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Abstract

The existence of an explicit and canonical cell decomposition of the
moduli space of closed Riemann surfaces of genus two shows that each
Riemann surface of genus two can be parametrised by a 12-tuple of
real numbers which corresponds to the angle coordinates of a graph as-
sociated to the surface. This suggests a Circle Pattern Uniformization
Problem that we have defined and solved for three classical Riemann
surfaces of genus two. Although in general, finding the exact algebraic
equations corresponding to a hyperbolic surface from angle coordinates
is a hard problem, we prove that known numerical methods can be ap-
plied to find approximated equations of Riemann surfaces of genus
two from their angle coordinates and graph data for a large family of
Riemann surfaces of genus two.
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1. Introduction

The uniformization theorem, which states that any Riemann surface of
genus greater or equal than two is the quotient H/Λ of the hyperbolic
upper plane H by a group of Möbius transformations Λ acting on H, leads
to the classical uniformization problem which was initially developed by
Poincaré, Klein and others [7, 12, 29] . Since Riemann surfaces can be
viewed also as algebraic curves, the classical unifomization asks for the
alternative representation, given either the curve algebraic equation or the
group Λ.

The efforts that have been made to solve the classical uniformization
problem have produced several versions. Among them are the Schottky’s
uniformization problem and the Myberg’s numerical unifomization prob-
lem. In addition, the theory have been enriched by the connection that
have been established to Fuchsian ordinary differential equations, Θ-series,
etc.

On this paper, we propose a new branch of uniformization problem: the
Circle Pattern Uniformization Problem, which brings a new more intuitive
perspective to the topic, by viewing each Riemann surface as a hyperbolic
polyhedra that has a cell decomposition, together with a circle pattern
structure and an associated graph.

A view of hyperelliptic Riemann surfaces as graphs embedded on the
two dimensional sphere with angle coordinates is suggested by a solution of
the problem of finding a canonical cell decomposition of the moduli space
of closed Riemann of genus two, as described on [2], and leads to a circle
pattern uniformization problem that consists of determining the perspec-
tives of a Riemann surface: A) its algebraic equation, B) its hyperbolic
structure, C) its associated graph and angle coordinates, when only one of
them is given.

Advances toward the solution of the circle pattern uniformization prob-
lem will enrich Riemann surfaces theory and give insight into the solution
of the classical uniformization problem. We restrict our discussion to the
genus two case because the canonical cell decomposition of the moduli of
Riemmann surfaces of genus two M2 have been explicitly computed [2, 25]
and then we can build on the knowledge about the structure of M2 to get
explicit results.

We will show that numerical methods to find the algebraic equations
of genus two surfaces from a surface hyperbolic structure, which have been
studied by several authors [12, 29, 7], can be applied to study the circle
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pattern uniformization problem and leads to a new methodology to find the
algebraic equation of Riemann surface from its circle pattern representation.

The angle coordinates associated to a generic graph G corresponding
to a Riemann surface of genus two, R, carries all the information that is
needed to construct a symmetric octagon representation of R. In addition,
from R octagon’s representation one can determine the hyperbolic lengths
of its dual graph’s sides. Hence, we can identify the pants length and
twisting parameters of R, and approach computationally the circle pattern
uniformization problem because there are known computer programs [7]
which compute good approximations for the algebraic equations of a curve
from a surface’s pants parameters.

To study the classical uniformization problem, Buser and Silhol [7] re-
duced the problem to the well known genus 1 case: Given a surface R of
genus two, they construct a double cover Y of R of genus three. By a result
of Enriques, Y is hyperelliptic. Let τ be the hyperelliptic involution of Y
and φ an involution such that R = Y/φ. Then, the quotient of R0 = Y/τ ◦φ
is a genus 1 surface. R0 has a natural representation as C/Λ, where Λ is a
lattice. From this, they construct a holomorphic function f : D→ C, such
that TΛ ◦ f is a G-invariant meromorphic function, where TΛ is Λ-invariant
and is used to determine the algebraic equation of the surface.

Explicitly they used TΛ = Tτ ,

Tτ = −
ω

K

∞Y
k=0

(ω − ζ2k)2(1− ζ2k+2ω)2

(ω − ζ2k+1)2(1− ζ2k+1ω)2

where ζ = exp(πiτ), ω = exp(πiz) and

K = 4
∞Y
k=0

(
1 + ζ2k

1 + ζ2k−1
)4

The outline of the rest of this paper is as follows. Section 2 reviews the
fundamental concepts about associated graphs to hyperelliptic Riemann
surfaces and describes the canonical and explicit cell decomposition of the
moduli space of close Riemann of genus two, M2. Section 3 shows how to
find the graph associated to the well know Bolza’s curve as well as its angle
coordinates. Section 4 studies the circle pattern uniformization problem for
the only singularity ofM2. On section 6, we introduce symmetric octagons
as a tool to solve the circle pattern uniformization problem for generic
graphs of genus two. Finally, on section 7, we will give some conclusions of
this work.
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2. A view of the canonical cell decomposition of M2

The canonical and explicit cell decomposition of the moduli space of closed
Riemann surfaces of genus two described on [2] is based on the combina-
torial structure of M2, the solution of circle pattern realization problems
associated to M2, and the existence of 6-dimensional polytope complex
which can be viewed as a compactification of covering orbifold of M2.

Figure 1: On a closed genus two Riemann surface with its hyperbolic metric,
the set of its Weierstrass points determines a graph, the 1-skeleton of its
Voronoi diagram that can be projected to the 2 dimensional sphere. Here,
we represent with red points the Weierstrass points of a surface which are
the 6 fixed points of its hyperelliptic involution.

We can reveal the combinatorial structure ofM2 by associating a graph
to each closed Riemann surface of genus two. Indeed, since each Riemann
surface R of genus two has a hyperbolic metric as well as a hyperelliptic
involution, we can obtain the Voronoi cell decomposition of R with respect
to its set of Weierstrass points and determine a unique geodesic graph bG(R)
which is the 1-skeleton of this decomposition on the surface. See Figure 6.

The graph bG(R) can be projected to the two dimensional sphere because
the hyperelliptic involution, τ , of a Riemann surface of genus two R induces
an action on R and a natural projection ρ : R→ R/τ .

The geodesic graph G(R) = ρ( bG(R)) provides a 2-cell decomposition of
the Riemann sphere (geodesic in the induced hyperbolic structure) having
exactly 6 faces, each face containing exactly one projection under ρ of a
Weierstrass point.

Marisol Martínez
dibu1
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If α and β denote the number of vertices and the number of edges, then
the Euler’s formula asserts that β − α = 4. Let us denote by e1, . . . eβ,
the edges of G(R). By construction, each vertex v has geodesic circle Cv

with centre at v and passing through the points Qj corresponding at the
faces incident to v. The numbers θ∗(e1), . . . , θ∗(eβ) ∈ (0, π) satisfy some
inequalities [2], determined at vertices, and an equality for each face: if
e1, . . . eik are the incident edges to the face fi, then

kX
j=1

(π − θ∗(eij )) = π,

as each point Qi has total angle π. Note that the only places on which
we have cone angles are at the points Q1, . . . Q6. Summarizing, we have β
numbers in (0, π) and 6 linear relations between them. See example on Fig
2. Also, the reduced group Autred(R) = Aut(R)/ < τ >, which is exactly
the subgroup of PSL2(C) keeping invariant the set {Q1, . . . , Q6}, keeps
invariant G(R), in particular, if two edges of G(R) are equivalent by that
group, then they must have the same θ∗-value.

Marisol Martínez
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Figure 2: The linear system associated to the generic graph d1 has an
equation associated to each face of d1, the green graph. Equivalently, each
of these equations is associated to each vertex of the red graph, dual of d1.
In addition, we have the constraints 0 < θi < π for each i.

If G(R) is generic (i.e., all vertices have degree 3), then for R0 close to
R (say that the corresponding values Qj ’ s are near to the values of Q

0
j

up to a Möbius transformation and permutation of indices) then G(R0) is
isotopic to G(R). By Euler’s formula, such generic graph has 12 edges.

The family of graphs associated to closed Riemann surfaces of genus
two was computed explicitly in [2]. An important observation for this com-
putation is the fact that two arbitrary graphs of this family are connected
by a sequence of contraction or expansion moves, see Figure 3. Then, if
we choose any of the graphs on Figure 4, we can generate a family of
graphs that includes the associated graphs to Riemann surfaces of genus
two. However, this family also includes graphs which are not associated to
any Riemann surface of genus two. This leads to the realization problem
of determining whether or not a given graph is equivalent to the graph as-
sociated to a Riemann surface. On [2] this realization problem was solved
by considering an equivalent collection of circle pattern problems, which is
described next.

An interesting feature of any graph G, associated to a hyperelliptic
Riemann surface R, is that it has a dual graph G0. The set of nodes of G0,
W , is the set of all the projections of the Weierstrass point of R. An edge
of G0 is defined as the geodesic segment joining Wi ∈ W and Wj ∈ W for
each common edge of the Voronoi diagram, whose centers are Wi and Wj .
From the dual graph G0, we can also obtain a collection of circles since each
face of G0 has its vertices on a unique circumference whose center is in W .
the set if vertices of the graph G, we call this collection of circumferences
the circle pattern associated to R.

Circle patterns have been studied by several authors [26, 27, 28, 30],
and also by Springborn which in his PhD thesis [30] proved a result that
allow us to determine all possible circle patterns on the hyperbolic sphere
that exists for the genus two case, and could be applied more generally to
surfaces on the hyperelliptic locus of Mg.
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Figure 3: A Whitehead move on the blue edge on graph H1, contracts
the edge to a point, as shown on the middle graph, followed by an edge
expansion as shown on the right graph. The result is the new graph which
is represented on the right.

On Figure 4, we describe the combinatorial structure of M2 at the
generics level, consisting of all cubic graphs associated to a closed Riemann
surface of genus two. Two graphs are connected by an edge if they are
connected by Whitehead moves.

Marisol Martínez
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3. Bolza’s curve

One of the most interesting Riemann surfaces of genus two is the Bolza
curve, SB. Below, we enumerate some known facts about this curve [12]:

1. The projection, SB/τ , of this curve to the Riemann sphere has 6
singular points, the intersections of the Riemann sphere with the
coordinates axes

2. an algebraic equation of SB is y
2 = x5 − x

3. SB can be represented as H/Γ, where Γ is a normal subgroup of an
appropriately oriented triangle group T B

4. the automorphism group of SB is T
B/Γ

5. SB can be identified by a cyclotomic construction. In this construc-
tion, the lattice in C is a ring of cyclotomic integers with trace (sum
of conjugates) norm

6. SB has 12 π1-systoles and 12 H1-systoles. In addition, the function p :
π1(Sb)→ H1(Sb) maps the π1 systoles one-to-one to the H1 systoles

7. SB is an extremal surface with N2 = N(SB) =
√
2

8. the π1-systoles of SB are the curves on Figure 7. Hence, they belong
to the set of sides of the Delaunay triangulation associated to the
fixed point of the hyperelliptic involution of SB

9. l2 = l(SB) + 2arcosh(1 +
√
2). Therefore, l and NJ take a maximum

at SB.

By part 1 of the above properties, we can say that the associated
graph of SB is the generic graph d1 and also it has angle coordinates
(3π4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ,

3π
4 ).

4. M2 singularity

The moduli space of closed Riemann surface of genus two has the structure
of a 6 dimensional manifold around all its points except at the projective
algebraic curve RP with algebraic equation y2 = x5 − 1. To identify RP ,
we consider the description given in [12], where RP is described as the
double cover of the Riemann sphere with W = {e5, e25, . . . , e55 = 1,∞} as
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Weierstrass set. By opening the Riemann sphere along the geodesic con-
necting ∞ with e5, e

2
5, . . . , e

5
5, we obtain a regular

π
5 hyperbolic pentagon.

By the symmetry of this pentagon, we can say that the Voronoi diagram
associated to RP is the green graph on Figure 5. An interesting feature
of this graph is that it coincides with its dual, in black. To compute the
exterior angles associated to this graph, note that θ1 = θ2 = . . . ,= θ5 and
θ6 = θ6 = . . . = θ10. In addition, as the cone angle at the center of the circle
is π, we have 5(π−θ1) = π and at any other vertex 2(π−θ6)+(π−θ1) = π.
Therefore, θ1 = θ2 = . . . ,= θ5 =

4π
5 and θ6 = θ6 = . . . = θ10 =

3π
5 .

Figure 5: The graph associated to the surface y2 = x5 − 1 (in green) and
its dual graph (in black). In this representation, we should assume that the
exterior nodes in green are identical.

5. The curve y2 = x6 − 1

In general, a real hyperelliptic curve is a curve of some genus g that can be
defined by an equation of the form y2 = P (x), where P (x) is a real polyno-
mial and the complex conjugation induces an anti-holomorphic involution
which keeps g+1 closed curves fixed. If this is the case, P (x) can be chosen
with 2g + 2 distinct real roots. In the case of genus two, its equation has
the form y2 = (x − λ1)(x − λ2) . . . (x − λ6), where λ1, λ2, . . . , λ6 are real
numbers. In the special case where the inverse image of the projection of
λi, i = 1, 2, . . . , n in the sphere are equidistant, the associated CE-graph
for the corresponding Riemann surfaces is the spacial graph which has only
two vertices. The algebraic equation of the surface is

y2 = (x− 1)(x+ 1)(x− 2−
√
3)(x+ 2 +

√
3(x− 2 +

√
3)(x+ 2−

√
3)

Marisol Martínez
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Another way to get the same curve is to take as fixed point of the curve the
6th-roots of unity, because this representation of the marked sphere can
be obtained from the above description by a three dimensional rotation.
Hence, y2 = x6 − 1 is another equation of the curve [12].

6. Symmetric octagons for generic graphs

The goal of this section is to show how we can construct an octagon repre-
sentation Octo(R) of a Riemann surface of genus two, R, which is associated
to a generic graph G with an angle coordinates Θ.

It is known that each Riemann surface of genus two has an admissible
octagon representation [1] which satisfies the following properties:

1. It is centered in the origin (in the disk model)

2. the Weierstrass fixed points of R are: the origin, the middle points of
the sides and the vertices of Octo(R)

3. each side of the octagon is identified with its opposite.

Our goal is to build Octo(R) from the knowledge of G and its angle
coordinates Θ.

To describe our construction, define H to be the dual graph of G viewed
as an embedded graph on R which is S2, the Riemann sphere with the
hyperbolic metric, where the vertices of H correspond to the six π

2 cone
points which are the projections of the Weierstrass points of R.

We can represent H as a hyperbolic quadrangle Q: If a vertex P1 of H
has 4 neighbouring vertices P2, P3, P4, P5, with Pi 6= Pj for i 6= j, we can
make cuts from P1 to Pj , where j = 2, 3, 4, 5, and open up. Observe that a
copy of P1 is at each of the four vertices of Q and Pi, where i = 2, 3, 4, 5, is
the middle point of each side of Q and subdivide it into two segments that
should be identified. The angle at these segment middle point is π, so we
really get a planar hyperbolic quadrangle. In addition, on the interior of
Q, we can find P6, the sixth triangulation vertex, see Figure 6.
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Figure 6: To construct a hexagon representation of a two dimensional hy-
perbolic sphere with 6 marked points, first we choose a point P1 and proceed
with 4 cuts as indicated on the first row. Then by cutting and opening along
the red line, we will have the desired hexagon representation as illustrated
on the second row.

We will obtain R as the double covering space of the sphere, coming
from the gluing of two pair of pants R and R0, each of which will have a
hexagon representation coming from Q.

Observe that to glue R and R0 to get R, we need to choose 3 disjoint
geodesics, γ1, γ2, γ3 in R, and corresponding geodesics, γ1

0, γ20, γ30 in R0,
joining the projections of the Weierstrass points of R. γi is divided into two
parts, ai and bi, by the Weierstrass point projection of R in R. Similarly,
the corresponding geodesic γi

0 is divided into a0i and b0i by the Weierstrass
point projection of R in R0 . Hence, the segment ai should be glued to b0i
and also bi glued to a

0
i.

We will follow the following procedure to get a symmetric octagon
associated to the triangulation determined by the generic graphs di, for
i = 1, 2, 3, 4, 5, 6, 7, 9, 10.

Marisol Martínez
dibu6
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A. Choose 4 geodesic segments starting at vertex P1 with extremes P2,
P3, P4, P5 and build a basic quadrangle (Q)

B. take 2 copies of quadrangles and build 2 hexagon representations of
the surface projection as described on Figure 6

C. build 2 hexagons representation whose union is the surface (R,R0).

D. build an octagon representation of the surface by rotating and gluing
one hexagon to the other along one of its common sides.

We might need to interchange some regions (on red) to get R, because
we need to choose 3 geodesics that join different pair of pants. Then, we
need to check that the crossings of these geodesics lead to the right pair of
pants copy.

In the sequel, we describe symmetric octagon representations for all
generic graphs di, i = 1, 2, . . . , 10. Each of our octagons representation
defines a triangulation whose dual is di. In addition from our representa-
tions, it is possible to get the Fenchel Nielsen coordinates of the respective
surface, and one approximation of its algebraic equation.

On Figures 7-16, we label the edges of the triangulation in the first
hexagon with the numbers i = 1, 2, ..., 12 and the corresponding ones in the
second hexagon with ı̂. In addition, the edges i and ı̂ are identified as well
as i and ı̂

By changing the pair of pants coordinates of a Riemann surface R of
genus 2, we expect to see a continuous deformation of the graph associated
to R and able to carry a given marking of R to its neighbors.
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7. Conclusion

The circle pattern uniformization problem for Riemann which we have
introduced is a new challenge that aims to integrate three of the most
important perspectives of the concept of Riemann surface and show the
structure of Riemann surfaces while gaining an intuitive understanding by
using graphical representations. Solving the circle pattern uniformization
problem would reveal how Riemann surfaces are interconnected, and add
a dynamical view to this subject because paths on the moduli space of
closed Riemann surfaces could be understood as single surfaces which are
being transformed, or as hyperbolic cone spheres whose edges are being
transformed by contractions or expansions moves.

We did not implement the numerical approach to compute equations of
Riemann surfaces of genus two described on this paper.

The dynamical view of Riemann surfaces is attractive for potential
applications. For example in neurosciences, many degenerative diseases
change the human brain’s cortex which we can model as a surface which
changes through time. Then in this setting, the challenge is to understand
how the structural changes that the brain cortex suffer as a mathematical
surface mirror the evolution of medical conditions. A sophisticated mathe-
matical understanding of Riemann surfaces could lead to medical advances.
In particular but not restricted to research on Alzheimer and HIV diseases
since these diseases impact brain’s structures and the morphology of human
cortex.
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