. 13) 

which is positive since ¿ ~ - = ni where the ~:s ore the eige~ 
1 1 

A. In this cose the problem M(S ) has o solution provided thot 
n 

m~n1Ai+ 1 - \1 > 2"il + 2(11 A II<X> + ¡íHII A II<X>- 1) 
1 

• 
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