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Abstract

In this paper, a new notion of S* closedness in L-topological Spaces
is introduced by means of semi-open L—sets and their inequality where
L is a complete DeMorgan algebra.This new definition doesn’t rely
on the structure of basic lattice L. It can be characterized by means
of semi-open L—sets and their inequality . When L is completely
distributive DeMorgan algebra, its many characterizations are pre-
sented.
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1. Introduction

Compactness is one of the most important notions in topology. In [1],
Azad introduced the concepts of semiopen sets and semiopen continuous
functions in L— topology. In [5], Kudri generalized the concept of semi-
compactness and S* closedness in L— topological spaces. However, Kudri’s
S* closedness relies on the structure of L which is a completely distributive
lattice.

In [10], Shi introduced a new definition of fuzzy compactness in L—
topological spaces by means of open L— sets and their inequality where
L is a completely distributive DeMorgan algebra. This new definition
doesn’t rely on the structure of basic lattice L.

In this paper, along the line of [10] we shall introduce a new definition
of §* closedness in L— topological spaces by means of semiopen L— sets
and their inequality. Also we give characterizations and properties of S*
closedness .

2. Preliminaries

Throughout this paper, (L, V/, A, ) is a complete DeMorgan algebra, X is
a nonempty set. L is the set of all L— fuzzy sets (L—sets for short) on
X. The smallest element and the largest element in LX are denoted by 0
and 1.

An element a in L is called prime element if a > b A ¢ implies a > b or
a > c. ain L is called co-prime element if @' is a prime element. The set
of non-unit prime elements in L is denoted by P(L). The set of non-zero
co-prime elements in L is denoted by M (L).

The binary relation < in L is defined as follows: for a,b € L,a < b if
and only if for every subset D C L, the relation b <supD always implies
the existence of d € D with a < d. In a complete distributive DeM organ
algebra L, each element b is a sup of {a € L|a < b}, {a € L|a < b}is
called the greatest minimal family of b in the sense of [16], in symbol 5(b).
Moreover for b € L, define 8*(b) = B(b) Y M(L),a(b) = {a € Ll < b'}
and a*(b) = a(b) N P(L).

Fora € L and A € L, let

Al = {z € X|A(z) > a},
A(a) = {ZL‘ S X’a € B(A(:I"))}v
AW = {z e X|A(z) £ a}.
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An L—topological space (L— space for short) is a pair (X, ), where §
is a subfamily of L* which contains 0 1 and is closed for any suprema and
infima. § is called an L—topology on X. Every member of § is called an
open L—set and its quasicomplementation is called a closed L—set.

If (X, 7) is a topological space, then w(7) denote the L—topology of the
continuous functions from (X, 7) to L with its Scott topology. (X,w(7)) is
called to be topologically generated by (X, 0).

For a subfamily ® C LX, 2(®) denotes the set of all finite subfamily of
.

Definition 2.1 ([1, 9]) Let (X,6) be an L—space. A € L% is called
semiopen if and only if there exists B € ¢ such that B < A < cl(B).
A e LX is called semiclosed if and only if A" is semiopen.

Definition 2.2([1, 9]) Let (X, ) be an L—space, A € LX. The set cl,A =
MB € LX|A < B and B is semiclosed }is called the semiclosure of A.
inteA = \V/{B € LX|B < A and B is semiopen }is called the semiinterior
of A.

Definition 2.3([10]) Let (X,d) be an L—space. G € L is called compact
if for every family U of open L— sets, it follows that

NG @V Ax)< ) NG @V Aw)

rzeX Aeld VeeW) reX Aey

Lemma 2.4([10]) Let L be complete Heyting algebra and let f: (X, d;) —
(Y, d2) be a mapping. Then for any family Pc LY

V& A N Bw) =\ (G@n N\

yey BeP zeX BeP

Definition 2.5([10, 11]) Let (X,d) be an L—space, a € L\{1}, and G €
LX. A family U C LY is said to be
1) an a—shading of G if for any z € X, (G' (z) V V Ax)) £ a;

2) a strong a—shading of G if /\ (G'(z) v \/ A( )) £ a;

3) an a— remote family P of G 1ffor any r € X (G(x)N N\ B(z)) % a;
AelU

4) a strong a— remote family of G if \/ (G(z) A A A(z)) % a.

Ael

rzeX

(
(
(
(

Definition 2.6([10]) Let a € L\{0},G € L*. A family & C L¥ is called
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(1) a Bu— cover of G if for all z € X, it follows that a € B(G'(z) V

V A(x));
AelU
(2) a strong B,— cover of G if a € B( A (G (z)V V A(x)));
reX Aeld
(3) a Qu— cover of G if for all z € X, it follows that G (z)V \ A(z) >
AelU
a.

Definition 2.7([1, 9]) Let (X, 01) and (Y, d2) be two L—spaces. f: (X,d1) —
(Y, 02) is called

(1) semicontinuous if f~1(A) is semiopen in (X, d;) for every open L—
set A in (Y, d2).

(2) irresolute if f~!(A) is semiopen in (X, d;) for every semiopen L—
set A in (Y, d2).

3. Definition and characterizations of S* closedness

Definition 3.1 Let (X,d) be an L—space. G € L* is called S* closedness
if for every family U of semiopen L— sets, it follows that

NG @V A@)< V NG @V dAx)

zeX Aeld Veelt) zeX Aey

Example 3.2 Suppose X = {z}, and L ={0,1/4,1/2,3/4,1}. Fora € L ,
a =1—a. Let § = {0, A,1}, where A(z) = 3/4, then (X, §) is an L—space.
We can see that every L—set in (X,0) is S* closedness.

Since any open L—set must be semiopen L— set,we have the following
theorem.

Theorem 3.3 Compactness is S* closedness in L—space.
From Definition 3.1 and quasicomplementation of L, we can obtain the
following theorem.

Theorem 3.4 Let (X,§) be an L—space. G € L~ is S* closedness if and
only for every family B of semiclosed L— sets, it follows that

\/ (G(z) A /\ B(z)) > /\ \/ (G(z) A /\ int«B(x))

zeX BeB FeeB) zeX BeF

Definition 3.5 Let a € L\{0},G € L. A family & C L is said to have

weak a—nonempty intersection in G if \/ (G(z) A A A(z)) > a. U is
zeX Aeld
said to have finite weak a.—intersection property in G if for every finite
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subfamily F of U, the family F, = {int. F|F' € F} has weak a—nonempty
intersection in G.

Theorem 3.6 Let (X,6) be an L—space, G € L¥. Then the following
conditions are equivalent:

(1) G is S* closedness.

(2) For any a € L\{1}, each semiopen strong a— shading U of G has a
finite subfamily V such that {cl.A|A € V} is a strong a— shading of G .

(3) For any a € L\{0}, each semiclosed strong a— remote family P of
G has a finite subfamily F such that {int.A|A € P} is a strong a— remote
family of G.

(4) For any a € L\{0}, each family of semiclosed L—sets which has the
finite weak a.—intersection property in G has weak a—nonempty intersec-
tion in G.

Proof The proofs follow from Definition 3.1 and Theorem 3.4.
4. Properties of S* closedness

Theorem 4.1 Let L be complete Heyting algebra. If G and H are S*
closedness, then so is G\/ H.

Proof For any family P of of semiclosed L— sets, by Theorem 3.4 we have
that

V(G H)@)n N B(x))

rzeX BeP
={\V @G@)A N\ B V{1V H@)A N B)}
rzeX BeP rzeX BeP

>{ A VGa@)r N\ int.B@)}\{ N\ V Hz) A N intB(x))}

Fee(P) zeX BeF FeeP)zeX BeF
/\ \/ G\/H /\ int.B(z))
FeeP)zeX BeF

This shows that G\ H is S* closedness.

Theorem 4.2 If G is S* closedness and H is a semiclosed set, then G A H
is S* closedness.

Proof For any family P of of semiclosed L— sets, by Theorem 3.4 we have
that
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V (GAH)@) A N\ B(x))

zeX BeP

=V (@G@nr A B@)

reX BeP | J{H}

>{ A VG@A N int.B@)}

X B
Fee® U{H}) z€ eF

= { /\ \/ (G(z) A /\ int,B(x))}

Fee(P)zeX BeF

Fee(P)zeX BeF

= A VGAH)(@)A N\ int.B(z))

FeeP) zeX BeF
Then we obtain that G A H is S* closedness.
Theorem 4.3 Let L be complete Heyting algebra and f : (X, d1) — (Y, d2)
be an irresolute mapping. If G is S* closedness in (X, d1), then f(G) is S*
closedness in (Y, d2).

Proof For any family P of of semiclosed L— sets in (Y, d3), by Lemma 2.4
and S* closedness of G we have that

V (F@)w A N Bly)

yey BeP

=V G@)n N\ FH(B))

zeX BeP

> A V(G@A N intf(B))

Fee(P) zeX BeF

> N VG@A A\ fl(int.B)(x))

Fee(P) zeX BeF

= N VUFHGOWA N int.By))

Fee(P)yeY BeF

Hence f(G) is S* closedness.
Analogously, we can obtain the following theorem.

Theorem 4.4 Let L be complete Heyting algebra and f : (X, d1) — (Y, d2)
be a semicontinous mapping. If G is S* closedness in (X, d;), then f(G) is
S* closedness in (Y, d2).
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5. Further characterizations of S* closedness and goodness

In this section, we assume that L is a completely distributive DeM organ
algebra.

Theorem 5.1 Let (X,6) be an L—space, G € LX. Then the following
statements are equivalent:

(1) G is S* closedness.

(2) For any a € L\{0}, each semiclosed strong a— remote family P of
G has a finite subfamily F such that {int,A|A € F} is a strong a— remote
family of G.

(3) For any a € L\{0}, each semiclosed strong a— remote family P of G
has a finite subfamily F such that {int.A|A € F} is an a— remote family
of G.

(4) For any a € L\{0}, each semiclosed strong a— remote family P of G
there exist a finite subfamily F of P and b € (a) such that {int,A|A € F}
is a strong b— remote family of G.

(5) For any a € L\{0}, each semiclosed strong a— remote family P of G
there exist a finite subfamily F of P and b € B(a) such that {int,A|A € F}
is a b— remote family of G.

(6) For any a € L\{1}, each semiopen strong a— shading U of G has a
finite subfamily V such that {cl,A|A € V} is a strong a— shading of G .

(7) For any a € L\{1}, each semiopen strong a— shading U of G has a
finite subfamily V such that {cl.A|A € V} is an a— shading of G .

(8) For any a € L\{1} and any semiopen strong a— shading U of G
,there exist a finite subfamily V and b € «(a) such that {cl,A|A € V} is a
b— shading of GG .

(9) For any a € L\{1} and any semiopen strong a— shading U of G
,there exist a finite subfamily V and b € «(a) such that {cl.A|A € V} is a
strong b— shading of G .

(10) For any a € L\{0}, each semiopen strong (3,—cover U of G has a
finite subfamily V such that {cl.A|A € V} is a strong ,—cover of G.

(11) For any a € L\{0}, each semiopen strong /3,—cover U of G has a
finite subfamily V such that {cl,A|A € V} is a S,—cover of G.

(12) For any a € L\{0} and any semiopen strong (3, —cover U of G, there
exist a finite subfamily V and b € L with a € 5(b) such that {cl.A|A € V}
is a strong (3,—cover of G.

(13) For any a € L\{0} and any semiopen strong (3, —cover U of G, there
exist a finite subfamily V and b € L with a € B(b) such that {cl.A|A € V}
is a B,—cover of G.
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(14) For any a € L\{0} and b € (a)\{0},each semiopen Q,—cover U
of G has a finite subfamily V such that {cl,A|A € V} is a Qp—cover of G.

(15) For any a € L\{0} and b € 5(a)\{0}, each semiopen Q,—cover U
of G has a finite subfamily V such that {cl.A|A € V} is a strong S,—cover
of G.

(16) For any a € L\{0} and b € 5(a)\{0}, each semiopen Q,—cover U
of G has a finite subfamily V such that {cl.A|A € V} is a By—cover of G.

Proof (1) < (2) It follows from Theorem 3.6.

(2) = (3) It is easy for the fact that every strong a— remote family of
G is a— remote family of G.

(3) = (4) Let a € L\{0}. Suppose U is semiclosed strong a— re-

mote family of G, then \ (G(z) A A A(z)) # a. Take ¢ € (a) such
reX AelU
that \/ (G(x) A A\ A(x)) 2 c¢. One can see that U is semiclosed strong
zeX AelU

c— remote family of G. From (3), U has a finite subfamily F such that
{int, A|A € F} is c— remote family of G. Choose b € [(a) such that
c € B(b), then {int,A|A € F} is strong b— remote family of G.

(4) = (5) = (2) It is Obvious.

(1) « (6) It follows from Theorem 3.6.

(6) = (7) It is easy for the fact that every strong a—shading family of
(G is a—shading family of G.

(7) = (8)Let a € L\{1}. Suppose U is semiclosed strong a— shad-

ing family of G, then A (G'(z)V V A(z)) £ a. Take ¢ € a(a) such
reX Aeld

that A (G'(z)V \ A(z)) £ ¢. One can see that U is semiclosed strong
reX Aeld

c—shading family of G. From (7),4 has a finite subfamily F such that
{int,A|A € F} is c—shading family of G. Choose b € «a(a) such that
¢ € a(b), then {int,A|A € F} is strong b—shading family of G.

(8) = (9) = (6) It is Obvious.

Similarly we can prove the other statements.

Remark 5.2 In Theorem 5.1, a € L\{0} and b € [3(a) can be replaced
by a € M(L) and b € 5*(a)respectively. a € L\{1} and b € a(a) can be
replaced by a € P(L) and b € o*(a) respectively. Thus, we can obtain
other 15 equivalent conditions of the S* closedness.

Lemma 5.3([11]) Let (X,w(d)) be generated topologically by (X,d). If A
is a semiopen set in (X, d), then x4 is a semiopen set L— set in (X,w(d)).
If B is a semiopen set in (X,w(d)), then B(,) is a semiopen set in (X, ).
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Lemma 5.4 Let (X,w(d)) be generated topologically by (X,§),B € L¥.
Then cl.(Bp)) C (cluB)p) in (X, w(d)) -

Proof For B € L*, By C (cl.B)p. Then cly(By)) C (cl.B)p in
(X,w(0)) since (cl«B)py) is a semiclosed set in (X,w(d)) and cl.(By) is the
smallest semiclosed set contains By

Theorem 5.5 Let (X, §) be a topological space and (X, w(d)) be generated
topologically by (X, d). Then (X,w(d)) is S* closedness if and only if (X, )
is S* closedness.

Proof Let A be a semiopen-cover of (X,d). Then {xa|A € A} is a family
of semiopen L— sets in (X,w(d)) with A ( 'V xa(z)) = 1. From the S*
zeX AeU

closedness of (X,w(d)), it follows that
1=V AV dixa)z)< V AV Xa.a(@))

VeeW) zeX AV VeeW) zeX AcV

This implies that there exists V € € such that \ xe,a(z) = 1.
%
Hence, the family of {cl.(A)|A € V} is a cover of (X, ). Then (X,0) is S*

closedness.
Conversely, let U be a family of semiopen L— sets in (X,w(d)) and let
A ( \/ B(z)) = a. If a = 0, then obviously

ACV B@)< V AV cB)

reX Belu vEe(u) rzeX BeY

Now we suppose that a # 0. In this case, for any b € 3(a)\{0}, we have

that
beB(A(V B@))c () BV B@)= () U B(B)

zeX Beu zeX  Beu zeX BeUl
This implies the family of {B)|B € U} is a semiopen cover of (X, 0)
by Lemma 5.3, From the S* closedness of (X ¢), there exists V € e such
that {cl.(B))|B € V} is a cover of (X,4). Obviously {(cl.B)y|B € V}
is a cover of (X,4) since cl.(Bgp)) C cl«(Bp) C (cluB)p. Hence b <
A (V cliB(z)). Further we have that

xeX BeY
b< AV cduB@) < \/ AV duB@)

rzeX BeV VeeWt) zeX BeV
This implies that

AV B@)=a=\/{hbes@r< V A(V dB)

reX BeU veecW) zeX BeV
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Therefore (X,w(d)) is S* closedness.

Corollary 5.6 S* closedness in L—topological spaces is good extension.
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