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Abstract

In this paper, a new notion of S∗ closedness in L-topological Spaces
is introduced by means of semi-open L−sets and their inequality where
L is a complete DeMorgan algebra.This new definition doesn’t rely
on the structure of basic lattice L. It can be characterized by means
of semi-open L−sets and their inequality . When L is completely
distributive DeMorgan algebra, its many characterizations are pre-
sented.
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1. Introduction

Compactness is one of the most important notions in topology. In [1],
Azad introduced the concepts of semiopen sets and semiopen continuous
functions in L− topology. In [5], Kudri generalized the concept of semi-
compactness and S∗ closedness in L− topological spaces. However, Kudri’s
S∗ closedness relies on the structure of L which is a completely distributive
lattice.

In [10], Shi introduced a new definition of fuzzy compactness in L−
topological spaces by means of open L− sets and their inequality where
L is a completely distributive DeMorgan algebra. This new definition
doesn’t rely on the structure of basic lattice L.

In this paper, along the line of [10] we shall introduce a new definition
of S∗ closedness in L− topological spaces by means of semiopen L− sets
and their inequality. Also we give characterizations and properties of S∗

closedness .

2. Preliminaries

Throughout this paper, (L,
W
,
V
,
0
) is a complete DeMorgan algebra, X is

a nonempty set. LX is the set of all L− fuzzy sets (L−sets for short) on
X. The smallest element and the largest element in LX are denoted by 0
and 1.

An element a in L is called prime element if a ≥ b
V
c implies a ≥ b or

a ≥ c. a in L is called co-prime element if a
0
is a prime element. The set

of non-unit prime elements in L is denoted by P (L). The set of non-zero
co-prime elements in L is denoted by M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if
and only if for every subset D ⊂ L, the relation b ≤supD always implies
the existence of d ∈ D with a ≤ d. In a complete distributive DeMorgan
algebra L, each element b is a sup of {a ∈ L|a ≺ b}, {a ∈ L|a ≺ b}is
called the greatest minimal family of b in the sense of [16], in symbol β(b).
Moreover for b ∈ L, define β∗(b) = β(b)

T
M(L), α(b) = {a ∈ L|a0 ≺ b

0}
and α∗(b) = α(b)

T
P (L).

For a ∈ L and A ∈ LX , let

A[a] = {x ∈ X|A(x) ≥ a},

A(a) = {x ∈ X|a ∈ β(A(x))},

A(a) = {x ∈ X|A(x) 6≤ a}.
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An L−topological space (L− space for short) is a pair (X, δ), where δ
is a subfamily of LX which contains 0 1 and is closed for any suprema and
infima. δ is called an L−topology on X. Every member of δ is called an
open L−set and its quasicomplementation is called a closed L−set.

If (X, τ) is a topological space, then ω(τ) denote the L−topology of the
continuous functions from (X, τ) to L with its Scott topology. (X,ω(τ)) is
called to be topologically generated by (X, δ).

For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamily of
Φ.

Definition 2.1 ([1, 9]) Let (X, δ) be an L−space. A ∈ LX is called
semiopen if and only if there exists B ∈ δ such that B ≤ A ≤ cl(B).
A ∈ LX is called semiclosed if and only if A

0
is semiopen.

Definition 2.2([1, 9]) Let (X, δ) be an L−space, A ∈ LX . The set cl∗A =V{B ∈ LX |A ≤ B and B is semiclosed }is called the semiclosure of A.
int∗A =

W{B ∈ LX |B ≤ A and B is semiopen }is called the semiinterior
of A.

Definition 2.3([10]) Let (X, δ) be an L−space. G ∈ LX is called compact
if for every family U of open L− sets, it follows that^

x∈X
(G

0
(x) ∨

_
A∈U

A(x)) ≤
_

V∈∈(U)

^
x∈X

(G
0
(x) ∨

_
A∈V

A(x))

Lemma 2.4([10]) Let L be complete Heyting algebra and let f : (X, δ1)→
(Y, δ2) be a mapping. Then for any family P⊂ LY

_
y∈Y

(f(G)(y) ∧
^
B∈P

B(y)) =
_
x∈X

(G(x) ∧
^
B∈P

f−1(B)(x))

Definition 2.5([10, 11]) Let (X, δ) be an L−space, a ∈ L\{1}, and G ∈
LX . A family U ⊂ LX is said to be

(1) an a−shading of G if for any x ∈ X, (G
0
(x) ∨ W

A∈U
A(x)) 6≤ a;

(2) a strong a−shading of G if
V

x∈X
(G

0
(x) ∨ W

A∈U
A(x)) 6≤ a;

(3) an a− remote family P of G if for any x ∈ X, (G(x)∧ V
A∈U

B(x)) 6≥ a;

(4) a strong a− remote family of G if
W

x∈X
(G(x) ∧ V

A∈U
A(x)) 6≥ a.

Definition 2.6([10]) Let a ∈ L\{0}, G ∈ LX . A family U ⊂ LX is called
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(1) a βa− cover of G if for all x ∈ X, it follows that a ∈ β(G
0
(x) ∨W

A∈U
A(x));

(2) a strong βa− cover of G if a ∈ β(
V

x∈X
(G

0
(x) ∨ W

A∈U
A(x)));

(3) a Qa− cover of G if for all x ∈ X, it follows that G
0
(x)∨ W

A∈U
A(x) ≥

a.

Definition 2.7([1, 9]) Let (X, δ1) and (Y, δ2) be two L−spaces. f : (X, δ1)→
(Y, δ2) is called

(1) semicontinuous if f−1(A) is semiopen in (X, δ1) for every open L−
set A in (Y, δ2).

(2) irresolute if f−1(A) is semiopen in (X, δ1) for every semiopen L−
set A in (Y, δ2).

3. Definition and characterizations of S∗ closedness

Definition 3.1 Let (X, δ) be an L−space. G ∈ LX is called S∗ closedness
if for every family U of semiopen L− sets, it follows that^

x∈X
(G

0
(x) ∨

_
A∈U

A(x)) ≤
_

V∈∈(U)

^
x∈X

(G
0
(x) ∨

_
A∈V

cl∗A(x))

Example 3.2 Suppose X = {x}, and L = {0, 1/4, 1/2, 3/4, 1}. For a ∈ L ,
a
0
= 1−a. Let δ = {0, A, 1}, where A(x) = 3/4, then (X, δ) is an L−space.

We can see that every L−set in (X, δ) is S∗ closedness.
Since any open L−set must be semiopen L− set,we have the following

theorem.

Theorem 3.3 Compactness is S∗ closedness in L−space.
From Definition 3.1 and quasicomplementation of L, we can obtain the

following theorem.

Theorem 3.4 Let (X, δ) be an L−space. G ∈ LX is S∗ closedness if and
only for every family B of semiclosed L− sets, it follows that_

x∈X
(G(x) ∧

^
B∈B

B(x)) ≥
^

F∈∈(B)

_
x∈X

(G(x) ∧
^
B∈F

int∗B(x))

Definition 3.5 Let a ∈ L\{0}, G ∈ LX . A family U ⊂ LX is said to have
weak a−nonempty intersection in G if

W
x∈X

(G(x) ∧ V
A∈U

A(x)) ≥ a. U is

said to have finite weak a∗−intersection property in G if for every finite
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subfamily F of U , the family F∗ = {int∗F |F ∈ F} has weak a−nonempty
intersection in G.

Theorem 3.6 Let (X, δ) be an L−space, G ∈ LX . Then the following
conditions are equivalent:

(1) G is S∗ closedness.
(2) For any a ∈ L\{1}, each semiopen strong a− shading U of G has a

finite subfamily V such that {cl∗A|A ∈ V} is a strong a− shading of G .
(3) For any a ∈ L\{0}, each semiclosed strong a− remote family P of

G has a finite subfamily F such that {int∗A|A ∈ P} is a strong a− remote
family of G.

(4) For any a ∈ L\{0}, each family of semiclosed L−sets which has the
finite weak a∗−intersection property in G has weak a−nonempty intersec-
tion in G.

Proof The proofs follow from Definition 3.1 and Theorem 3.4.

4. Properties of S∗ closedness

Theorem 4.1 Let L be complete Heyting algebra. If G and H are S∗

closedness, then so is G
W
H.

Proof For any family P of of semiclosed L− sets, by Theorem 3.4 we have
that

_
x∈X

((G
_

H)(x) ∧
^
B∈P

B(x))

= {
_
x∈X

(G(x) ∧
^
B∈P

B(x))}
_
{
_
x∈X

(H(x) ∧
^
B∈P

B(x))}

≥ {
^

F∈∈(P)

_
x∈X

(G(x) ∧
^
B∈F

int∗B(x))}
_
{
^

F∈∈(P)

_
x∈X

(H(x) ∧
^
B∈F

int∗B(x))}

=
^

F∈∈(P)

_
x∈X

((G
_

H)(x) ∧
^
B∈F

int∗B(x))

This shows that G
W
H is S∗ closedness.

Theorem 4.2 If G is S∗ closedness and H is a semiclosed set, then G
V
H

is S∗ closedness.

Proof For any family P of of semiclosed L− sets, by Theorem 3.4 we have
that
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_
x∈X

((G
^

H)(x) ∧
^
B∈P

B(x))

=
_
x∈X

(G(x) ∧
^

B∈P
S
{H}

B(x))

≥ {
^

F∈∈(P
S
{H})

_
x∈X

(G(x) ∧
^
B∈F

int∗B(x))}

= {
^

F∈∈(P)

_
x∈X

(G(x) ∧
^
B∈F

int∗B(x))}_
{
^

F∈∈(P)

_
x∈X

(G(x)
^

H(x) ∧
^
B∈F

int∗B(x))}

=
^

F∈∈(P)

_
x∈X

((G
^

H)(x) ∧
^
B∈F

int∗B(x))

Then we obtain that G
V
H is S∗ closedness.

Theorem 4.3 Let L be complete Heyting algebra and f : (X, δ1)→ (Y, δ2)
be an irresolute mapping. If G is S∗ closedness in (X, δ1), then f(G) is S∗

closedness in (Y, δ2).

Proof For any family P of of semiclosed L− sets in (Y, δ2), by Lemma 2.4
and S∗ closedness of G we have that

_
y∈Y

((f(G))(y) ∧
^
B∈P

B(y))

=
_
x∈X

(G(x) ∧
^
B∈P

f−1(B)(x))

≥
^

F∈∈(P)

_
x∈X

(G(x) ∧
^
B∈F

int∗f
−1(B)(x))

≥
^

F∈∈(P)

_
x∈X

(G(x) ∧
^
B∈F

f−1(int∗B)(x))

=
^

F∈∈(P)

_
y∈Y

(f(G)(y) ∧
^
B∈F

int∗B(y))

Hence f(G) is S∗ closedness.
Analogously, we can obtain the following theorem.

Theorem 4.4 Let L be complete Heyting algebra and f : (X, δ1)→ (Y, δ2)
be a semicontinous mapping. If G is S∗ closedness in (X, δ1), then f(G) is
S∗ closedness in (Y, δ2).
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5. Further characterizations of S∗ closedness and goodness

In this section, we assume that L is a completely distributive DeMorgan
algebra.

Theorem 5.1 Let (X, δ) be an L−space, G ∈ LX . Then the following
statements are equivalent:

(1) G is S∗ closedness.
(2) For any a ∈ L\{0}, each semiclosed strong a− remote family P of

G has a finite subfamily F such that {int∗A|A ∈ F} is a strong a− remote
family of G.

(3) For any a ∈ L\{0}, each semiclosed strong a− remote family P of G
has a finite subfamily F such that {int∗A|A ∈ F} is an a− remote family
of G.

(4) For any a ∈ L\{0}, each semiclosed strong a− remote family P of G
there exist a finite subfamily F of P and b ∈ β(a) such that {int∗A|A ∈ F}
is a strong b− remote family of G.

(5) For any a ∈ L\{0}, each semiclosed strong a− remote family P of G
there exist a finite subfamily F of P and b ∈ β(a) such that {int∗A|A ∈ F}
is a b− remote family of G.

(6) For any a ∈ L\{1}, each semiopen strong a− shading U of G has a
finite subfamily V such that {cl∗A|A ∈ V} is a strong a− shading of G .

(7) For any a ∈ L\{1}, each semiopen strong a− shading U of G has a
finite subfamily V such that {cl∗A|A ∈ V} is an a− shading of G .

(8) For any a ∈ L\{1} and any semiopen strong a− shading U of G
,there exist a finite subfamily V and b ∈ α(a) such that {cl∗A|A ∈ V} is a
b− shading of G .

(9) For any a ∈ L\{1} and any semiopen strong a− shading U of G
,there exist a finite subfamily V and b ∈ α(a) such that {cl∗A|A ∈ V} is a
strong b− shading of G .

(10) For any a ∈ L\{0}, each semiopen strong βa−cover U of G has a
finite subfamily V such that {cl∗A|A ∈ V} is a strong βa−cover of G.

(11) For any a ∈ L\{0}, each semiopen strong βa−cover U of G has a
finite subfamily V such that {cl∗A|A ∈ V} is a βa−cover of G.

(12) For any a ∈ L\{0} and any semiopen strong βa−cover U ofG, there
exist a finite subfamily V and b ∈ L with a ∈ β(b) such that {cl∗A|A ∈ V}
is a strong βa−cover of G.

(13) For any a ∈ L\{0} and any semiopen strong βa−cover U ofG, there
exist a finite subfamily V and b ∈ L with a ∈ β(b) such that {cl∗A|A ∈ V}
is a βa−cover of G.
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(14) For any a ∈ L\{0} and b ∈ β(a)\{0},each semiopen Qa−cover U
of G has a finite subfamily V such that {cl∗A|A ∈ V} is a Qb−cover of G.

(15) For any a ∈ L\{0} and b ∈ β(a)\{0}, each semiopen Qa−cover U
of G has a finite subfamily V such that {cl∗A|A ∈ V} is a strong βb−cover
of G.

(16) For any a ∈ L\{0} and b ∈ β(a)\{0}, each semiopen Qa−cover U
of G has a finite subfamily V such that {cl∗A|A ∈ V} is a βb−cover of G.

Proof (1)⇔ (2) It follows from Theorem 3.6.

(2)⇒ (3) It is easy for the fact that every strong a− remote family of
G is a− remote family of G.

(3) ⇒ (4) Let a ∈ L\{0}. Suppose U is semiclosed strong a− re-
mote family of G, then

W
x∈X

(G(x) ∧ V
A∈U

A(x)) 6≥ a. Take c ∈ β(a) such

that
W

x∈X
(G(x) ∧ V

A∈U
A(x)) 6≥ c. One can see that U is semiclosed strong

c− remote family of G. From (3), U has a finite subfamily F such that
{int∗A|A ∈ F} is c− remote family of G. Choose b ∈ β(a) such that
c ∈ β(b), then {int∗A|A ∈ F} is strong b− remote family of G.

(4)⇒ (5)⇒ (2) It is Obvious.

(1)⇔ (6) It follows from Theorem 3.6.

(6)⇒ (7) It is easy for the fact that every strong a−shading family of
G is a−shading family of G.

(7) ⇒ (8)Let a ∈ L\{1}. Suppose U is semiclosed strong a− shad-
ing family of G, then

V
x∈X

(G
0
(x) ∨ W

A∈U
A(x)) 6≤ a. Take c ∈ α(a) such

that
V

x∈X
(G

0
(x) ∨ W

A∈U
A(x)) 6≤ c. One can see that U is semiclosed strong

c−shading family of G. From (7),U has a finite subfamily F such that
{int∗A|A ∈ F} is c−shading family of G. Choose b ∈ α(a) such that
c ∈ α(b), then {int∗A|A ∈ F} is strong b−shading family of G.

(8)⇒ (9)⇒ (6) It is Obvious.

Similarly we can prove the other statements.

Remark 5.2 In Theorem 5.1, a ∈ L\{0} and b ∈ β(a) can be replaced
by a ∈ M(L) and b ∈ β∗(a)respectively. a ∈ L\{1} and b ∈ α(a) can be
replaced by a ∈ P (L) and b ∈ α∗(a) respectively. Thus, we can obtain
other 15 equivalent conditions of the S∗ closedness.

Lemma 5.3([11]) Let (X,ω(δ)) be generated topologically by (X, δ). If A
is a semiopen set in (X, δ), then χA is a semiopen set L− set in (X,ω(δ)).
If B is a semiopen set in (X,ω(δ)), then B(a) is a semiopen set in (X, δ).
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Lemma 5.4 Let (X,ω(δ)) be generated topologically by (X, δ),B ∈ LX .
Then cl∗(B[b]) ⊂ (cl∗B)[b] in (X,ω(δ)) .

Proof For B ∈ LX , B[b] ⊂ (cl∗B)[b]. Then cl∗(B[b]) ⊂ (cl∗B)[b] in
(X,ω(δ)) since (cl∗B)[b] is a semiclosed set in (X,ω(δ)) and cl∗(B[b]) is the
smallest semiclosed set contains B[b].

Theorem 5.5 Let (X, δ) be a topological space and (X,ω(δ)) be generated
topologically by (X, δ). Then (X,ω(δ)) is S∗ closedness if and only if (X, δ)
is S∗ closedness.

Proof Let A be a semiopen-cover of (X, δ). Then {χA|A ∈ A} is a family
of semiopen L− sets in (X,ω(δ)) with

V
x∈X

(
W

A∈U
χA(x)) = 1. From the S∗

closedness of (X,ω(δ)), it follows that
1 =

W
V∈∈(U)

V
x∈X

(
W

A∈V
cl∗(χA)(x)) ≤

W
V∈∈(U)

V
x∈X

(
W

A∈V
χcl∗A(x))

This implies that there exists V ∈ ∈(U) such that W
A∈V

χcl∗A(x) = 1.

Hence, the family of {cl∗(A)|A ∈ V} is a cover of (X, δ). Then (X, δ) is S∗

closedness.
Conversely, let U be a family of semiopen L− sets in (X,ω(δ)) and letV

x∈X
(
W

B∈U
B(x)) = a. If a = 0, then obviously

^
x∈X

(
_
B∈U

B(x)) ≤
_

V∈∈(U)

^
x∈X

(
_
B∈V

cl∗B(x))

Now we suppose that a 6= 0. In this case, for any b ∈ β(a)\{0}, we have
that

b ∈ β(
^
x∈X

(
_
B∈U

B(x))) ⊂
\
x∈X

β(
_
B∈U

B(x)) =
\
x∈X

[
B∈U

β(B(x))

This implies the family of {B(b)|B ∈ U} is a semiopen cover of (X, δ)

by Lemma 5.3, From the S∗ closedness of (X, δ), there exists V ∈ ∈(U) such
that {cl∗(B(b))|B ∈ V} is a cover of (X, δ). Obviously {(cl∗B)[b]|B ∈ V}
is a cover of (X, δ) since cl∗(B(b)) ⊂ cl∗(B[b]) ⊂ (cl∗B)[b]. Hence b ≤V
x∈X

(
W

B∈V
cl∗B(x)). Further we have that

b ≤
^
x∈X

(
_
B∈V

cl∗B(x)) ≤
_

V∈∈(U)

^
x∈X

(
_
B∈V

cl∗B(x))

This implies that^
x∈X

(
_
B∈U

B(x)) = a =
_
{b|b ∈ β(a)} ≤

_
V∈∈(U)

^
x∈X

(
_
B∈V

cl∗B(x))
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Therefore (X,ω(δ)) is S∗ closedness.

Corollary 5.6 S∗ closedness in L−topological spaces is good extension.
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