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Abstract

We consider the focusing Nonlinear Schrödinger equation posed on
the one dimensional line, with nonzero background condition at spatial
infinity, given by a homogeneous plane wave. For this problem of
physical interest, we study the initial value problem for perturbations
of the background wave in Sobolev spaces. It is well-known that the
associated linear dynamics for this problem describes a phenomenon
known in the literature as modulational instability, also recently related
to the emergence of rogue waves in ocean dynamics. In qualitative
terms, small perturbations of the background state increase its size
exponentially in time. In this paper we show that, even if there is no
time decay for the linear dynamics due to the modulationally unstable
regime, the equation is still locally well-posed in Hs, s > 1

2 . We
apply this result to give a rigorous proof of the unstable character
of two well-known NLS solutions: the Peregrine and Kuznetsov-Ma
breathers.
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1. Introduction and Main results

1.1. Setting of the problem

In this paper, we consider the focusing nonlinear Schrödinger equation
(NLS) in one dimension:

i∂tu+ ∂2xu+ |u|p−1u = 0, u = u(t, x) ∈ C, t, x ∈ R.(1.1)

Along this paper we assume p > 1. The initial value problem (IVP) for
(1.1) when the initial datum u(t = 0) = u0 is in standard Sobolev spaces
Hs(R) is by now well-understood, in particular in the case of subcritical
nonlinearities (p < 5), starting with the fundamental works by Ginibre and
Velo [22], Tsutsumi [42] and Cazenave and Weissler [16], which showed
global well-posedness (GWP) for p < 5 and local well-posedness (LWP) if
p > 1. For a detailed description of the literature, including all historic
developments, see e.g. the monographs by Cazenave [14] and Linares and
Ponce [37]. The case p = 3 (cubic NLS) is particularly important because
the equation is completely integrable, as showed by Zakharov and Shabat
[46]. Additionally, this equation appears as a model of propagation of
light in nonlinear optical fibers (with different meanings for time and space
variables), as well as in small-amplitude gravity waves on the surface of
deep inviscid water.

As a complement to the previous results, concerning localized solutions
only, in this work we are interested in constructing solutions to (1.1) for
which the modulational instability phenomenon is present. Being more
precise, let us assume for simplicity that p = 3, although our results hold
for any p > 1, provided the regularity in Hs is properly chosen (see Re-
mark 3.1). Recall the standard Stokes wave obtained from the standing
plane wave thanks to the invariances of (1.1) by scaling, phase and Galilean
transformations:

u(t, x) := eit,(1.2)

a non-localized, homogeneous solution of (1.1). A complete family of stand-
ing waves can be obtained by using the scaling, phase and Galilean invari-
ances of (1.1):

uc,v,γ(t, x) :=
√
c exp

µ
ict+

i

2
xv − i

4
v2t+ iγ

¶
.(1.3)

This wave is another solution to (1.1), for any scaling c > 0, velocity v ∈ R,
and phase γ ∈ R. However, since all these symmetries represent invariances
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of the equation, they will not be essential in our proofs, and we will assume
c = 1, v = γ = 0.

We now break the symmetry of the problem. Consider localized per-
turbations of (1.2) in (1.1), of the form

u(t, x) = eit(1 + w(t, x)), w unknown.(1.4)

(This rupture is motivated by some exact solutions to (1.1) discussed in
subsection 1.3 below.) Then (1.1) becomes a modified NLS equation with
a zeroth order term, which is real-valued, and has the wrong sign:

i∂tw + ∂2xw + 2Re w = G[w],
G[w] := −(|1 + w|2 − 1)(1 + w) + 2Re w = O(|w|2).(1.5)

The associated linearized equation for (1.5) is just1

i∂tw + ∂2xw + 2Re w = 0.(1.6)

Written only in terms of φ = Re w, we have the wave-like equation
(compaRe with [21] in the periodic setting)

∂2t φ+ ∂4xφ+ 2∂
2
xφ = 0.(1.7)

This problem has some instability issues, as reveal a standard frequency
analysis: looking for a formal standing wave φ = ei(kx−ωt) solution to (1.7),
one has

ω(k) = ±|k|
p
k2 − 2,

which reveals that for small wave numbers (|k| <
√
2) the linear equation

behaves in an ”elliptic” fashion, and exponentially (in time) growing modes
are present from small perturbations of the vacuum solution. A completely
similar conclusion is obtained working in the Fourier variable, as we will
see below (see Section 2). This singular behavior is not present if now the
equation is defocusing, that is (1.1) with nonlinearity −|u|2u.2

1This equation is similar to the well-known linear Schödinger i∂tw + ∂2xw = 0, but
instead of dealing with the additional term 2Re w only as a perturbative term, we will
consider all linear terms as a whole for later purposes (not considered in this paper), in
particular, long time existence and decay issues, see e.g. [24, 25].

2Another model corresponds to the Gross-Pitaevskii equation: i∂tu + ∂2xu + u(1 −
|u|2) = 0, for which the Stokes wave is modulationally stable.
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1.2. Well-posedness

The simple phenomenon exposed above is part of an intensely studied effect
known as modulational instability, which -roughly speaking- says that small
perturbations of the exact solution (1.2) are unstable and grow quickly.
This unstable growth leads to a nontrivial competition with the (focusing)
nonlinearity, time at which the solution is apparently stabilized. Some
examples revealing this behavior are the breathers for the integrable NLS
equation ((1.1) with p = 3 above), the most famous being the Peregrine
breather (or soliton) [40]

P (t, x) := eit
µ
1− 4(1 + 2it)

1 + 4t2 + 2x2

¶
.(1.8)

This exact solution is a space-time localized, nontrivial perturbation of
the Stokes wave, which appears and disappears from nowhere [1]. Some
interesting connections have been made between the Peregrine soliton (1.8)
and the intensely studied subject of rogue waves in ocean [45, 41, 1, 31].
Very recently, Biondini and Mantzavinos [9] showed (see also [10]), using
inverse scattering techniques, the existence and long-time behavior of a
global solution to (1.5) in the integrable case (p = 3), but under certain ex-
ponential decay assumptions at infinity, and a no-soliton spectral condition
(which, as far as we understand, does not define an open subset of the space
of initial data). Motivated by this fundamental result, we asked ourselves
whether or not a suitable notion of solution for (1.5) exists in standard
Sobolev spaces, for which one can study solutions like (1.8). Consequently,
in this paper we show that, despite the fact that (1.6) is not “suitable well-
posed” as usually well-known dispersive models are, (1.5) has local-in-time
strong (and continuous in space) solutions in Sobolev spaces of fractional
order.

Theorem 1.1. The modulationally unstable equation (1.5) is locally well-
posed for any initial data in Hs, s > 1

2 .

See Theorem 3.1 for a detailed statement of Theorem 1.1. Compared
with the results in [9], we say less about the long-time dynamics, but we
define a local-in-time flow for w on a open set of the origin in Hs, with
minimal assumptions. Note that P in (1.8) is always well-defined, and has
essentially no loss of regularity, confirming in some sense the intuition and
the conclusions in Theorem 1.1. Also, note that using the symmetries of
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the equation, we have LWP for any solution of (1.1) of the form

u(t, x) = uc,v,γ(t, x) + w(t, x), w ∈ Hs, s >
1

2
,

with uc,v,γ defined in (1.3).

The main feature in the proof of Theorem 1.1 is the fact that, if we work
in Sobolev spaces, in principle there is no L1 −L∞ decay estimates for the
linear dynamics. Moreover, one has exponential growth in time of the L2

norm, and therefore no suitable Strichartz estimates seems to be available,
unless one cuts off some bad frequencies. Consequently, Theorem 1.1 is
based in the fact that we work in dimension one, and that for s > 1

2 , we
have the inclusion Hs → L∞.

Let us discuss in more detail the weak form of instability present in
equation (1.5), when working in Sobolev spaces. In order to understand
why (1.5) is still well-posed, consider the backward heat equation in Rd

∂tu = −∆u, u = u(t, x) ∈ R, t ≥ 0,(1.9)

with initial datum u(t = 0) = u0 ∈ S(Rd), the standard Schwartz class. A
simple Fourier analysis reveals that the solution is given by the represen-
tation

u(t, x) = const.

Z
eix·ξe|ξ|

2tû0(ξ)dξ.

Even if û0 ∈ S(Rd), for t > 0 sufficiently large there are initial data
u0 for which e|ξ|

2tû0(ξ) becomes unbounded in ξ, and the solution ceases
to exist in the original Schwartz class. Therefore, (1.9) is ill-posed in the
Hadamard’s sense [26]. However, if now û0 has compact support in ξ, one
has the uniform (in space) estimate¯̄̄̄ Z

eix·ξe|ξ|
2tû0(ξ)dξ

¯̄̄̄
<
∼
eM

2t, supp û0 ⊆ B(0,M).(1.10)

Therefore one has exponential growth in time, but the solution is for-
tunately well-defined for all time. A similar conclusion can be reached in
the case of (1.7): the ”ill-posed” regime in the Fourier space corresponds to
the bounded region |ξ| ≤

√
2, while for |ξ| >

√
2 the equation is naturally

dispersive, with standard decay estimates. As in (1.10), the price to pay
when dealing with (1.7) is an exponential growth in time at the linear level
(even for energy estimates), which reduces the well-posedness result to the
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only general regime where one can close the fixed point iteration of global
estimates3: the subcritical Sobolev setting, in this case Hs, s > 1

2 .

Remark 1.1. Note that (1.5) differs from another well-known, ill-posed
fluid equation, the “bad” Boussinesq model [27, p. 66]:

∂2t u− ∂4xu− ∂2xu+ ∂2x(u
2) = 0,

for which the linear problem, in the Fourier space, reads (compaRe with
(1.7) and (A.4))

∂2t û+ ξ2(1− ξ2)û = 0.

Here, the set of bad frequencies is unbounded: {|ξ| ≥ 1}.

Remark 1.2. A related local well-posedness result as in Theorem 1.1 has
been established for (1.1) in the Zhidkov space, or energy space

E := {u ∈ L∞(R) : ∂xu ∈ L2(R), |u|2 − 1 ∈ L2(R)},(1.11)

by following the ideas by Zhidkov [47], see also Gallo [18, 19], and Gérard
[20], valid for any subcritical-critical dimension. These papers are devoted
to the defocusing case (the Gross-Pitaevskii equation), where they also
obtain global well-posedness thanks to the nonnegativity of the energy.
When s = 1 in Theorem 1.1, the space E contains the solution space
eit(1 +H1(R)), but for s ∈ (12 , 1) there is no evident relationship between
these spaces. Also, scattering results for Gross-Pitaevskii equations are
proved by Gustafson, Nakanishi and Tsai in [24, 25]. Some of the linear
dynamics in Section 2 is related to the one in these works, the main differ-
ence being the modulationally unstable character of the evolution problem
considered in this work. Consequently, in this paper we profit of some de-
tailed Fourier analysis of the distorted linear Schrödinger problem to prove
LWP in Sobolev spaces of noninteger exponent.

Remark 1.3. After this work was completed, we learned about an alter-
native explanation to the rogue wave phenomena, given by the notion of
dispersive blow-up (see Bona and Saut [12]), in which the solution, even
if it is well-defined in L2-based Sobolev spaces, has L∞ norm becoming
unbounded in finite time. This argument works for linear and nonlinear
equations as well. Therefore, a necessary condition for getting dispersive

3Possibly, one can also prove existence of globally defined weak solutions in H1(R),
as in Leray [36] (Navier-Stokes), and Kato [28] (modified KdV).
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blow-up is an Hs regularity where s < d
2 , d being the dimension of space,

which does not fit our LWP assumptions. For further improvements and
applications of these ideas to other dispersive models, see the work by Bona
et al. [11].

Two interesting (mathematical) questions left open in this work are the
following: global existence vs. blow-up (see Remark 3.2 for more details),
and well-posedness and ill-posedness of the flow map for lower regularities.
Note that the ill-posedness method developed by Kenig-Ponce-Vega [29]
does not apply since scaling and Galilean transformations require infinite
Hs energy.

We will apply Theorem 1.1 to show some additional results, in partic-
ular, stability issues for particular NLS soliton solutions appearing when
p = 3.

1.3. More about modulational instability

In addition to the Stokes wave (1.2), it is also known that the Peregrine
soliton has a modulational instability property [30], and it is numerically
unstable under small perturbations, see the work by Klein and Haragus
[33]. Since the equation is locally well-posed and continuous in time, it is
possible to define a notion of orbital stability for the Peregrine breather,
but also for more general solutions.

Fix s > 1
2 , and t0 ∈ R. We say that a particular globally defined

solution U = eit(1 + W ) of (1.1) is orbitally stable in Hs if there are
constants C0, ε0 > 0 such that, for any 0 < ε < ε0,

kw0 −W (t0)kHs < ε

⇓
∃ x0(t) ∈ Rsuch that supt∈R kw(t)−W (t, x− x0(t))kHs < C0 ε.

(1.12)

Here w(t) is the solution to the IVP (1.5) with initial datum w(t0) = w0,
constructed in Theorem 1.1, and x0(t) can be assumed continuous because
the IVP is well-posed in a continuous-in-time Sobolev space.4 If (1.12) is not

4Note that no phase correction is needed in (1.12): equation (1.5) is no longer U(1)
invariant, and any phase perturbation of a modulationally unstable solution u(t) in (1.1),
of the form u(t)eiγ , γ ∈ R, requires an infinite amount of energy. The same applies for
Galilean transformations.
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satisfied, we will say that U is unstable. Note additionally that condition
(1.12) requires w globally defined, otherwise U is trivially unstable, since
U is globally defined.

Recall that NLS solitons on a zero background satisfy (1.12) (with an
additional phase correction) for s = 1 and all L2 subcritical nonlinearities,
see e.g. [15, 23, 43].

Let us come back to the Peregrine breather (1.8). The following result,
which is the main result of this paper, quantifies the instability of the
Peregrine breather.

Theorem 1.2. The Peregrine breather (1.8) is unstable under small Hs

perturbations, s > 1
2 .

This result is in contrast with other positive results involving breather
solutions [5, 6, 7, 39]. In those cases, the involved equations (mKdV, sine-
Gordon) were globally well-posed in the energy space (and even in smaller
subspaces), with uniform in time bounds. Several physical and compu-
tational studies on the Peregrine breather can be found in [17, 13] and
references therein. The proof of Theorem 1.2 will be a direct application of
the notion of modulational instability together with an asymptotic stabil-
ity property. It will be also clear from the proof that Peregrine breathers
cannot be asymptotically stable.

There is an additional oscillatory mode for (1.1)-(1.4). This mode cor-
responds to a perturbation of the Stokes wave that is localized in space,
and periodic in time. Assume a > 1

2 . The Kuznetsov-Ma (KM) breather
[35, 38] is given by the compact expression [3]

B(t, x) := eit

⎡⎣1−√2β (β2 cos(αt)+iα sin(αt))

α cosh(βx)−
√
2β cos(αt)

⎤⎦,
α := (8a(2a− 1))1/2, β := (2(2a− 1))1/2.

(1.13)

In the formal limit a ↓ 1
2 one recovers the Peregrine breather.

5 Note
that B is a Schwartz perturbation of the Stokes wave, and therefore a
smooth classical solution of (1.1). It has been also observed in optical fibre
experiments, see Kliber et al. [32] and references therein for a complete
background on the mathematical problem and its physical applications.
However, using a similar argument as in the proof of Theorem 1.2, we will

5Note that α√
2β
=
√
2a > 1, therefore B in (1.13) is always well-defined.
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show that this mode cannot be stable, at least in our current definition of
stability.

Theorem 1.3. All Kuznetsov-Ma breathers are unstable under small Hs,
s > 1

2 perturbations.

The (formally) unstable character of Peregrine and Kuznetsov-Ma
breathers was well-known in the physical and fluids literature (they arise
from modulational instability), therefore the rigorous conclusions in The-
orems 1.2 and 1.3 are somehow not surprising. However, in several water
tanks or optic fiber experiments, researchers are able to reproduce these
waves [13, 31, 32], if e.g. the initial setting or configuration is close to
the exact theoretical solution. An interesting physical and mathematical
question should be to generalize the notion of stability in (1.12) in order to
encompass the physical occurrence of these phenomena.

We finish this section by recalling that NLS (1.1) possesses a third
oscillatory mode, the Akhmediev breather [3]

A(t, x) := eit

⎡⎣1 + α2 cosh(βt)+iβ sinh(βt)√
2a cos(αx)−cosh(βt)

⎤⎦,
β = (8a(1− 2a))1/2, α = (2(1− 2a))1/2, a < 1

2 ,

In the limiting case a ↑ 1
2 one can recover the Peregrine soliton (1.8).

Unlike Peregrine and Kuznetsov-Ma breathers, this solution is periodic in
space, and localized in time. The three breathers presented along this
work can be seen more clearly in [44]. It would be interesting to study the
stability of this solution, as the previous modes. The Cauchy problem in
the periodic setting should be treated as is done in this work. We conjecture
that this solution should be unstable under suitable periodic perturbations,
for similar reasons to the previously mentioned.

Organization of this paper. This paper is organized as follows. In
Section 2 we describe the linear dynamics in terms of its Fourier estimates.
Section 3 is devoted to the proof of Theorem 1.1, while Section 4 deals with
the instability results in Theorems 1.2 and 1.3.

Acknowledgments. C.M. is indebted to M.A. Alejo, D. Eeltink and C.
Sparber for many suggestions and clarifying discussions about modulational
instability, NLS breathers, and dispersive blow-up.
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2. Fourier description of the linear dynamics

The purpose of this section is to obtain Fourier estimates for solutions w
to the linear problem

i∂tw + ∂2xw + 2Re w = G,w(t = 0) = w0.(2.1)

Along this section, and in the remaining part of this paper, we will use
the following notation:

w = Re w + iImw =: φ+ iϕ, w0 =: φ0 + iϕ0,(2.2)

and

G = ReG+ iImG =: f + ig,(2.3)

where φ, ϕ, φ0, ϕ0, f, g are real-valued functions. Recall that f̂(ξ) = F [f ](ξ)
represents the Fourier transform of f = f(x). We will always assume t ≥ 0,
but all our estimates are valid for t < 0, if we use absolute value when
necessary.

Lemma 2.1. Assume that w = φ + iϕ solves (2.1) with (2.2) and (2.3)
satisfied. Then we have the representation

φ = Φ[f, g;φ0, ϕ0], ϕ = Ψ[f, g;φ0, ϕ0],(2.4)

where

1. for frequencies |ξ| ≤
√
2,

F [Φ[f, g;φ0, ϕ0]](t, ξ) = cosh(|ξ|
p
2− ξ2t)φ̂0(ξ) +

sinh(|ξ|
√
2−ξ2 t)

|ξ|
√
2−ξ2

ξ2ϕ̂0(ξ)

+
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))ĝ(σ, ξ)dσ

−
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

ξ2f̂(σ, ξ)dσ,

(2.5)

and

F [Ψ[f, g;φ0, ϕ0]](t, ξ) = cosh(|ξ|
p
2− ξ2t)ϕ̂0(ξ) +

sinh(|ξ|
√
2−ξ2 t)

|ξ|
√
2−ξ2

(2− ξ2)φ̂0(ξ)

−
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))f̂(σ, ξ)dσ

+
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

(2− ξ2)ĝ(σ, ξ)dσ.

(2.6)
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2. For frequencies |ξ| >
√
2,

F [Φ[f, g;φ0, ϕ0]](t, ξ) = cos(|ξ|
p
ξ2 − 2 t)φ̂0(ξ) + sin(|ξ|

√
ξ2−2 t)

|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

+
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))ĝ(σ, ξ)dσ

−
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

ξ2f̂(σ, ξ)dσ,

(2.7)

and

F [Ψ[f, g;φ0, ϕ0]](t, ξ) = cos(|ξ|
p
ξ2 − 2t)ϕ̂0(ξ) + sin(|ξ|

√
ξ2−2 t)

|ξ|
√
ξ2−2

(2− ξ2)φ̂0(ξ)

−
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))f̂(σ, ξ)dσ

+
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

(2− ξ2)ĝ(σ, ξ)dσ.

(2.8)

Proof. For the proof of this result, see Appendix A. 2

Remark 2.1. Note that the “bad case” |ξ| ≤
√
2 in (2.5)-(2.6) contains an

exponential growth (in time) for frequencies |ξ| ∼ 1. This sort of “weak”
ill-posedness behavior seems being impossible to avoid, but fortunately it
is only present in a compact set of frequencies. Note also that we could
have had initial data with support contained in the region |ξ| >

√
2 of the

Fourier space, however, such a property is apparently not preserved by the
nonlinear dynamics.

2.1. Energy estimates for low frequencies

Now we prove some simple energy estimates for the unstable case, namely
|ξ| ≤

√
2. We first deal with the “homogeneous” estimates.

Lemma 2.2. Let s ≥ 0 be a real-valued number, and t ≥ 0. Consider the
symbols introduced in (2.5)-(2.6). Then we have

°°°°|ξ|s cosh(|ξ|q2− ξ2 t)φ̂0(ξ)

°°°°
L2(|ξ|≤

√
2)
<
∼s
cosh t

°°°φ̂0(ξ)°°°
L2(|ξ|≤

√
2)
,(2.9)

°°°°|ξ|s sinh(|ξ|√2−ξ2 t)

|ξ|
√
2−ξ2

ξ2ϕ̂0(ξ)

°°°°
L2(|ξ|≤

√
2)
<
∼s
sinh t kϕ̂0(ξ)kL2(|ξ|≤√2) ,(2.10)
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and finally

°°°°|ξ|s sinh(|ξ|√2−ξ2t)|ξ|
√
2−ξ2

(2− ξ2)φ̂0(ξ)

°°°°
L2(|ξ|≤

√
2)
<
∼s
sinh t kϕ̂0(ξ)kL2(|ξ|≤√2) .

(2.11)

Proof. Let us prove (2.9). We haveR
|ξ|≤

√
2 |ξ|2s cosh

2(|ξ|
p
2− ξ2t)|φ̂0|2(ξ)dξ

≤ 2s sup|ξ|≤√2 cosh
2(|ξ|

p
2− ξ2 t)

°°°φ̂0(ξ)°°°
L2(|ξ|≤

√
2)

<
∼s

cosh2 t
°°°φ̂0(ξ)°°°

L2(|ξ|≤
√
2)
.

Proof of (2.10). We have the standard inequality (t ≥ 0)

sup
|ξ|≤

√
2

sinh(|ξ|
p
2− ξ2t)

|ξ|
p
2− ξ2

≤ sinh t.(2.12)

For a proof of this result, see Appendix B. From this estimate (2.10)
follows immediately. The proof of (2.11) is similar. 2

Now we consider the inhomogeneous estimates.

Lemma 2.3. Consider again s ≥ 0 and the symbols introduced in (2.5)-
(2.6). Then we have°°°|ξ|s R t0 cosh(|ξ|p2− ξ2(t− σ))ĝ(σ, ξ)dσ

°°°
L2(|ξ|≤

√
2)

<
∼s

R t
0 cosh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ,

(2.13)

°°°°|ξ|s R t0 sinh(|ξ|√2−ξ2(t−σ))|ξ|
√
2−ξ2

ξ2f̂(σ, ξ)dσ

°°°°
L2(|ξ|≤

√
2)

<
∼s

R t
0 sinh(t− σ)

°°°f̂(σ, ξ)°°°
L2(|ξ|≤

√
2)
dσ,

(2.14)

and °°°°|ξ|s R t0 sinh(|ξ|√2−ξ2(t−σ))|ξ|
√
2−ξ2

(2− ξ2)ĝ(σ, ξ)dσ

°°°°
L2(|ξ|≤

√
2)

<
∼s

R t
0 sinh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ.

(2.15)
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Proof. Proof of (2.13). We have°°°|ξ|s R t0 cosh(|ξ|p2− ξ2(t− σ))ĝ(σ, ξ)dσ
°°°
L2(|ξ|≤

√
2)

<
∼s

R t
0

°°°cosh(|ξ|p2− ξ2(t− σ))ĝ(σ, ξ)
°°°
L2(|ξ|≤

√
2)
dσ

<
∼s

R t
0 cosh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ.

Proof of (2.14). Similar to the previous case, using (2.12) we have°°°°|ξ|s R t0 sinh(|ξ|√2−ξ2(t−σ))|ξ|
√
2−ξ2

ξ2f̂(σ, ξ)dσ

°°°°
L2(|ξ|≤

√
2)

<
∼s

R t
0

°°°° sinh(|ξ|√2−ξ2(t−σ))|ξ|
√
2−ξ2

ξ2f̂(σ, ξ)

°°°°
L2(|ξ|≤

√
2)
dσ

<
∼s

R t
0 sinh(t− σ)

°°°f̂(σ, ξ)°°°
L2(|ξ|≤

√
2)
dσ.

The proof of (2.15) is completely similar. 2
From the previous estimates, the following results are immediate.

Corollary 2.1. Assume s ≥ 0, t ≥ 0 and consider the Duhamel represen-
tation for φ and ϕ given in (2.4)-(2.5)-(2.6). Then we have

°°°|ξ|sF [Φ[f, g;φ0, ϕ0]](t, ξ)kL2(|ξ|≤√2)
<
∼s
cosh t

°°°φ̂0(ξ)°°°
L2(|ξ|≤

√
2)
+ sinh t kϕ̂0(ξ)kL2(|ξ|≤√2)

+
R t
0 cosh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ +

R t
0 sinh(t− σ)

°°°f̂(σ, ξ)°°°
L2(|ξ|≤

√
2)
dσ.

(2.16)

Similarly,

°°°|ξ|sF [Ψ[f, g;φ0, ϕ0]](t, ξ)kL2(|ξ|≤√2)
<
∼s
cosh t kϕ̂0(ξ)kL2(|ξ|≤√2) + sinh t kϕ̂0(ξ)kL2(|ξ|≤√2)

+
R t
0 cosh(t− σ)

°°°f̂(σ, ξ)°°°
L2(|ξ|≤

√
2)
dσ +

R t
0 sinh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ.

(2.17)
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2.2. Estimates for high frequencies

Now we deal with the “stable” case |ξ| >
√
2. Now we have oscillatory

integrals with decay estimates, but since the previous unstable regime (|ξ| <√
2) destroyed any possibility of an L1 − L∞ decay, we will only need to

prove energy estimates for sufficiently large frequencies.

Lemma 2.4. Assume s, t ≥ 0. Consider the representations (2.7) and (2.8)
for Φ and Ψ, respectively. Then we have°°°°|ξ|s cos(|ξ|qξ2 − 2t)φ̂0(ξ)

°°°°
L2(|ξ|>

√
2)
≤
°°°|ξ|sφ̂0(ξ)°°°

L2(|ξ|>
√
2)
,(2.18)

°°°°|ξ|s sin(|ξ|√ξ2−2t)
|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

°°°°
L2(|ξ|>

√
2)
≤ max{1, |t|} k|ξ|sϕ̂0(ξ)kL2(|ξ|>√2) ,

(2.19)

and

°°°°|ξ|s sin(|ξ|√ξ2−2t)
|ξ|
√
ξ2−2

(2− ξ2)φ̂0(ξ)

°°°°
L2(|ξ|>

√
2)
≤ max{1, |t|}

°°°|ξ|sφ̂0(ξ)°°°
L2(|ξ|>

√
2)
.

(2.20)

Proof. The proof of (2.18) is direct. Let us show (2.19). We have°°°°|ξ|s sin(|ξ|√ξ2−2t)
|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

°°°°
L2(|ξ|>

√
2)
<
∼

°°°°|ξ|s sin(|ξ|√ξ2−2 t)

|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

°°°°
L2(
√
2<|ξ|<2)

+

°°°°|ξ|s sin(|ξ|√ξ2−2t)
|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

°°°°
L2(|ξ|>2)

<
∼
|t| k|ξ|sϕ̂0(ξ)kL2(√2<|ξ|<2) + k|ξ|sϕ̂0(ξ)kL2(|ξ|>2)

<
∼
max{1, |t|} k|ξ|sϕ̂0(ξ)kL2(|ξ|>√2) .

Finally, (2.20) holds by following similar steps. 2

Finally, we consider the inhomogeneous estimates.

Lemma 2.5. Assume s, t ≥ 0. Under the representation (2.7) and (2.8),
we have°°°|ξ|s R t0 cos(|ξ|pξ2 − 2(t− σ))ĝ(σ, ξ)dσ

°°°
L2(|ξ|>

√
2)
≤
R t
0 k|ξ|sĝ(σ, ξ)kL2(|ξ|>√2) dσ,

(2.21)
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°°°°|ξ|s R t0 sin(|ξ|√ξ2−2(t−σ))
|ξ|
√
ξ2−2

ξ2f̂(σ, ξ)dσ

°°°°
L2(|ξ|>

√
2)

<
∼

R t
0 max{1, |t− σ|}

°°°|ξ|sf̂(σ, ξ)°°°
L2(|ξ|>

√
2)
dσ,

(2.22)

and °°°°|ξ|s R t0 sin(|ξ|√ξ2−2(t−σ))
|ξ|
√
ξ2−2

(2− ξ2)ĝ(σ, ξ)dσ

°°°°
L2(|ξ|>

√
2)

<
∼

R t
0 max{1, |t− σ|} k|ξ|sĝ(σ, ξ)kL2(|ξ|>√2) dσ.

(2.23)

Proof. Estimate (2.21) is direct. Estimates (2.22) and (2.23) hold
following the steps in the proof of estimate (2.19). 2

Now we can state a corresponding result (as in Corollary 2.1), for the
case of large frequencies. This result will be useful in next section.

Corollary 2.2. Assume s, t ≥ 0 and consider the Duhamel representation
for φ and ϕ given in (2.6)-(2.7)-(2.8). Then we have

k|ξ|sF [Φ[f, g;φ0, ϕ0]](t, ξ)kL2(|ξ|>√2)
<
∼s

°°°|ξ|sφ̂0(ξ)°°°
L2(|ξ|>

√
2)
+max{1, |t|} k|ξ|sϕ̂0(ξ)kL2(|ξ|>√2)

+
R t
0 k|ξ|sĝ(σ, ξ)kL2(|ξ|>√2) dσ

+
R t
0 max{1, |t− σ|}

°°°|ξ|sf̂(σ, ξ)°°°
L2(|ξ|>

√
2)
dσ.

(2.24)

Similarly,

°°°|ξ|sF [Ψ[f, g;φ0, ϕ0]](t, ξ)kL2(|ξ|>√2)
<
∼s
kξ|sϕ̂0(ξ)kL2(|ξ|>√2) +max{1, |t|} k|ξ|sϕ̂0(ξ)kL2(|ξ|>√2)

+
R t
0

°°°|ξ|sf̂(σ, ξ)°°°
L2(|ξ|>

√
2)
dσ

+
R t
0 max{1, |t− σ|} k|ξ|sĝ(σ, ξ)kL2(|ξ|>√2) dσ.

(2.25)

Remark 2.2. Note finally that the following continuity estimates are di-
rect from the previous estimates: for low frequencies,

k|ξ|sF [Φ[f1, g1;φ0, ϕ0]− Φ[f2, g2;φ0, ϕ0]](t, ξ)kL2(|ξ|≤√2)
<
∼s

R t
0 cosh(t− σ) k(ĝ1 − ĝ2)(σ, ξ)kL2(|ξ|≤√2) dσ

+
R t
0 sinh(t− σ)

°°°(f̂1 − f̂2)(σ, ξ)
°°°
L2(|ξ|≤

√
2)
dσ,

(2.26)
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while for large frequencies,

k|ξ|sF [Φ[f1, g1;φ0, ϕ0]− Φ[f2, g2;φ0, ϕ0]](t, ξ)kL2(|ξ|>√2)
<
∼

R t
0 k|ξ|s(ĝ1 − ĝ2)(σ, ξ)kL2(|ξ|>√2) dσ

+
R t
0 max{1, |t− σ|}

°°°|ξ|s(f̂1 − f̂2)(σ, ξ)
°°°
L2(|ξ|>

√
2)
dσ.

(2.27)

and a similar estimate is satisfied by Ψ interchanging the role of f and g.

3. Proof of Theorem 1.1

3.1. Statement of the result, and first estimates

We start with the definition of solution for (1.5).

Definition 3.1 (Solution in the Duhamel sense). Fix T > 0, and s ≥
0. We say that w ∈ C([0, T ],Hs(R)) is a strong solution to (1.5) with initial
datum w0 ∈ Hs(R) if w satisfies the equation

i∂tw + ∂2xw + 2Re w = G,
G = G[w] := −[2|w|2 + w2 + |w|2w],(3.1)

in the integral sense. More precisely, under the decomposition (2.2)-(2.3),
w = φ+ iϕ satisfies the Duhamel representation (2.4), with f + ig = G.

In order to show the existence of a unique solution of the form (3.1) to
(1.5), we will use a standard contraction principle in the Sobolev space Hs.
We will show the following detailed statement:

Theorem 3.1. For any T > 0, there exists δ = δ(T ) > 0 such that for any
w0 ∈ Hs(R), s > 1

2 and kw0kHs < δ, there exists a unique solution to (1.5)
w ∈ C([0, T ];Hs(R)). A corresponding result holds for any w0 ∈ Hs(R)
with no size restriction, provided T > 0 is chosen small enough. Finally,
we have the following alternative: if I is the maximal interval of existence
of w, and sup I < +∞, then limt↑sup I kw(t)kHs = +∞.

Remark 3.1. It will be clear from the proof that Theorem 3.1 holds for
(1.1) with any p > 1, provided the regularity space Hs, s > 1

2 is chosen
appropriately, depending on the cases p even, p odd, or p general positive
non-integer real number. In each of these three cases, the nonlinearity
|u|p−1u has different smoothness, which imply different (and limit) choices
for the regularity space Hs where the iteration procedure is performed. See
[14, Remark 4.10.3] for a detailed account of this fact.
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For the proof of Theorem 3.1 we will need the following preliminary
results.

Lemma 3.1. Consider G = G[w] as in (3.1). Assume w ∈ Hs, s > 1
2 .

Then G is also in Hs, and

kGkHs <
∼s
kwk2Hs + kwk3Hs ,(3.2)

Proof. Direct from the Leibnitz rule of fractional derivatives [37, Thm.
3.5] and the fact that Hs, s > 1

2 is a multiplicative algebra. 2

Lemma 3.2. Consider w1, w2 ∈ Hs, s > 1
2 , and G1 = G[w1], G2 = G[w2]

as in (3.1). Then we have

kG1−G2kHs <
∼s
(kw1kHs+kw2kHs+kw1k2Hs+kw2k2Hs)kw1−w2kHs .(3.3)

Proof. Direct from the definition of G[w] in (3.1). 2
Now, the remaining part of the proof is standard, see e.g. [14, Section

4.10]. Let us consider some parametersM,T, δ > 0, and s > 1
2 , and assume

kw0kHs < δ.(3.4)

Note that δ is not necessarily small. Assume now M ≥ δ. In what
follows, we define the Banach space

B(T,M) :=

½
w ∈ C([0, T ];Hs) : sup

t∈[0,T ]
kw(t)kHs ≤M

¾
,(3.5)

endowed with the standard L∞t Hs
x norm.

Lemma 3.3. Let w0 be as in (3.4), w ∈ B(T,M), and G as in (3.1).
Assume that w and G satisfy the decomposition (2.2)-(2.3), and consider
the operators Φ and Ψ as in Lemma 2.1. Then both Φ and Ψ aRe well-
defined and one has the estimates

kΦ[f, g;φ0, ϕ0](t)kHs <
∼s

δ(coshT + sinhT )

+(M2 +M3)(sinhT + coshT − 1)
+max{1, T}δ + T (M2 +M3) + (M2 +M3)max{1, T} T.

(3.6)
and
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kΨ[f, g;φ0, ϕ0](t)kHs <
∼s

δ(coshT + sinhT )

+(M2 +M3)(sinhT + coshT − 1)
+max{1, T}δ + T (M2 +M3) + (M2 +M3)max{1, T}T.

(3.7)

Proof. Let us show (3.6). Combining (2.16) and (2.24) we have (recall
that hξi :=

p
1 + |ξ|2)

kΦ[f, g;φ0, ϕ0](t)kHs <
∼s
cosh t

°°°φ̂0(ξ)°°°
L2(|ξ|≤

√
2)
+
°°°hξisφ̂0(ξ)°°°

L2(|ξ|>
√
2)

+sinh t kϕ̂0(ξ)kL2(|ξ|≤√2)
+
R t
0 cosh(t− σ) kĝ(σ, ξ)kL2(|ξ|≤√2) dσ

+
R t
0 sinh(t− σ)

°°°f̂(σ, ξ)°°°
L2(|ξ|≤

√
2)
dσ

+max{1, |t|} khξisϕ̂0(ξ)kL2(|ξ|>√2)
+
R t
0 khξisĝ(σ, ξ)kL2(|ξ|>√2) dσ

+
R t
0 max{1, |t− σ|}

°°°hξisf̂(σ, ξ)°°°
L2(|ξ|>

√
2)
dσ.

(3.8)

From the definition of solution, (3.2), (3.4) and (3.5),

kΦ[f, g;φ0, ϕ0](t)kHs <
∼s

δ cosh t+ δ sinh t

+(M2 +M3)
R t
0 [cosh(t− σ) + sinh(t− σ)]dσ

+max{1, |t|}δ + |t|(M2 +M3)

+(M2 +M3)
R t
0 max{1, |t− σ|}dσ.

A further simplification gives

kΦ[f, g;φ0, ϕ0](t)kHs <
∼s

δ coshT + δ sinhT

+(M2 +M3)(sinhT + coshT − 1)
+max{1, T}δ + T (M2 +M3) + (M2 +M3)max{1, T}T,

as required. The proof of (3.7) can be established in a completely similar
fashion, using (2.17) and (2.25). 2

Lemma 3.4 (Contraction). Let w0 be as in (3.4), w1, w2 ∈ B(T,M), and
G1 = G[w1], G2 = G[w2] as in (3.1). Consider the natural decomposition
w1 = f1 + ig2 and w2 = f2 + ig2. Then one has the continuity estimates
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supt∈[0,T ] kΦ[f1, g1;φ0, ϕ0](t)− Φ[f2, g2;φ0, ϕ0](t)kHs

<
∼s
(M +M2)

³
coshT − 1 + T +max{1, T}T

´
supt∈[0,T ] k(w1 − w2)(t)kHs ,

(3.9)
and

supt∈[0,T ] kΨ[f1, g1;φ0, ϕ0](t)−Ψ[f2, g2;φ0, ϕ0](t)kHs

<
∼s
(M +M2)

³
coshT − 1 + T +max{1, T}T

´
supt∈[0,T ] k(w1 − w2)(t)kHs .

(3.10)

Proof. We prove (3.9). Using Remark 2.2, and more precisely (2.26)-
(2.27),

kΦ[f1, g1;φ0, ϕ0](t)− Φ[f2, g2;φ0, ϕ0](t)kHs

<
∼s

R t
0 cosh(t− σ) k(ĝ1 − ĝ2)(σ, ξ)kL2(|ξ|≤√2) dσ

+
R t
0 sinh(t− σ)

°°°(f̂1 − f̂2)(σ, ξ)
°°°
L2(|ξ|≤

√
2)
dσ

+
R t
0 khξis(ĝ1 − ĝ2)(σ, ξ)kL2(|ξ|>√2) dσ

+
R t
0 max{1, |t− σ|}

°°°hξis(f̂1 − f̂2)(σ, ξ)
°°°
L2(|ξ|>

√
2)
dσ.

Using now (3.3), we have

kΦ[f1, g1;φ0, ϕ0](t)− Φ[f2, g2;φ0, ϕ0](t)kHs

<
∼s
(M +M2)

R t
0 cosh(t− σ)k(w1 − w2)(σ)kHsdσ

+(M +M2)
R t
0 k(w1 − w2)(σ)kHsdσ

+(M +M2)
R t
0 max{1, |t− σ|}k(w1 − w2)(σ)kHsdσ.

Therefore,

supt∈[0,T ] kΦ[f1, g1;φ0, ϕ0](t)− Φ[f2, g2;φ0, ϕ0](t)kHs

<
∼s
(M +M2)

³
coshT − 1 + T +max{1, T}T

´
supt∈[0,T ] k(w1 − w2)(t)kHs .

The proof for Ψ is very similar. 2

3.2. Proof of Theorem 3.1

First we prove the small time local well-posedness. Let us fix δ > 0, and
M = Cδ, C > 0 large depending on s. Consider (3.6). By taking T > 0
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small enough, we have

kΦ[f, g;φ0, ϕ0](t)kHs ≤ 1
2
M,

and a similar estimate holds for Ψ in (3.7). The contraction character
follows immediately from Lemma 3.4, choosing T smaller if necessary. The
contraction principle allows to conclude.

Now we prove small data local well-posedness. Let us fix T > 0, and
M = C(T, s)δ, with C fixed. Consider (3.6). By taking δ > 0 small enough,
we have

kΦ[f, g;φ0, ϕ0](t)kHs ≤ 1
2
M,

and a similar estimate holds for Ψ in (3.7). The contraction character
follows immediately from Lemma 3.4, choosing δ > 0 smaller if necessary.
The fixed point principle allows to conclude. This finishes the proof of
Theorem 3.1, except for the blow-up alternative, local well-posedness part.

Now we prove the blow-up alternative. If lim supt→sup I kw(t)kHs <
+∞, then w(t) is bounded in L∞t,x and from (3.8), we have, after Gronwall’s
inequality,

kRe w(t)kHs <
∼
eCt,

therefore Re w(t) is bounded in Hs. A similar conclusion follows for the
Hs norm of Imw(t), and therefore I is not maximal. The proof of Theorem
3.1 is complete.

Remark 3.2 (About global existence). Assume now w0 ∈ H1(R). From
the previous subsection, we have a local solution in H1. We will review now
some almost conservation laws. It is known that (1.1) for p = 3 possesses
the following formally conserved quantities:

M [u] :=

Z
(|u|2 − 1), (Mass)(3.11)

and

E[u] :=
1

2

Z
|∂xu|2 −

1

4

Z
(|u|2 − 1)2, (Energy)(3.12)

which induce the following conserved identities for (1.5):Z
|w|2 + 2Re w = conserved,(3.13)
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and Z
|∂xw|2 −

1

2

Z
(|w|2 + 2Re w)2 = conserved.(3.14)

Note that (3.13) is not well-defined for solutions in H1 only. The second
quantity (3.14) is conserved as long as the solution w(t) remains in H1(R),
as a standard density argument involving smooth and rapidly decaying
solutions shows. However, unlike as in the defocusing case [47, 18, 20], this
energy does not give a priori control of the dynamics. A third conserved
quantity comes from the momentum law:

Im

Z
w∂xw = conserved.(3.15)

We conclude that the fact that (1.5) has no conservation of mass reveals
that it is not clear whether or not there is a reasonable GWP result, except
possibly for small data. now the relation

Remark 3.3. Another measure of the “unstable” character of (1.5) (even
present in the Schwartz class) is given by the following formal computation.
Consider the linear equation (1.6) for simplicity, and assume that w(t) ∈
L1(R) in (1.6). Then we have

d

dt

Z
Re w(t) = 0,

d

dt

Z
Imw(t) = 2

Z
Re w(t),

which implies that the zero Fourier mode of w(t) grows linearly in time,

unless

Z
Re w(0) = 0. It is not clear to the author if a suitable bounded

dynamics (for the nonlinear problem) can be obtained by assuming (and
propagating) this condition on the initial datum. See e.g. [21] for a similar
study in the case of the periodic Kuramoto-Sivashinsky equation. The
reader may compare this strong instability result with the weak logarithmic
grow appearing in a similar NLS equation coming from the study of the
binormal flow, see Banica and Vega [8].

4. Some applications to breather solutions

In this Section we prove Theorems 1.2 and 1.3. Recall that we have now
the particular case p = 3, which is integrable.
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4.1. Proof of Theorem 1.2

This proof is not difficult, and it is based in the notion of asymptotic
stability, see e.g. [34, p. 2]. Fix s > 1

2 . Let us assume that the Peregrine
breather P in (1.8) is orbitally stable, as in (1.12). Write

P (t, x) = eit(1 +Q(t, x)), Q(t, x) := − 4(1 + 2it)

1 + 4t2 + 2x2
.(4.1)

Now consider, as a perturbation of the Peregrine breather, the Stokes wave
(1.2). Indeed, we have (see (4.1)),

lim
t→+∞

keit − P (t)kHs = lim
t→+∞

kQ(t)kHs = 0.

Therefore, we have two modulationally unstable solutions to (1.1) that
converge to the same profile as t→ +∞. This fact contradicts the orbital
stability, since for x0(t) ∈ R given in (1.12),

0 < c0 := kQ(0, x− x0(0))kHs

is a fixed number, but if t0 = T is taken large enough, kQ(T )kHs can be
made arbitrarily small. This proves Theorem 1.2.

4.2. Proof of Theorem 1.3

The proof is similar to the one in the previous case. Now we consider the
Kuznetsov-Ma breather B in (1.13). Assume that this breather is orbitally
stable. Consider as a perturbation the explicit solution B̃ to (1.1) that de-
scribes the nonlinear addition of a Kuznetsov-Ma breather, and a Peregrine
breather, both well-decoupled. This solution can be easily obtained from
[4, Appendix B] after performing the standard changes and the Peregrine’s
limit procedure. It is also seen ([4, eqn. (17)]) that

B̃(t, x) = B(t, x) + P̃ (t, x),

where

lim
t→+∞

kP̃ (t)kHs = 0.

However, for x0(t) ∈ R given in (1.12), we have kB̃(0) − B(0, x −
x0(0))kHs = c1 > 0, a fixed nonzero constant. However, for t0 = T
arbitrarily large, kB̃(T ) − B(T )kHs can be made as small as possible, a
contradiction.
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Remark 4.1. As a conclusion, the two preceding proofs reveal that any
suitable nonlinear wave appearing as a product of the modulational insta-
bility of the Stokes wave in the equation, must be orbitally unstable, and
no asymptotic stability should hold.

Remark 4.2. For further purposes, we compute the mass and energy
(3.11)-(3.12) of the Peregrine (1.8) and Kuznetsov-Ma (1.13) breathers.
We have

M [P ] = E[P ] = 0,

(however, the L2-norm of Q(t) is never zero, but converges to zero as t →
+∞), and

M [B] = 4β, E[B] = −4
3
β3.

Note that P has same energy and mass as the Stokes wave solution (the
nonzero background), a property not satisfied by the standard soliton on
zero background. Also, compare the mass and energy of the Kuznetsov-Ma
breather with the ones obtained in [5] for the mKdV breather.

A. Proof of Lemma 2.1

Let us consider once again the linear equation in (2.1):

i∂tw + ∂2xw + 2Re w = G,w(t = 0) = w0.

Using the decomposition in (2.2)-(2.3), we have

i(∂tφ+ i∂tϕ) + ∂2x(φ+ iϕ) + 2φ = f + ig.

Hence,
∂tφ+ ∂2xϕ = g,
−∂tϕ+ ∂2xφ+ 2φ = f.

(A.1)

Therefore

∂2t φ = −∂t∂2xϕ+ ∂tg = −∂2x(∂2xφ+ 2φ− f) + ∂tg,

so that
∂2t φ+ ∂2x(∂

2
x + 2)φ = ∂2xf + ∂tg.(A.2)

Similarly,

∂2t ϕ = (∂
2
x + 2)∂tφ− ∂tf = −∂2x(∂2x + 2)ϕ+ (∂2x + 2)g − ∂tf,
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so that

∂2t ϕ+ ∂2x(∂
2
x + 2)ϕ = (∂

2
x + 2)g − ∂tf.(A.3)

Writing (A.2) in Fourier variables, we have

∂2t φ̂+ ξ2(ξ2 − 2)φ̂ = −ξ2f̂ + ∂tĝ.(A.4)

Now we have to consider two different cases.

Case |ξ| ≤
√
2. In this case ξ2(ξ2 − 2) ≤ 0. The solution to this ODE is

given by the formula

φ̂(t, ξ) = cosh(|ξ|
p
2− ξ2 t)φ̂0(ξ) +

sinh(|ξ|
√
2−ξ2 t)

|ξ|
√
2−ξ2

φ̂1(ξ)

+
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

[−ξ2f̂(σ, ξ) + ∂tĝ(σ, ξ)]dσ.

Here, φ̂1(ξ) := F [∂tφ(0, x)](ξ). We have from (A.1),

F [∂tφ(0, x)](ξ) = F [−∂2xϕ(0, x) + g(0, x)](ξ) = ξ2ϕ̂0(ξ) + ĝ(0, ξ).

On the other hand,

R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

∂tĝ(σ, ξ)dσ = − sinh(|ξ|
√
2−ξ2t)

|ξ|
√
2−ξ2

ĝ(0, ξ)

+
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))ĝ(σ, ξ)dσ.

Consequently,

φ̂(t, ξ) = cosh(|ξ|
p
2− ξ2t)φ̂0(ξ) +

sinh(|ξ|
√
2−ξ2t)

|ξ|
√
2−ξ2

ξ2ϕ̂0(ξ)

+
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))ĝ(σ, ξ)dσ

−
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

ξ2f̂(σ, ξ)dσ,

which proves (2.5).

Case |ξ| >
√
2. Now we have ξ2(ξ2 − 2) > 0 and

φ̂(t, ξ) = cos(|ξ|
p
ξ2 − 2t)φ̂0(ξ) + sin(|ξ|

√
ξ2−2t)

|ξ|
√
ξ2−2

φ̂1(ξ)

+
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

[−ξ2f̂(σ, ξ) + ∂tĝ(σ, ξ)]dσ.
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Here, as in the previous case, φ̂1(ξ) := F [∂tφ(0, x)](ξ) = ξ2ϕ̂0(ξ)+ĝ(0, ξ)
(see (A.1)). Finally,

R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

∂tĝ(σ, ξ)dσ = − sin(|ξ|
√
ξ2−2 t)

|ξ|
√
ξ2−2

ĝ(0, ξ)

+
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))ĝ(σ, ξ)dσ.

Consequently, we have the simplified expression

φ̂(t, ξ) = cos(|ξ|
p
ξ2 − 2t)φ̂0(ξ) + sin(|ξ|

√
ξ2−2t)

|ξ|
√
ξ2−2

ξ2ϕ̂0(ξ)

+
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))ĝ(σ, ξ)dσ

−
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

ξ2f̂(σ, ξ)dσ.

which is nothing but (2.7).

Now we deal with the Fourier representation for ϕ. Using (A.3),

∂2t ϕ̂+ ξ2(ξ2 − 2)ϕ̂ = (2− ξ2)ĝ − ∂tf̂ .

As in the case of φ, we consider two different cases.

Case |ξ| ≤
√
2. We have

ϕ̂(t, ξ) = cosh(|ξ|
p
2− ξ2t)ϕ̂0(ξ) +

sinh(|ξ|
√
2−ξ2t)

|ξ|
√
2−ξ2

ϕ̂1(ξ)

+
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

[(2− ξ2)ĝ(σ, ξ)− ∂tf̂(σ, ξ)]dσ.

Here, ϕ̂1(ξ) := F [∂tϕ(0, x)](ξ). We have from (A.1),

F [∂tϕ(0, x)](ξ) = F [(∂2x + 2)φ(0, x)− f(0, x)](ξ) = (2− ξ2)φ̂0(ξ)− f̂(0, ξ).

Finally,

R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

∂tf̂(σ, ξ)dσ = − sinh(|ξ|
√
2−ξ2t)

|ξ|
√
2−ξ2

f̂(0, ξ)

+
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))f̂(σ, ξ)dσ.

Consequently,

ϕ̂(t, ξ) = cosh(|ξ|
p
2− ξ2t)ϕ̂0(ξ) +

sinh(|ξ|
√
2−ξ2t)

|ξ|
√
2−ξ2

(2− ξ2)φ̂0(ξ)

−
R t
0 cosh(|ξ|

p
2− ξ2(t− σ))f̂(s, ξ)dσ

+
R t
0
sinh(|ξ|

√
2−ξ2(t−σ))

|ξ|
√
2−ξ2

(2− ξ2)ĝ(σ, ξ)dσ,
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which proves (2.6).

Case |ξ| >
√
2. We have

ϕ̂(t, ξ) = cos(|ξ|
p
ξ2 − 2t)ϕ̂0(ξ) + sin(|ξ|

√
ξ2−2t)

|ξ|
√
ξ2−2

[(2− ξ2)φ̂0(ξ)− f̂(0, ξ)]

+
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

[(2− ξ2)ĝ(σ, ξ)− ∂tf̂(σ, ξ)]dσ.

Finally,R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

∂tf̂(σ, ξ)dσ = − sin(|ξ|
√
ξ2−2t)

|ξ|
√
ξ2−2

f̂(0, ξ)

+
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))f̂(σ, ξ)dσ.

Consequently, we have

ϕ̂(t, ξ) = cos(|ξ|
p
ξ2 − 2t)ϕ̂0(ξ) + sin(|ξ|

√
ξ2−2t)

|ξ|
√
ξ2−2

(2− ξ2)φ̂0(ξ)

−
R t
0 cos(|ξ|

p
ξ2 − 2(t− σ))f̂(σ, ξ)dσ

+
R t
0
sin(|ξ|

√
ξ2−2(t−σ))

|ξ|
√
ξ2−2

(2− ξ2)ĝ(σ, ξ)dσ.

which is nothing but (2.8).

B. Proof of (2.12)

We want to prove, for t ≥ 0,

sup
|ξ|≤

√
2

sinh(|ξ|
p
2− ξ2t)

|ξ|
p
2− ξ2

≤ sinh t.

We have

sup|ξ|≤
√
2
sinh(|ξ|

√
2−ξ2t)

|ξ|
√
2−ξ2

= supξ∈[0,
√
2]
sinh(ξ

√
2−ξ2t)

ξ
√
2−ξ2

= maxu∈[0,1]
sinh(u t)

u .

The maximum value of the last quantity above is attained at the bound-
ary u = 1, being sinh t. The other extremal point is u = 0, for which

lim
u→0

sinh(u t)

u
= t ≤ sinh t, t ≥ 0.

Consequently,

max
u∈[0,1]

sinh(u t)

u
= sinh t,

which proves (2.12).
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Ann. I. H. Poincaré -AN 23, pp. 765—779, (2006).

[22] Goodman, J., Stability of the Kuramoto-Sivashinsky and related sys-
tems, Comm. Pure Appl. Math. 47, No. 3, pp. 293—306, (1994).



Instability in nonlinear Schrödinger breathers 681

[23] J. Ginibre, and G. Velo, On a class of nonlinear Schrdinger equations.
I: The Cauchy problem, J. Funct. Anal. 32, pp. 1—32, (1979).

[24] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary
waves in the presence of symmetry. I. J. Funct. Anal. 74, No. 1, pp.
160—197, (1987).

[25] S. Gustafson, K. Nakanishi, and T. P. Tsai, Scattering theory for the
Gross-Pitaevskii equation, Math. Res. Lett. 13, pp. 273—285, (2006).

[26] S. Gustafson, K. Nakanishi, and T. P. Tsai, Global dispersive solutions
for the Gross-Pitaevskii equation in two and three dimensions, Ann.
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