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Abstract

Let S be a monoid, C be the set of complex numbers, and let
σ, τ ∈ Antihom(S, S) satisfy τ ◦ τ = σ ◦σ = id. The aim of this paper
is to describe the solution f, g : S → C of the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x)g(y), x, y ∈ S,

in terms of multiplicative and additive functions.
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1. Notation and terminology

Throughout the paper we work in the following framework: A monoid is a
semi-group S with an identity element that we denote e, that is an element
such that ex = xe = x for all x ∈ S (a semi-group is an algebraic struc-
ture consisting of a set together with an associative binary operation) and
σ, τ : S → S are two anti-homomorphisms (briefly σ, τ ∈ Antihom(S, S))
satisfying τ ◦ τ = σ ◦ σ = id.

For any function f : S → C we say that f is σ-even (resp. τ -even) if
f ◦ σ = f (resp. f ◦ τ = f), also we use the notation f̌(x) = f(x−1) in the
case S is a group.

We say that a function χ : S → C is multiplicative, if χ(xy) = χ(x)χ(y)
for all x, y ∈ S.

If χ : S → C is multiplicative and χ 6= 0, then

Iχ := {x ∈ S | χ(x) = 0} is either empty or a proper subset of S.

If S is a topological space, then we let C(S) denote the algebra of
continuous functions from S into C.

2. Introduction

Wilson’s functional equation on a group G is of the form

f(xy) + f(xy−1) = 2f(x)g(y), x, y ∈ G,(2.1)

where f, g : G→ C are two unknown functions.

Special cases of Wilson’s functional equation are d’Alembert’s func-
tional equation

f(xy) + f(xy−1) = 2f(x)f(y), x, y ∈ G,(2.2)

and Jensen’s functional equation

f(xy) + f(xy−1) = 2f(x), x, y ∈ G.

In [3] Ebanks and Stetkær studied the solutions f, g : G→ C of Wilson’s
functional equation (2.1) and the following variant of Wilson’s functional
(see [8])

f(xy) + f(y−1x) = 2f(x)g(y), x, y ∈ G.(2.3)
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They solve (2.3) and they obtained some new results about (2.1). We refer
also to Wilson’s first generalization of d’Alembert’s functional equation

f(x+ y) + f(x− y) = 2f(x)g(y), x, y ∈ R.(2.4)

For more about the functional equation (2.4) see Aczél [1]. The solutions
formulas of equation (2.4) for abelian groups are known.

In the same year Stetkær in [10] obtained the complex valued solution
of the following variant of d’Alembert’s functional equation

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S,(2.5)

where S is a semi-group and σ is an involutive homomorphism of S. The
difference between d’Alembert’s standard functional equation

f(xy) + f(τ(y)x) = 2f(x)f(y), x, y ∈ S,

and the variant (2.5) is that τ is an anti-homomorphism (on a group typ-
ically the group inversion). Some information, applications and numerous
references concerning (2.5) and their further generalizations can be found
e.g. in [6, 9, 10].

Some general properties of the solutions of equation

f(xy) + f(σ(y)x) = 2f(x)g(y)(2.6)

on a topological monoidM equipped with a continuous involution σ :M →
M can be found in [9, Chapter 11].

Stetkær[11] proved a natural interesting relation between Wilson’s func-
tional equation (2.6) and d’Alembert’s functional equation (2.2) and for
σ(x) = x−1. That is if f 6≡ 0 is a solution of equation (2.6), then g is a
solution of equation (2.2). In [2] Chahbi et al. give a generalization of the
symmetrized multiplicative Cauchy equation.

Recently, EL-Fassi et al. [5] obtained the solution of following functional
equation

f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈ S,(2.7)

where S is a semi-group and σ, τ are two anti-homomorphisms of S such
that σ ◦ σ = τ ◦ τ = id.

The main purpose of this paper is to solve the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x)g(y), x, y ∈ S,(2.8)
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where S is a monoid and σ, τ ∈ Antihom(S, S) such that σ ◦σ = τ ◦τ = id.
This equation is a natural generalization of (2.7) and of the following new
functional equations

f(xσ(y)) + f(σ(y)x) = 2f(x)g(y), x, y ∈ S,(2.9)

f(xσ(y)) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S,(2.10)

f(xσ(y)) + f(τ(y)x) = 2f(x), x, y ∈ S,(2.11)

f(xσ(y)) + f(σ(y)x) = 2f(x), x, y ∈ S,(2.12)

where (S, ·) is a minoid and σ, τ ∈ Antihom(S, S) such that σ ◦σ = τ ◦ τ =
id. Clearly, if S is a group and f̌ = f with σ(x) = x−1, then functional
equation (2.10) becomes the symmetrized multiplicative Cauchy equation
(see for instance [7] or [9, Theorem 3.21]). By elementary methods we
find all solutions of (2.8) on monoid in terms of multiplicative functions.
Finally, we note that the sine addition law on minoid given in [4, 9] is a
key ingredient of the proof of our main result (Theorem 3.1).

3. Solution of the functional equation (2.8)

In this section we obtain the solution of the functional equation (2.8) on
monoid. The following lemma will be used in the proof of Theorem 3.1.

Lemma 3.1. Let S be a monoid and σ ∈ Antihom(S, S). Let f, g : S → C
be a solution of the functional equation

f(xσ(y)) = f(x)g(y), x, y ∈ S.(3.1)

Then g is a multiplicative function.

Proof. For all x, y, z ∈ S, we have
f(x)g(yz) = f(xσ(yz)) = f(xσ(z)σ(y))

= f(xσ(z))g(y) = f(x)g(z)g(y),

then g(yz) = g(y)g(z) for all x, z ∈ S. This implies that g is a multiplicative
function. 2
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Theorem 3.1. Let S be a monoid with identity element e, and σ, τ ∈
Antihom(S, S) such that σ ◦ σ = τ ◦ τ = id (where id denotes the iden-
tity map). The solutions f, g : S → C of (2.8) are the following pairs of
functions, where χ : S → C denotes a multiplicative function such that
χ(e) = 1 :

(1) f ≡ 0 and g arbitrary.

(2) g = χ+χ◦σ◦τ
2 and f = f(e)χ ◦ σ, where χ 6= 0 and f(e) ∈ C \ {0}.

(3) If χ 6= χ ◦ σ ◦ τ, then g = χ+χ◦σ◦τ
2 and

(i) f = f(e)χ ◦ σ, where f(e) ∈ C \ {0},

or

(ii) f = αχ ◦ σ+(f(e)−α)χ ◦ τ for some constant α ∈ C\{0, f(e)},
where χ ◦ σ ◦ τ = χ ◦ τ ◦ σ.

(4) If χ = χ ◦ σ ◦ τ, and S is generated by its squares, then

(i) g(x) = χ(x) and f(x) = (A◦σ(x)+f(e))χ◦σ(x) for x ∈ S\Iχ,

(ii) g(x) = f(x) = 0 for x ∈ Iχ,

where A : S\Iχ → C is a non-zero additive function such that A ◦σ ◦
τ = −A.

Furthermore, if S is a topological monoid, and f, g ∈ C(S), then χ, χ◦σ, χ◦
τ, χ ◦ σ ◦ τ ∈ C(S), and A ◦ σ ∈ C(S\Iχ).

Proof. It is elementary to check that the cases stated in the Theorem
define solutions, so it is left to show that any solution f, g : S → C of
(2.8) falls into one of these case. We use in the proof similar Stetkaer’s
computations [10]. Let x, y, z ∈ S be arbitrary. If we replace x by xσ(y)
and y by z in (2.8), we get
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f(xσ(zy)) + f(τ(z)xσ(y)) = 2f(xσ(y))g(z).(3.2)

On the other hand if we replace x by τ(z)x in (2.8), we infer that

f(τ(z)xσ(y)) + f(τ(zy)x) = 2f(τ(z)x)g(y)
= 2g(y)[2f(x)g(z)− f(xσ(z))].

(3.3)

Replacing y by zy in (2.8), we obtain

f(τ(zy)x) = 2f(x)g(zy)− f(xσ(zy)).(3.4)

It follows from (3.4) that (3.3) become

f(τ(z)xσ(y)) + 2f(x)g(zy)− f(xσ(zy)) = 4g(y)f(x)g(z)− 2g(y)f(xσ(z)).

(3.5)

Subtracting this from (3.2) we get after some simplifications that

f(xσ(zy))−f(x)g(zy) = g(y)[f(xσ(z))−f(x)g(z)]+g(z)[f(xσ(y))−f(x)g(y)].
(3.6)
With the notation

fx(y) := f(xσ(y))− f(x)g(y)(3.7)

equation (3.6) can be written as follows

fa(xy) = fa(x)g(y) + fa(y)g(x).(3.8)

This shows that the pair (fa, g) satisfies the sine addition law for any a ∈ S.
From the Known solution of the sine addition formula (see for example [4,
Lemma 3.4]), we have the following possibilities.

If f ≡ 0 we deal with case (1) in the Theorem. So during the rest of
the proof we will assume that f 6≡ 0. If we replace (x, y) by (e, σ(x)) in
(3.7), we get

f(x) = fe ◦ σ(x) + f(e)g ◦ σ(x), x ∈ S.(3.9)

• Suppose that fx = 0 for all x ∈ S, then fe = 0, i.e., f(x) = f(e)g ◦ σ(x)
for all x ∈ S, and hence f(e) 6= 0. Indeed, f(e) = 0 would entail f ≡
0, contradicting our assumption. From Lemma 3.1, we see that g is a
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multiplication function. Substituting f = f(e)g ◦σ into (2.8), we infer that
g = g ◦ σ ◦ τ . We may thus write g = (g + g ◦ σ ◦ τ)/2 which is the form
claimed in the case (2).

• Now suppose that fx 6= 0 for some x ∈ S.
If fe 6= 0 then, from [4, Lemma 3.4], we see that there exist two multiplica-
tive functions χ1, χ2 : S → C such that

g =
χ1 + χ2
2

.

Case (3): If χ1 6= χ2, then fe = c(χ1 − χ2) for some constant c ∈ C\{0}.
From equality (3.9), we find after a reduction that

f = αχ1 ◦ σ + βχ2 ◦ σ

where α = (2c+ f(e))/2 and β = f(e) − α. Substituting f and g in (2.8),
we get after some simplification that

αχ1 ◦ σ(x)[χ1 ◦ σ ◦ τ(y)− χ2(y)] + βχ2 ◦ σ(x)[χ2 ◦ σ ◦ τ(y)− χ1(y)] = 0

for all x, y ∈ S. Since χ1 6= χ2 we get from the theory of multiplicative
functions (see for instance [9, Theorem 3.18]) that both terms are 0, so(

αχ1 ◦ σ(x)[χ1 ◦ σ ◦ τ(y)− χ2(y)] = 0
βχ2 ◦ σ(x)[χ2 ◦ σ ◦ τ(y)− χ1(y)] = 0

(3.10)

for all x, y ∈ S. Since f 6≡ 0 at least one of α and β is not zero.

Subcase (3.i): If α = 0 and β 6= 0, by (3.10) and f 6≡ 0, for this to be the
case we must have χ1 6= 0, χ2 6= 0 and χ2 ◦ σ ◦ τ(y) = χ1(y) for all y ∈ S,
then f and g have the desired form (3.i) with χ2 := χ.

If α 6= 0 and β = 0, by (3.10) and f 6≡ 0, for this to be the case we must
have χ1 6= 0, χ2 6= 0 and χ1 ◦ σ ◦ τ(y) = χ2(y) for all y ∈ S, then f and g
have the desired form (3.i) with χ1 := χ.

Subcase (3.ii): If α 6= 0 and β 6= 0, by (3.10) and f 6≡ 0, for this to
be the case we must have χ1 6= 0, χ2 6= 0, χ1 ◦ σ ◦ τ(y) = χ2(y) and
χ2 ◦ σ ◦ τ(y) = χ1(y) for all y ∈ S, with χ1 = χ, after some simplification,
we obtain χ ◦ σ ◦ τ = χ ◦ τ ◦ σ and the desired form (3.ii) of f and g.

Case 4: If χ1 = χ2 then letting χ := χ1 we have g = χ. If S is generated
by its squares, then there exists an additive function A : S\Iχ → C for
which

fe(x) =

(
A(x)χ(x) if x ∈ S\Iχ
0 if x ∈ Iχ.

(3.11)
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Subcase (4.i): If x ∈ S\Iχ, then by (3.9) and (3.11), we get

f(x) = (A ◦ σ(x) + f(e))χ ◦ (x)

for all x ∈ S\Iχ. Substituting f and g in (2.8), we get after some simplifi-
cation that

(A◦σ(x)+f(e))(χ◦σ◦τ(y)−χ(y))+A◦σ◦τ(y)χ◦σ◦τ(y)+A(y)χ(y) = 0,

(3.12)

for all x, y ∈ S\Iχ. Suppose that χ ◦ σ ◦ τ 6= χ. From (3.12) we infer that
A ≡ 0, this contradicts with fe 6= 0 on S. So χ◦σ◦τ = χ and A◦σ◦τ = −A.

Subcase (4.ii): If x ∈ Iχ, then g(x) = f(x) = 0.

If fe = 0, then f(x) = f(e)g ◦ σ(x) for all x ∈ S, and hence f(e) 6= 0.
Replacing (x, y) by (e, x) in (2.8), we get

f(σ(x)) + f(τ(x)) = 2f(e)g(x), x ∈ S.(3.13)

From (3.13) and f(x) = f(e)g ◦ σ(x) for all x ∈ S, we obtain f(x) =
f(e)g ◦ τ(x) for all x ∈ S. So, g is a solution of the functional equation

g(xy) + g(τ ◦ σ(y)x) = 2g(x)g(y), x, y ∈ S.(3.14)

Similar to the proofs of [10, Theorem 2.1], we find that g = (χ+χ◦σ◦τ)/2,
where χ : S → C is multiplicative and χ ◦ σ ◦ τ = χ ◦ τ ◦ σ. Hence we are
in case (2) or (3).

The continuity statement follows from [9, Theorem 3.18 (d)]. This
completes the proof of Theorem. 2

4. Some consequences

As immediate consequences of Theorem 3.1, we have the following corol-
laries.

Corollary 4.1. Let S be a monoid with identity element e, and σ, τ ∈
Antihom(S, S) such that σ ◦ σ = τ ◦ τ = id. The solutions f, g : S → C of
the functional equation

f(xσ(y)) + f(σ(y)x) = 2f(x)g(y), x, y ∈ S

are the following pairs of functions, where χ : S → C denotes a multiplica-
tive function such that χ(e) = 1 :
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(1) f ≡ 0 and g arbitrary.

(2) g = χ and f = f(e)χ ◦ σ, where χ 6= 0 and f(e) ∈ C \ {0}.

Furthermore, if S is a topological monoid and f, g ∈ C(S), then χ, χ ◦ σ ∈
C(S).

Proof. It suffices to take τ(x) = σ(x) for all x ∈ S in Theorem 3.1. 2

Corollary 4.2 ([5]). Let S be a monoid with identity element e, and
σ, τ ∈ Antihom(S, S) such that σ◦σ = τ ◦τ = id. The solutions f : S → C
of the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈ S

are the functions of the form f = (χ+ χ ◦ σ ◦ τ)/2, where χ : S → C is a
multiplicative such that:

(i) χ ◦ σ ◦ τ = χ ◦ τ ◦ σ, and

(ii) χ is σ-even or/and τ -even.

Furthermore, if S is a topological monoid and f ∈ C(S), then χ, χ ◦σ ◦ τ ∈
C(S).

Proof. It suffices to take g(x) = f(x) for all x ∈ S in Theorem 3.1. 2

Corollary 4.3. Let S be a monoid with identity element e, and σ, τ ∈
Antihom(S, S) such that σ ◦ σ = τ ◦ τ = id. The solutions f : S → C of
the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x), x, y ∈ S

are the functions of the form:

(1) f ≡ 0.

(2) f = f(e), where f(e) ∈ C \ {0}.

(3) If S is generated by its squares, then

(i) f(x) = A ◦ σ(x) + f(e) for x ∈ S\Iχ,
(ii) f(x) = 0 for x ∈ Iχ,

where A : S\Iχ → C is an additive function such that A ◦ σ ◦ τ = −A 6= 0.
Furthermore, if S is a topological monoid, and f ∈ C(S), then A ◦ σ ∈
C(S\Iχ).
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Proof. It suffices to take g(x) = 1 for all x ∈ S in Theorem 3.1. 2

Corollary 4.4. Let S be a monoid with identity element e, and σ ∈
Antihom(S, S) such that σ ◦ σ = id. The solutions f : S → C of the
functional equation

f(xσ(y)) + f(σ(y)x) = 2f(x)f(y), x, y ∈ S

are the functions of the form f = χ, where χ : S → C is a multiplicative
such that χ is σ-even.

Proof. It suffices to take g(x) = f(x) and τ(x) = σ(x) for all x ∈ S in
Theorem 3.1. 2
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