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Abstract

We study the existence of positive periodic solutions of a system of
neutral differential equations. In the process we construct two map-
pings in which one is a contraction and the other compact. A Kras-
noselskii’s fixed point theorem is then used in the analysis.
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1. Introduction

In this paper we use a fixed point theorem due to Krasnoselskii to study the
existence of positive periodic solutions of the system of neutral differential
equations

d

dt
x(t) = A(t)x(t− τ(t))−C(t)

d

dt
x(t− τ(t))− F (t, x(t− τ(t))),(1.1)

where
C(t) = diag[c1(t), c2(t), ..., cn(t)], A(t) = diag[a1(t), a2(t), ..., an(t)], and

F (t, x(t − τ(t))) = [f1(t, x1(t − τ(t))), f2(t, x2(t − τ(t))), ..., fn(t, xn(t −
τ(t)))]T .
The scalar version of (1.1) arises in food-limited population models ([3],[4]-
[7],[8],[9]) and blood cell models [2]. Recently, Raffoul, [21] obtained suffi-
cient conditions for the existence of positive periodic solutions for the scalar
neutral nonlinear differential equation

x0(t) = −a(t)x(t) + c(t)x0(t− g(t)) + q(t, x(t− g(t))).(1.2)

In the current paper we extend the results in [21] to systems of equations.
It must be noted that if τ(t) = 0 in the first term on the right hand side
of (1.1) and n = 1, then (1.1) reduces to (1.2). Thus, even for n = 1 our
results obtained in this paper are more general than that obtained in [21].
Let R+ = [0,+∞). For each x = (x1, x2, x3, ..., xn)T ∈ Rn, the norm of x is
defined as |x| = Pn

j=1 |xj |. Rn
+ = {(x1, x2, x3, ..., xn)T ∈ Rn : xj ≥ 0, j =

1, 2, 3, ..., n}. We say that x is ”positive” whenever x ∈ Rn
+.

In this paper we make the following assumptions.

(H1) There exist constants σj > 0 such that σj < cj(t), j = 1, ..., n, for all
t ∈ [0, ω].

(H2) There exist constants αj , such that ||cj || ≤ αj , j = 1, 2, ..., n.

(H3) There exist continuous functions hj : R→ R, j = 1, ..., n such that

hj(t+ ω) = hj(t),

Z ω

0
hj(s)ds > 0.(1.3)

(H4) 0 < hj(t) < 1 for all t ∈ [0, ω], j = 1, ..., n.

(H5) τ 0(t) > 1 for all t ∈ R.
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2. Preliminaries

Let Sω = {φ ∈ C(R,Rn) : φ(t + ω) = φ(t) for t ∈ R }, be endowed with
the usual linear structure as well as the norm

||φ|| =
nX

j=1

|φj |0, for φ = (φ1, φ2, ..., φn) ∈ Sω,

where
|φj |0 = sup

t∈R
|φj(t)| = sup

t∈[0,ω]
|φj(t)|, j = 1, ..., n.

Then Sω is a Banach space.

We assume that all functions in (1.1) are continuous with respect to their
arguments.
We also assume that for all t ∈ R,

aj(t+ ω) = aj(t), j = 1, 2, ..., n(2.1)

fj(t+ ω, .) = fj(t, .), j = 1, 2, ..., n(2.2)

τ(t+ ω) = τ(t)(2.3)

cj(t+ ω) = cj(t), j = 1, 2, ..., n(2.4)

Let

Gj(t, u) =
e
R t
u
hj(s)ds

1− e−
R ω
0
hj(s)ds

, j = 1, 2, ...n.(2.5)

Set

G(t, u) = diag[G1(t, u), G2(t, u), ..., Gn(t, u)].(2.6)

Also, let
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Mj =
e
R 2ω
0

|hj(s)|ds

1− e−
R ω
0
hj(s)ds

, j = 1, 2, ...n

and

mj =
e−
R 2ω
0

|hj(s)|ds

1− e−
R ω
0
hj(s)ds

, j = 1, 2, ...n.

It is easy to see that for all (t, s) ∈ [0, 2ω]× [0, 2ω],

mj ≤ Gj(t, s) ≤Mj .

It is clear that Gj(t+ ω, s+ ω) = Gj(t, s) and so G(t+ ω, s+ ω) = G(t, s)
for all (t, s) ∈ R2.

Let γ = maxt∈R

∙
τ 0(t)− 1

¸−1
and γ∗ = mint∈R

∙
τ 0(t)− 1

¸−1
.

For the next lemma we consider

x0j(t) = aj(t)xj(t− τ(t))− cj(t)x
0
j(t− τ(t))− fj(t, xj(t− τ(t))),

j = 1, 2, ...n.(2.7)

Lemma 2.1. Suppose (2.1)-(2.4) hold. Suppose also that τ 0(t) 6= 1 for all
t ∈ R. If x(t) ∈ Sω, then xj(t) is a solution of (2.7) if and only if

xj(t) =
cj(t)

τ 0(t)− 1xj(t− τ(t)) +

Z t+ω

t
Gj(t, s)[fj(s, xj(s− τ(s))

+ hj(s)xj(s)− rj(s)xj(s− τ(s))− aj(s)xj(s− τ(s))]ds,(2.8)

where Gj(t, u) is defined by (2.5) and

rj(s) =

µ
c0j(s)− cj(s)hj(s)

¶µ
1− τ 0(s)

¶
+ τ 00(s)cj(s)

(1− τ 0(s))2
.(2.9)
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Proof.

Multiplying both sides of (2.7) by e−
R t
0
hj(s)ds and then integrating from

t to t+ ω gives

xj(t+ ω)e−
R t+ω
0

hj(s)ds − xj(t)e
−
R t
0
hj(s)ds =

Z t+ω

t

∙
aj(s)xj(s− τ(s))

− hj(s)xj(s)− cj(s)x
0
j(s− τ(s))

− fj(s, xj(s− τ(s)))

¸
e−
R s
0
hj(u)duds.

By dividing both sides of the above equation by e−
R t
0
hj(s)ds and using

the fact that xj(t+ T ) = xj(t), in the above equation gives

xj(t)

∙
e−
R ω
0
hj(u)du − 1

¸
=

Z t+ω

t

∙
aj(s)xj(s− τ(s))

− hj(s)xj(s)− cj(s)x
0
j(s− τ(s))

− fj(s, xj(s− τ(s)))

¸
e
R t
s
hj(u)duds.(2.10)

Rewrite Z t+ω

t
cj(s)x

0
j(s− τ(s))e

R t
s
hj(u)duds

=

Z t+ω

t

cj(s)x
0
j(s− τ(s))(1− τ 0(s))

(1− τ 0(s))
e
R t
s
hj(u)duds.

Integration by parts on the above integral with

U =
cj(u)

1− τ 0(u)
e
R t
s
hj(u)du, and dV = x0j(s− τ(s))(1− τ 0(s))ds

givesR t+ω
t cj(s)x

0(s− τ(s))e
R t
s
hj(u)duds

=
cj(t)
1−τ 0(t)xj(t−τ(t))

∙
e−
R ω
0
hj(u)du−1

¸
−
R t+ω
t rj(s)e

R t
s
hj(u)duxj(s−τ(s))ds.

(2.11)

Substituting (2.11) into (2.10) and dividing through by e−
R ω
0
hj(u)du−1

we obtain,
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xj(t) =
cj(t)

τ 0(t)− 1xj(t− τ(t)) +

Z t+ω

t
Gj(t, s)[fj(s, xj(s− τ(s))) + hj(s)xj(s)

− rj(s)xj(s− τ(s))− aj(s)xj(s− τ(s))]ds.

This completes the proof.

We next state Krasnoselskii’s Theorem which is the main mathematical
tool in this paper in the following lemma.

Lemma 2.3 ( Krasnoselskii’s ) LetM be a closed convex nonempty subset
of a Banach space (Sω, ||.||). Suppose that J and D map M into Sω such
that
(i) x, y ∈M, implies Jx+Dy ∈M,
(ii) D is continuous and DM is contained in a compact set,

(iii) J is a contraction mapping.
Then there exists z ∈M with z = Jz +Dz.

3. Main Results

For some non-negative constant L and a positive constant K define the set

M = {φ ∈ Sω : L ≤ ||φ|| ≤ K with
L

n
≤ |φj |0 ≤

K

n
, j = 1, 2, ..., n.},

which is a closed convex and bounded subset of the Banach space Sω. We
also assume that for all s ∈ R, ρ ∈M

(1− σjγ∗)L

mjωn
≤ fj(s, ρj) + hj(s)ρj − rj(s)ρj − aj(s)ρj ≤

(1− αjγ)K

Mjωn

(3.1)

where j = 1, 2, ...n.

Define the map D :M→ Sω by
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(Dϕ)(t) =

Z t+ω

t
G(t, s)[F (s, ϕ(s− τ(s))) +H(s)ϕ(s)

− R(s)ϕ(s− τ(s))−A(s)(s)ϕ(s− τ(s))]ds,(3.2)

where (Dϕ) = (Dϕ1,Dϕ2, ...,Dϕn)
T , H(s) = diag[h1(s), ..., hn(s)] and

R(s) = diag[r1(s), ..., rn(s)].

Also, define J :M→ Sω by

(Jϕ)(t) =
1

τ 0(t)− 1C(t)ϕ(t− τ(t)),(3.3)

where (Jϕ) = (Jϕ1, Jϕ2, ..., Jϕn)
T .

Lemma 3.1. Suppose that (2.1)-(2.4), (3.1), (H1), (H2), (H3) and (H5)
hold. Then the operator D is completely continuous onM.

Proof. For t ∈ [0, T ] and for ϕ ∈M, we have by (3.1) that

|(Dϕj)(t)| ≤ |
Z t+ω

t
Gj(t, s)[fj(s, ϕj(s− τ(s))) + hj(s)ϕj(s)

− rj(s)ϕj(s− τ(s))− aj(s)(s)ϕj(s− τ(s))]ds|

≤ Mjω
(1− αjγ)K

Mjωn
=
(1− αjγ)K

n
.

It follows that

|(Dϕj)|0 ≤
(1− αjγ)K

n
.

Thus,

||(Dϕ)|| =
nX

j=1

|(Dϕj)|0

≤
nX

j=1

(1− α∗)K

n
,
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where α∗ = min1≤j≤n

µ
αjγ

¶
. It therefore follows that

||(Dϕ)|| ≤ K.

This shows that D(M) is uniformly bounded.

We will next show that D(M) is equi-continuous. Let ϕ ∈M. Then differ-
entiating (3.2) with respect to t gives

(Dϕj)
0(t) =

∙
Gj(t, t+ ω)−Gj(t, t)

¸∙
fj(t, ϕj(t− τ(t))) + hj(t)ϕj(t)

−rj(t)ϕj(t− τ(t))− aj(t)ϕj(t− τ(t))

¸
+ hj(t)(Dϕj)(t).(3.4)

Thus

|(Dϕj)
0(t)| ≤ (1− αjγ)KMj

ωn
+ ||hj ||

(1− αjγ)K

n
.

It follows that

|(Dϕj)
0|0 ≤

(1− αjγ)KMj

ωn
+ |hj |0

(1− αjγ)K

n
.

Hence

||(Dϕ)0|| =
nX

j=1

|(Dϕj)|0

≤
nX

j=1

∙
(1− α∗)KM

ωn
+ ||h||(1− α∗)K

n

¸

≤ (1− α∗)KM

ω
+ ||h||(1− α∗)K,

whereM = max{M1,M2, ...,Mn}. Thus showing thatD(M) is equicontinu-
ous. Then using Ascoli-Arzela theorem we obtain that D is a compact map.
Due to the continuity of all the terms in (3.2), we have thatD is continuous.
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Lemma 3.2 Suppose that (H2) and (H5) hold. Then the operator J is a
contraction.

Proof. For ϕ,ψ ∈M

|(Jϕj)− (Jψj)|0 ≤ αjγ|ϕj − ψj |0
Hence,

||(Jϕj)− (Jψj)|| ≤
nX

j=1

|(Jϕj)− (Jψj)|0

≤
nX

j=1

αjγ|ϕj − ψj |0

≤ α
nX

j=1

|ϕj − ψj |0 = α||ϕ− ψ||,

where α = max{α1γ, ..., αnγ}. This completes the proof of lemma 3.2.

Theorem 3.3 Suppose (H1), (H2), (H3), (H4), (H5), and (3.1) hold. Also
suppose that the hypotheses of Lemma 3.2 and Lemma 3.3 hold. Then
(1.1) has a positive periodic solution x satisfying L ≤ ||x|| ≤ K.

Proof. Let ϕ,ψ ∈M. Then

(Jψj)(t) + (Dϕj)(t) =
1

τ 0(t)− 1cj(t)ψj(t− τ(t))

+

Z t+ω

t
Gj(t, s)[fj(s, ϕj(s− τ(s))) + hj(s)ϕj(s)

− rj(s)ϕj(s− τ(s))− aj(s)ϕj(s− τ(s))]ds

≤ αjγ
K

n
+Mj

Z t+ω

t
[fj(s, ϕj(s− τ(s))) + hj(s)ϕj(s)

− rj(s)ϕj(s− τ(s))− aj(s)ϕj(s− τ(s))]ds

≤ αjγ
K

n
+Mjω

(1− αjγ)K

Mjnω

≤ K

n
.

Thus,

(Jϕ)(t) + (Hψ)(t) ≤
nX

j=1

K

n
= K.
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On the other hand,

(Jψj)(t) + (Dϕj)(t) =
1

τ 0(t)− 1cj(t)ψj(t− τ(t))

+

Z t+ω

t
Gj(t, s)[fj(s, ϕj(s− τ(s))) + hj(s)ϕj(s)

− rj(s)ϕj(s− τ(s))− aj(s)ϕj(s− τ(s))]ds

≥ σjγ∗
L

n
+mj

Z t+ω

t
[fj(s, ϕj(s− τ(s))) + hj(s)ϕj(s)

− rj(s)ϕj(s− τ(s))− aj(s)ϕj(s− τ(s))]ds

≥ σjγ∗
L

n
+mjω

(1− σjγ∗)L

mjnω

≥ L

n
.

Thus,

(Jϕ)(t) + (Hψ)(t) ≥
nX

j=1

L

n
= L.

This completes the proof of theorem 3.3.
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