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Abstract

Meshfree methods offer the potential to relieve the scientist from
the time consuming grid generation process especially in cases where
localized mesh refinement is desired. Moving least squares (MLS)
methods are considered such a meshfree technique. The pseudo-derivative
(PD) approach has been used in many papers to simplify the manipu-
lations involved in MLS schemes.

In this paper, we provide theoretical error estimates for a least
squares implementation of an MLS/PD method with a stabilization
mechanism. Some beginning computations suggest this stabilization
leads to good matrix conditioning.
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1. Introduction

Meshfree methods, in particular those based on Moving Least Squares
(MLS) schemes, have been used to solve a wide range of Partial Differential
and Ordinary Differential Equations. These methods have been around for
a number of years with many researchers publishing in a variety of fields.
They have sparked growing interest upon recognition that the expense of
the mesh generation can be avoided in the development of simulations of
complex problems and applications in science and engineering. The full
development of a Meshless Method could provide an economical advantage
over the more traditional Finite Element or Finite Volume Schemes. This
especially holds true for applications where, in complicated finite difference
schemes, mesh refinement is needed to handle boundary value problems
(BVPs) with singular solution behavior or complicated geometric domains,
for example in cases where localized mesh refinement is desired ([BKOFK]).

Despite their great applicability and recognized advantages, several
drawbacks have been found for meshless methods since the last three decades.
Most of them have a common root: computational cost. As the finite el-
ement method, meshless methods based on moving least squares, approxi-
mate an unknown function as a linear combination of a set of basis functions
with a set of coefficients depending on the function of interest; however in
the finite element method this basis is polynomial while in meshfree meth-
ods it is rational (typically), so the calculation of derivatives in meshfree
methods is not as straightforward as in finite element methods and has
been proved to be time consuming. An alternative to the direct calculation
of the derivatives was introduced in [NTV] and called diffuse derivatives or
pseudo-derivatives, which are much easier to compute and reduce the total
computational time.

The diffuse- or pseudo-derivative approach has been used in many pa-
pers ([FO], [HBFR], [KLYBL], [NTV], [BRTV], [YLB], [HVV1] and [VVH2]).

In [HVV1], the simplicity of the differentiation of the diffuse deriva-
tives was exploited to develop spaces of functions that were approximately
divergence-free. In most of these MLS/PD papers, the approximation is
defined via collocation with the full partial differential equation (PDE)
instead of a weak form, which has been prove to lead to ill conditioned
matrices very quickly, and none full error analysis has been furbished yet.

In [FO] and [OF], a convergence theorem was provided for a stabilized
MLS/PD approach for second-order boundary value problems (BVPs), but
based on a Galerkin formulation. In this paper, we provide error esti-
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mates for a least squares MLS/PD approach, based on the minimization
of a convenient functional, which is different from both the collocation and
Galerkin approaches mentioned above, and constitutes the first work with
diffuse derivatives in that direction.

The outline of this paper is as follows. In section 2 we introduce the
prototype problem as well as notation and ideas behind MLS schemes and
PDs. We also provide a regularity estimate for the differential operator. In
section 3 we introduce the MLS/PD least squares method, provide a key
approximation property and show uniqueness and existence for the method.
In section 4 the error analysis is given and section 5 has a short computa-
tional example. Section 6 gives some commentary and future directions.

2. Preliminaries and Prototype BVP

In this section we introduce our model second-order BVP and preliminary
information on the problem as well as background on MLS methods and
PDs. In this paper we will study the following one-dimensional BVP:⎧⎪⎪⎨⎪⎪⎩

Find U = U(x) so that

LU = −U 00 + κU = f in Ω = (0, 1)

where U(0) = U(1) = 0.

(2.1)

Here κ and f are functions and 0 < κ0 ≤ κ(x) ≤ κ1 <∞ for all x ∈ Ω.
We will place restrictions on the size of κ2 = maxx∈Ω |κ0(x)|. This problem
is somewhat simple but we note that the theoretical error analysis for a
similar stablilized Galerkin MLS/PD method was performed in [FO] and
extended to two-dimensions in [OF].

Our MLS approach uses the set of distinct nodes ΛN = {x1, . . . , xN}
on interval Ω. A direct MLS approximation UR = UR(x) is

UR(x) = lim
y→x

PU (x, y) where PU (x, y) =
mX
c=0

ac(x)

µ
y − x

R

¶c
.

In this approximation of U , the coefficient vector �a(x) = [a0(x), ..., am(x)]
T

is chosen so it minimizes, thinking of x as fixed, the functional

J(�a(x)) =
NX
k=1

W

µ
xk − x

R

¶
(PU (x, xk)− U(xk))

2.

Typically, we have 0 < R << 1 and, so there must be at least 2m nodes
(the xj ’s) in each subinterval of length R, we set R ∼= 2m/N (Precise details
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on this as well as the other grid assumptions can be found in [FO], [Cl] and
[O]). The weight function W is smooth and nonnegative, has maximum
value 1, support in [−1, 1] and is symmetric about 0. A short calculation
shows that

�a(x) =M−1(x)B(x)�U with �U = [U(x1), ..., U(xN)]
T .

Here M is the m+ 1×m+ 1 matrix given by

M(x) =
NX
k=1

W

µ
xk − x

R

¶
�p

µ
xk − x

R

¶
�pT
µ
xk − x

R

¶
,

where we used the polynomial vector �p(z) = [1, z, z2, ..., zm]T and B(x) is
a (m+ 1)×N matrix with the

ith Column of B(x) =W

µ
xi − x

R

¶
�p

µ
xi − x

R

¶
.

PU (x, y) provides a local mth degree polynomial approximation for U in
variable y near fixed position x. Note that PU can also be written as follows:

PU (x, y) = �p

µ
y − x

R

¶
· �a(x).

Observe that the proper derivative of UR involves differentiation of the com-
plicated function �a(x) (a time consuming task that has been described as
one of the drawbacks of meshfree methods). The pseudo-derivative denoted
by operator δ is simpler and only involves differentiation of polynomials;

δUR(x) = lim
y→x

∂PU(x, y)

∂y
= lim

y→x

∙
∂

∂y
�p

µ
y − x

R

¶¸
· �a(x) = a1(x)

R

and

δ2UR(x) = lim
y→x

∂PU (x, y)

∂y
= lim

y→x

"
∂2

∂y2
�p

µ
y − x

R

¶#
· �a(x) = 2

R2
a2(x).

For an approximation space, we let VR denote the family of spaces of MLS
functions defined from values v1, . . ., vN .

We are especially interested in the stabilization functional

Θ(�v) =

Z
Ω

X
k∈ΛN (s;R)

[Pv(s, xk)−vk]
2
ds where ΛN(x;R) = {k : xk ∈ ΛN and |x−xk| ≤ R}.
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As is customary with error analyses, we rely heavily on Sobolev spaces
(See, for instance, [BS]). We use the notationWm,p(Ω) to denote the space
consisting of functions with m derivatives in Lp(Ω) (1 ≤ p ≤ ∞) and
Hm(Ω) for the special case where p = 2. For the seminorms and norms we
use the following notation:

|Z|pm,p,Ω =

Z
Ω

¯̄̄̄
dmZ

dxm

¯̄̄̄p
dx and kZkpm,p,Ω =

mX
c=0

Z
Ω

¯̄̄̄
¯dcZdxc

¯̄̄̄
¯
p

dx.

For Z ∈ H1(Ω), we use the Sobolev inequality along with the fact that
Ω = (0, 1) to show that

kZk0,∞,Ω ≤ kZk1,2,Ω.(2.2)

We will further use the standard Cauchy-Schwarz inequality as well as the
arithmetic-geometric mean; for 0 < δ < 1 and positive constants a and b,
∃Cδ > 0 so

ab ≤ δa2 + Cδb
2(2.3)

We will assume good approximation properties for UR.

Lemma 2.1. (Approximability of UR) There exists C > 0 so that

kU − URkj,p,Ω ≤ CRm+1−jkUkm+1,p,Ω, j = 0, 1, 2 and p = 2,∞

(2.4)

For the proof see [AD] or restatements in [FO], [Cl] or [O].

We also assume the following generalization of the theorem in [FO].

Lemma 2.2. (Stabilization by Θ) For v ∈ VR there exists a constant C >
0, independent of R and v, such that

kδjv − ∂jv/∂xjk0,2,Ω ≤ CR−j
q
Θ(�v) j = 1, 2(2.5)

The j = 1 case for the first inequality is provided in [FO] and the j = 2
case is proved in [Cl]. They are both based on the analysis in [AD]. Finally,
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Lemma 2.3. For �Z = (z(x1), . . . , Z(xN ))
T derived from smooth function

Z, there is C > 0 independent of R and norms of Z so

Θ(�Z) ≤ CR2m+2kZk2m+1,∞,Ω.(2.6)

Again see [FO] or [Cl] for the result based on work in [AD].

We now provide a regularity/stability estimate for the differential op-
erator L.

Lemma 2.4. (L-Regularity) For w ∈ H2(Ω) and assuming that κ2 <
min{2κ0, κ20}, there exist C1 > 0 and C2 > 0 such that

kLwk20,2,Ω ≥ C1kwk22,2,Ω − C2

Ã
max{|w(0)|, |w(1)|}

!2
(2.7)

Proof. We first integrate the square of Lw;Z
Ω
(Lw)2dx =

Z
Ω
(w00)2dx+

Z
Ω
κ2w2dx− 2

Z
Ω
κww00dx.

Now, using the fact that

κww00 = (κww0)0 − κ(w0)2 − κ0ww0

and the Cauchy-Schwarz inequality as well as our upper and lower bounds
on κ, we haveR

Ω(Lw)
2dx ≥

R
Ω

Ã
(w00)2 + κ20w

2 + 2κ0(w
0)2
!
dx

− 2κ2
Z
Ω
|ww0|dx− 2

Ã
κ(1)w(1)w0(1)− κ(0)w(0)w0(0)

!
.(2.8)

From the Sobolev inequality (2.2) we know that

|w0(0)| ≤ kw0k0,∞,Ω ≤ kwk2,2,Ω and |w0(1)| ≤ kw0k0,∞,Ω ≤ kwk2,2,Ω.

From this we conclude

−2
Ã
κ(1)w(1)w0(1)−κ(0)w(0)w0(0)

!
≥ −4κ1max

(
|w(0)|, |w(1)|

)
kwk2,2,Ω.

We also know that

2κ2

Z
Ω
|ww0|dx ≤ κ2

µZ
Ω
w2dx+

Z
Ω
(w0)2dx

¶
,
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where we used the Cauchy-Schwarz inequality and arithmetic-geometric
mean inequality (2.3). SoZ

Ω
(Lw)2dx ≥

Z
Ω
(w00)2dx+ (κ20 − κ2)

Z
Ω
w2dx+ (2κ0 − κ2)

Z
Ω
(w0)2dx

−4κ1max{|w(0)|, |w(1)|}kwk2,2,Ω
or, using (2.3) with δ > 0;Z
Ω
(Lw)2dx ≥

Z
Ω
(w00)2dx+(κ20−κ2)

Z
Ω
w2dx+(2κ0−κ2)

Z
Ω
(w0)2dx−δkwk22,2,Ω

−Cδ

Ã
max{|w(0)|, |w(1)|}

!2
.

Using the assumption that κ2 < min{2κ0, κ20} and choosing δ < 1 suffi-
ciently small gives the desired estimate (2.7). 2

3. Least Squares MLS/PD Approximation Scheme

In this section we introduce our least squares MLS/PD method and show
that it has a unique solution. Let, for v ∈ VR, Lδv = −δ2v + κv. The
MLS/PD least squares scheme is as follows:⎧⎪⎪⎨⎪⎪⎩

Find u ∈ VR that minimizes
Φ(v) =

R
Ω(Lδv − f)2 dx+ (η/R4)Θ(�v) +

£
v(0)2 + v(1)2

¤
for all v ∈ VR.

(3.1)

Note that η > 0 is a constant parameter. We first show that this
problem has a unique solution.

Theorem 3.1. (Existence and uniqueness for (3.1)) There exists η0 > 0
such that for each η ≥ η0 the problem (3.1) has a unique solution u.

Proof. Note that the problem (3.1) is really the minimization of a finite
dimensional quadratic form.

It is known that this kind of matrix problem is equivalent to a matrix-
vector system of equations and if the matrix is nonsingular there will be a
unique solution to the minimization problem.

The functional derivative of Φ with respect to v in direction of test
function φ will be zero at the minimum point u;
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Φ0(u)[φ] = 0 ∀φ ∈ VR.(3.2)

In [Cl] we show that

Φ0(v)[φ] = 2
Z
Ω
(Lδv − f)(Lδφ) dy +

2η

R4
Θ0(�v)[φ] + 2v(0)φ(0) + 2v(1)φ(1).

Again, since (3.1) is finite dimensional and a quadratic form, we know
that if we can show uniqueness then the existence of a solution follows.

So, we suppose there are two solutions u1 and u2 for which

Φ0(ui)[φ] = 2
Z
Ω
(Lδui−f)(Lδφ) dy+

2η

R4
Θ0(�ui)[�φ]+2ui(0)φ(0)+2ui(1)φ(1) = 0

∀φ ∈ VR and i = 1, 2

and then let γ = u1 − u2. Subtracting the equations for i = 1 and i = 2
and letting φ = γ, the difference of the two solutions, we findZ

Ω
(Lδγ)

2 ds+
η

R4
Θ(�γ) + (γ(0))2 + (γ(1))2 = 0.(3.3)

(Θ0(�v)[�v] = 2Θ(�v) must follow since Θ(�v) is a quadratic form.)
Note that, from lemma 2, since L is second order,

kLv − Lδvk0,2,Ω = kv00 − δ2vk0,2,Ω ≤ CR−2
q
Θ(�v).(3.4)

Also, from the triangle inequality, we can show that

kLδγk0,2,Ω ≥ |kLγk0,2,Ω− kLγ−Lδγk0,2,Ω| = |kLγk0,2,Ω− kγ00− δ2γk0,2,Ω|.
So, squaring the inequality above and dropping the kγ00−δ2γk20,2,Ω term,

we have

kLδγk20,2,Ω ≥ kLγk20,2,Ω − 2kLγk0,2,Ωkγ00 − δ2γk0,2,Ω.

Substituting this into (3.3), we have

kLγk20,2,Ω +
η

R4
Θ(�γ) + γ(0)2 + γ(1)2 ≤ 2kLγk0,2,Ωkγ00 − δ2γk0,2,Ω.

From the arithmetic-geometric mean inequality (2.3) we find

(1− δ)kLγk20,2,Ω +
η

R4
Θ(�γ) + γ(0)2 + γ(1)2 ≤ Cδkγ00 − δ2γk20,2,Ω.
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Now choosing δ = 1/2 and using the j = 2 case of (2.5) we have that
there is a C > 0 so

kLγk20,2,Ω +
2η

R4
Θ(�γ) + 2γ(0)2 + 2γ(1)2 ≤ C

R4
Θ(�γ).

And, so, for η0 = C/2 and η ≥ η0 we conclude

kLγk20,2,Ω + 2γ(0)2 + 2γ(1)2 ≤ 0

Showing that Lγ = 0, γ(0) = 0 and γ(1) = 0. From Lemma 2.4 and
(2.7) we have kγk2,2,Ω = 0 from which we can now conclude γ ≡ 0. 2

4. Theoretical Error Analysis

In this section we provide a theoretical error estimate for this method. We
first examine Φ(UR). Since LU = f we have

Φ(UR) =

Z
Ω
(LδUR − LU)2 dx+

η

R4
Θ(�U) + UR(0)

2 + UR(1)
2.

The triangle inequality along with Lemma’s 2.1-2.3 can be used to show
that there is a C > 0 so

kLδUR − LUk0,2,Ω ≤ C

Ã
kUR − Uk2,2,Ω + kδ2UR − U 00Rk0,2,Ω

!
≤ CRm−1.

Recall from Lemma 2.3 and equation (2.6) we also have that there is a
C > 0 so

Θ(�U) ≤ CR2m+2.

Further, since U(0) = U(1) = 0,

|UR(0)| = |UR(0)− U(0)| ≤ CkUR − Uk1,2,Ω ≤ CRm

and
|UR(1)| = |UR(1)− U(1)| ≤ CkUR − Uk1,2,Ω ≤ CRm,

where we used the Sobolev inequality (2.2) to bound the point values and
Lemma 2.1, equation (2.4).

Putting these conclusions together we now have that Φ(UR) ≤ CR2m−2.
Since u is the minimum over VR we then have

Φ(u) ≤ Φ(UR) ≤ CR2m−2.(4.1)
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So we now consider the error e = u− UR. Then

kLek0,2,Ω ≤ kLu− Lδuk0,2,Ω + kLδu− fk0,2,Ω + kf − LUk0,2,Ω + kLU − LURk0,2,Ω

≤ CR−2
q
Θ(�u) +

q
Φ(u) + 0 + CRm−1kUkm+1,2,Ω

≤ CRm−1.

where we used the approximation (2.4), the stabilization estimate (2.5) and
estimate (4.1). For the boundary (endpoint) errors we have

|e(0)| ≤ |u(0)|+ |UR(0)| ≤
q
Φ(u) +

q
Φ(UR) ≤ CRm−1.(4.2)

and, in the same manner, we can show that

|e(1)| ≤ CRm−1.(4.3)

So, now, from the regularity theorem for L which is equation (2.7) and
knowing that u ∈ H2(Ω) and UR ∈ H2(Ω), we have

kek22,2,Ω ≤ C1kLek20,2,Ω +C2max{|e(0)|, |e(1)|}2 ≤ CR2m−2.

Thus, from the estimates above and the approximation of UR corresponding
to U by UR in Lemma 2.1, we have now proved,

Theorem 4.1. (Error Rate) There exists C > 0 independent of R so that

ku− Uk2,2,Ω ≤ CRm−1.(4.4)

5. Computations with MLS/PDMethod for Example Elliptic
BVP

In this section we investigate the computational performance of our least
squares MLS/PD method. The schemes studied computationally in the
pseudo-derivative papers listed in the introduction are mostly collocation
approaches while we use numerical integration. However, none of these PD
collocation schemes are stabilized as we do. We are especially interested in
the behavior of this approach with and without the stabilizing term.

For our computations we used the following example problem. If we let
κ ≡ 1 and define

U(x) = (1− x) sinh(x),
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which satisfies the Dirichlet BCs U(0) = U(1) = 0 then we find that

LU = −U 00 + U = 2 cosh(x).

So we set f(x) = 2 cosh(x) to create a test problem with known solution in
closed form.

The minimization problem (3.1) was solved from the variational equa-
tion Φ0(u)[φ] = 0 ∀φ ∈ VR. The resulting integrals were evaluated by
numerical integration where we broke the domain Ω = [0, 1] into NS = 8
subintervals and used NL = 6 Gauss-Lobatto point integration nodes on
each of these subintervals.

In our sample computations, we used polynomial degree m = 2 and
obtained the errors and rates for the stabilized and unstabilized methods,
These are displayed in table below. The errors are the maximum of absolute
values of differences between the true and approximate solutions at 100
points on [0, 1].

Table: Maximum Norm Errors.

R-Value MLS/PD—Error Rate MLS/PD—Error Rate
(Non-Stabilized) (Stabilized)

0.8 1.73e-2 — 1.87e-2 —
0.4 3.31e-3 2.39 4.33e-3 2.11
0.2 5.29e-4 2.64 7.86e-4 2.46
0.1 1.09e-2 -4.36 1.54e-4 2.35

The “rate” was computed from the log of successive errors divided by the log
of successive R’s. As seen, the rates in the table are better than predicted
by theorem 2.

We found that the condition numbers for the non-stabilized scheme in-
creased very quickly and, for instance, in the R = 0.1 case was 1.80e17. We
believe this was the cause of the significant loss of accuracy. The stabilized
scheme was much better conditioned; in the case when R = 0.1 the matrix
had condition number 8.69e5. Other computer experiments with increased
numbers of Gauss-Lobatto points and subintervals still led to very similar
results to those we shown.

6. Conclusions and Extensions

In this paper we have introduced a least squares MLS/PD method with a
special stabilization term to add control of the errors made in the pseudo-
derivative approximation of the real derivatives. We have proved the method
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will have a unique solution and provided a theoretical error analysis. Our
computations confirm the accuracy of our scheme and provide some evi-
dence that the stabilization is helpful by keeping the matrix conditioning
at a moderate level.

Although we have not done so here, the work could be extended to
multiple dimensions as was done in [OF].
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Colombia
e-mail : MaOsorio@UNAL.Edu.Co




