Proyecciones Journal of Mathematics Vol. 29, N^o 3, pp. 181-191, December 2010. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172010000300002

A NEW DEFINITION OF S^* CLOSEDNESS IN L-TOPOLOGICAL SPACES

BO CHEN SOUTHWEST UNIVERSITY, P. R. CHINA Received : June 2009. Accepted : May 2010

Abstract

In this paper, a new notion of S^* closedness in L-topological Spaces is introduced by means of semi-open L-sets and their inequality where L is a complete DeMorgan algebra. This new definition doesn't rely on the structure of basic lattice L. It can be characterized by means of semi-open L-sets and their inequality. When L is completely distributive DeMorgan algebra, its many characterizations are presented.

Keywords and Phrases : semiopen L - set, S^* closedness, L-topological space.

Mathematics Subject Classification(2000) : 54A40,54A20.

1. Introduction

Compactness is one of the most important notions in topology. In [1], Azad introduced the concepts of semiopen sets and semiopen continuous functions in L- topology. In [5], Kudri generalized the concept of semicompactness and S^* closedness in L- topological spaces. However, Kudri's S^* closedness relies on the structure of L which is a completely distributive lattice.

In [10], Shi introduced a new definition of fuzzy compactness in Ltopological spaces by means of open L- sets and their inequality where L is a completely distributive *DeMorgan* algebra. This new definition doesn't rely on the structure of basic lattice L.

In this paper, along the line of [10] we shall introduce a new definition of S^* closedness in L- topological spaces by means of semiopen L- sets and their inequality. Also we give characterizations and properties of S^* closedness.

2. Preliminaries

Throughout this paper, $(L, \bigvee, \bigwedge, {}')$ is a complete *DeMorgan* algebra, X is a nonempty set. L^X is the set of all L- fuzzy sets (*L*-sets for short) on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$.

An element a in L is called prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. a in L is called co-prime element if a' is a prime element. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation \prec in L is defined as follows: for $a, b \in L, a \prec b$ if and only if for every subset $D \subset L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$. In a complete distributive *DeMorgan* algebra L, each element b is a sup of $\{a \in L | a \prec b\}$, $\{a \in L | a \prec b\}$ is called the greatest minimal family of b in the sense of [16], in symbol $\beta(b)$. Moreover for $b \in L$, define $\beta^*(b) = \beta(b) \cap M(L), \alpha(b) = \{a \in L | a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, let

$$A_{[a]} = \{x \in X | A(x) \ge a\},$$
$$A_{(a)} = \{x \in X | a \in \beta(A(x))\},$$
$$A^{(a)} = \{x \in X | A(x) \le a\}.$$

An *L*-topological space (*L*- space for short) is a pair (X, δ) , where δ is a subfamily of L^X which contains <u>0</u> <u>1</u> and is closed for any suprema and infima. δ is called an *L*-topology on *X*. Every member of δ is called an open L-set and its quasicomplementation is called a closed L-set.

If (X, τ) is a topological space, then $\omega(\tau)$ denote the L-topology of the continuous functions from (X, τ) to L with its Scott topology. $(X, \omega(\tau))$ is called to be topologically generated by (X, δ) .

For a subfamily $\Phi \subset L^X, 2^{(\Phi)}$ denotes the set of all finite subfamily of Φ.

Definition 2.1 ([1, 9]) Let (X, δ) be an *L*-space. $A \in L^X$ is called semiopen if and only if there exists $B \in \delta$ such that $B \leq A \leq cl(B)$. $A \in L^X$ is called semiclosed if and only if A' is semiopen.

Definition 2.2([1, 9]) Let (X, δ) be an L-space, $A \in L^X$. The set $cl_*A =$ $\bigwedge \{B \in L^X | A \leq B \text{ and } B \text{ is semiclosed } \}$ is called the semiclosure of A. $int_*A = \bigvee \{B \in L^X | B \leq A \text{ and } B \text{ is semiopen } \}$ is called the semiinterior of A.

Definition 2.3([10]) Let (X, δ) be an *L*-space. $G \in L^X$ is called compact if for every family \mathcal{U} of open L- sets, it follows that

$$\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \le \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x))$$

Lemma 2.4([10]) Let L be complete Heyting algebra and let $f: (X, \delta_1) \to$ (Y, δ_2) be a mapping. Then for any family $\mathcal{P} \subset L^Y$

$$\bigvee_{y \in Y} (f(G)(y) \land \bigwedge_{B \in \mathcal{P}} B(y)) = \bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{P}} f^{-1}(B)(x))$$

Definition 2.5([10, 11]) Let (X, δ) be an *L*-space, $a \in L \setminus \{1\}$, and $G \in C \setminus \{1\}$ L^X . A family $\mathcal{U} \subset L^X$ is said to be

. A family $\mathcal{U} \subset \mathcal{L}^{-1}$ is said to be (1) an *a*-shading of *G* if for any $x \in X$, $(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \not\leq a$;

- (2) a strong *a*-shading of *G* if $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \not\leq a$; (3) an *a* remote family \mathcal{P} of *G* if for any $x \in X, (G(x) \land \bigwedge_{A \in \mathcal{U}} B(x)) \not\geq a$;
- (4) a strong a- remote family of G if $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{U}} A(x)) \not\geq a$.

Definition 2.6([10]) Let $a \in L \setminus \{0\}, G \in L^X$. A family $\mathcal{U} \subset L^X$ is called

(1) a β_a - cover of G if for all $x \in X$, it follows that $a \in \beta(G'(x) \vee$ $\bigvee A(x)$; $\dot{A \in U}$

(2) a strong β_a - cover of G if $a \in \beta(\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)));$ (3) a Q_a - cover of G if for all $x \in X$, it follows that $G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \ge$

Definition 2.7([1, 9]) Let (X, δ_1) and (Y, δ_2) be two *L*-spaces. $f : (X, \delta_1) \rightarrow$ (Y, δ_2) is called

(1) semicontinuous if $f^{-1}(A)$ is semiopen in (X, δ_1) for every open Lset A in (Y, δ_2) .

(2) irresolute if $f^{-1}(A)$ is semiopen in (X, δ_1) for every semiopen Lset A in (Y, δ_2) .

3. Definition and characterizations of S^* closedness

Definition 3.1 Let (X, δ) be an *L*-space. $G \in L^X$ is called S^* closedness if for every family \mathcal{U} of semiopen L- sets, it follows that

$$\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \le \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{V}} cl_*A(x))$$

Example 3.2 Suppose $X = \{x\}$, and $L = \{0, 1/4, 1/2, 3/4, 1\}$. For $a \in L$, a' = 1 - a. Let $\delta = \{\underline{0}, A, \underline{1}\}$, where A(x) = 3/4, then (X, δ) is an L-space. We can see that every L-set in (X, δ) is S^* closedness.

Since any open L-set must be semiopen L- set, we have the following theorem.

Theorem 3.3 Compactness is S^* closedness in *L*-space.

From Definition 3.1 and quasicomplementation of L, we can obtain the following theorem.

Theorem 3.4 Let (X, δ) be an *L*-space. $G \in L^X$ is S^* closedness if and only for every family \mathcal{B} of semiclosed L- sets, it follows that

$$\bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{B}} B(x)) \ge \bigwedge_{\mathcal{F} \in \in^{(\mathcal{B})}} \bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{F}} int_*B(x))$$

Definition 3.5 Let $a \in L \setminus \{0\}, G \in L^X$. A family $\mathcal{U} \subset L^X$ is said to have weak *a*-nonempty intersection in *G* if $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{U}} A(x)) \ge a$. \mathcal{U} is said to have finite weak a_* -intersection property in G if for every finite

a.

subfamily \mathcal{F} of \mathcal{U} , the family $\mathcal{F}_* = \{int_*F | F \in \mathcal{F}\}$ has weak *a*-nonempty intersection in *G*.

Theorem 3.6 Let (X, δ) be an *L*-space, $G \in L^X$. Then the following conditions are equivalent:

(1) G is S^* closedness.

(2) For any $a \in L \setminus \{1\}$, each semiopen strong a- shading \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong a- shading of G.

(3) For any $a \in L \setminus \{0\}$, each semiclosed strong a- remote family \mathcal{P} of G has a finite subfamily \mathcal{F} such that $\{int_*A | A \in \mathcal{P}\}$ is a strong a- remote family of G.

(4) For any $a \in L \setminus \{0\}$, each family of semiclosed *L*-sets which has the finite weak a_* -intersection property in *G* has weak *a*-nonempty intersection in *G*.

Proof The proofs follow from Definition 3.1 and Theorem 3.4.

4. Properties of S^* closedness

Theorem 4.1 Let L be complete Heyting algebra. If G and H are S^* closedness, then so is $G \lor H$.

Proof For any family \mathcal{P} of of semiclosed L- sets, by Theorem 3.4 we have that

$$\begin{split} \bigvee_{x \in X} \left((G \bigvee H)(x) \wedge \bigwedge_{B \in \mathcal{P}} B(x) \right) \\ &= \{ \bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in \mathcal{P}} B(x)) \} \bigvee \{ \bigvee_{x \in X} (H(x) \wedge \bigwedge_{B \in \mathcal{P}} B(x)) \} \\ &\geq \{ \bigwedge_{\mathcal{F} \in \mathcal{C}^{(\mathcal{P})}} \bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x)) \} \bigvee \{ \bigwedge_{\mathcal{F} \in \mathcal{C}^{(\mathcal{P})}} \bigvee_{x \in X} (H(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x)) \} \\ &= \bigwedge_{\mathcal{F} \in \mathcal{C}^{(\mathcal{P})}} \bigvee_{x \in X} ((G \bigvee H)(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x)) \end{split}$$

This shows that $G \lor H$ is S^* closedness.

Theorem 4.2 If G is S^* closedness and H is a semiclosed set, then $G \wedge H$ is S^* closedness.

Proof For any family \mathcal{P} of of semiclosed L- sets, by Theorem 3.4 we have that

 $Bo \ Chen$

$$\begin{split} \bigvee_{x \in X} ((G \bigwedge H)(x) \wedge \bigwedge_{B \in \mathcal{P}} B(x)) \\ &= \bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in \mathcal{P} \bigcup \{\mathcal{H}\}} B(x)) \\ &\geq \{\bigwedge_{\mathcal{F} \in \in} (\mathcal{P} \bigcup \{\mathcal{H}\})} \bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x))\} \\ &= \{\bigwedge_{\mathcal{F} \in \in} (\mathcal{P})} \bigvee_{x \in X} (G(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x))\} \\ &\bigvee \{\bigwedge_{\mathcal{F} \in \in} (\mathcal{P})} \bigvee_{x \in X} (G(x) \bigwedge H(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x))\} \\ &= \bigwedge_{\mathcal{F} \in \in} (\mathcal{P})} \bigvee_{x \in X} ((G \bigwedge H)(x) \wedge \bigwedge_{B \in \mathcal{F}} int_* B(x)) \end{split}$$

Then we obtain that $G \wedge H$ is S^* closedness.

Theorem 4.3 Let *L* be complete Heyting algebra and $f: (X, \delta_1) \to (Y, \delta_2)$ be an irresolute mapping. If *G* is S^* closedness in (X, δ_1) , then f(G) is S^* closedness in (Y, δ_2) .

Proof For any family \mathcal{P} of of semiclosed L- sets in (Y, δ_2) , by Lemma 2.4 and S^* closedness of G we have that

$$\begin{split} \bigvee_{y \in Y} \left((f(G))(y) \land \bigwedge_{B \in \mathcal{P}} B(y) \right) \\ &= \bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{P}} f^{-1}(B)(x)) \\ &\geq \bigwedge_{\mathcal{F} \in \in^{(\mathcal{P})}} \bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{F}} int_* f^{-1}(B)(x)) \\ &\geq \bigwedge_{\mathcal{F} \in \in^{(\mathcal{P})}} \bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{F}} f^{-1}(int_*B)(x)) \\ &= \bigwedge_{\mathcal{F} \in \in^{(\mathcal{P})}} \bigvee_{y \in Y} (f(G)(y) \land \bigwedge_{B \in \mathcal{F}} int_*B(y)) \end{split}$$

Hence f(G) is S^* closedness.

Analogously, we can obtain the following theorem.

Theorem 4.4 Let *L* be complete Heyting algebra and $f : (X, \delta_1) \to (Y, \delta_2)$ be a semicontinous mapping. If *G* is S^* closedness in (X, δ_1) , then f(G) is S^* closedness in (Y, δ_2) .

5. Further characterizations of S^* closedness and goodness

In this section, we assume that L is a completely distributive DeMorgan algebra.

Theorem 5.1 Let (X, δ) be an *L*-space, $G \in L^X$. Then the following statements are equivalent:

(1) G is S^* closedness.

(2) For any $a \in L \setminus \{0\}$, each semiclosed strong a- remote family \mathcal{P} of G has a finite subfamily \mathcal{F} such that $\{int_*A | A \in \mathcal{F}\}$ is a strong a- remote family of G.

(3) For any $a \in L \setminus \{0\}$, each semiclosed strong a- remote family \mathcal{P} of G has a finite subfamily \mathcal{F} such that $\{int_*A | A \in \mathcal{F}\}$ is an a- remote family of G.

(4) For any $a \in L \setminus \{0\}$, each semiclosed strong a- remote family \mathcal{P} of G there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that $\{int_*A | A \in \mathcal{F}\}$ is a strong b- remote family of G.

(5) For any $a \in L \setminus \{0\}$, each semiclosed strong a- remote family \mathcal{P} of G there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that $\{int_*A | A \in \mathcal{F}\}$ is a b- remote family of G.

(6) For any $a \in L \setminus \{1\}$, each semiopen strong a- shading \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong a- shading of G.

(7) For any $a \in L \setminus \{1\}$, each semiopen strong a- shading \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is an a- shading of G.

(8) For any $a \in L \setminus \{1\}$ and any semiopen strong a--shading \mathcal{U} of G, there exist a finite subfamily \mathcal{V} and $b \in \alpha(a)$ such that $\{cl_*A | A \in \mathcal{V}\}$ is a b--shading of G.

(9) For any $a \in L \setminus \{1\}$ and any semiopen strong a--shading \mathcal{U} of G, there exist a finite subfamily \mathcal{V} and $b \in \alpha(a)$ such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong b--shading of G.

(10) For any $a \in L \setminus \{0\}$, each semiopen strong β_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong β_a -cover of G.

(11) For any $a \in L \setminus \{0\}$, each semiopen strong β_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a β_a -cover of G.

(12) For any $a \in L \setminus \{0\}$ and any semiopen strong β_a -cover \mathcal{U} of G, there exist a finite subfamily \mathcal{V} and $b \in L$ with $a \in \beta(b)$ such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong β_a -cover of G.

(13) For any $a \in L \setminus \{0\}$ and any semiopen strong β_a -cover \mathcal{U} of G, there exist a finite subfamily \mathcal{V} and $b \in L$ with $a \in \beta(b)$ such that $\{cl_*A | A \in \mathcal{V}\}$ is a β_a -cover of G.

(14) For any $a \in L \setminus \{0\}$ and $b \in \beta(a) \setminus \{0\}$, each semiopen Q_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a Q_b -cover of G.

(15) For any $a \in L \setminus \{0\}$ and $b \in \beta(a) \setminus \{0\}$, each semiopen Q_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a strong β_b -cover of G.

(16) For any $a \in L \setminus \{0\}$ and $b \in \beta(a) \setminus \{0\}$, each semiopen Q_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $\{cl_*A | A \in \mathcal{V}\}$ is a β_b -cover of G.

Proof (1) \Leftrightarrow (2) It follows from Theorem 3.6.

 $(2) \Rightarrow (3)$ It is easy for the fact that every strong a- remote family of G is a- remote family of G.

(3) \Rightarrow (4) Let $a \in L \setminus \{0\}$. Suppose \mathcal{U} is semiclosed strong a- remote family of G, then $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{U}} A(x)) \not\geq a$. Take $c \in \beta(a)$ such that $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{U}} A(x)) \not\geq c$. One can see that \mathcal{U} is semiclosed strong c- remote family of G. From (3), \mathcal{U} has a finite subfamily \mathcal{F} such that $\{int_*A | A \in \mathcal{F}\}$ is c- remote family of G. Choose $b \in \beta(a)$ such that $c \in \beta(b)$, then $\{int_*A | A \in \mathcal{F}\}$ is strong b- remote family of G.

 $(4) \Rightarrow (5) \Rightarrow (2)$ It is Obvious.

 $(1) \Leftrightarrow (6)$ It follows from Theorem 3.6.

 $(6) \Rightarrow (7)$ It is easy for the fact that every strong *a*-shading family of *G* is *a*-shading family of *G*.

 $(7) \Rightarrow (8)$ Let $a \in L \setminus \{1\}$. Suppose \mathcal{U} is semiclosed strong a- shading family of G, then $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \not\leq a$. Take $c \in \alpha(a)$ such that $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)) \not\leq c$. One can see that \mathcal{U} is semiclosed strong c-shading family of G. From (7), \mathcal{U} has a finite subfamily \mathcal{F} such that $\{int_*A \mid A \in \mathcal{F}\}$ is c-shading family of G. Choose $b \in \alpha(a)$ such that $c \in \alpha(b)$, then $\{int_*A \mid A \in \mathcal{F}\}$ is strong b-shading family of G.

 $(8) \Rightarrow (9) \Rightarrow (6)$ It is Obvious.

Similarly we can prove the other statements.

Remark 5.2 In Theorem 5.1, $a \in L \setminus \{0\}$ and $b \in \beta(a)$ can be replaced by $a \in M(L)$ and $b \in \beta^*(a)$ respectively. $a \in L \setminus \{1\}$ and $b \in \alpha(a)$ can be replaced by $a \in P(L)$ and $b \in \alpha^*(a)$ respectively. Thus, we can obtain other 15 equivalent conditions of the S^* closedness.

Lemma 5.3([11]) Let $(X, \omega(\delta))$ be generated topologically by (X, δ) . If A is a semiopen set in (X, δ) , then χ_A is a semiopen set L- set in $(X, \omega(\delta))$. If B is a semiopen set in $(X, \omega(\delta))$, then $B_{(a)}$ is a semiopen set in (X, δ) . **Lemma 5.4** Let $(X, \omega(\delta))$ be generated topologically by $(X, \delta), B \in L^X$. Then $cl_*(B_{[b]}) \subset (cl_*B)_{[b]}$ in $(X, \omega(\delta))$.

Proof For $B \in L^X$, $B_{[b]} \subset (cl_*B)_{[b]}$. Then $cl_*(B_{[b]}) \subset (cl_*B)_{[b]}$ in $(X, \omega(\delta))$ since $(cl_*B)_{[b]}$ is a semiclosed set in $(X, \omega(\delta))$ and $cl_*(B_{[b]})$ is the smallest semiclosed set contains $B_{[b]}$.

Theorem 5.5 Let (X, δ) be a topological space and $(X, \omega(\delta))$ be generated topologically by (X, δ) . Then $(X, \omega(\delta))$ is S^* closedness if and only if (X, δ) is S^* closedness.

Proof Let \mathcal{A} be a semiopen-cover of (X, δ) . Then $\{\chi_A | A \in \mathcal{A}\}$ is a family of semiopen L- sets in $(X, \omega(\delta))$ with $\bigwedge_{x \in X} (\bigvee_{A \in \mathcal{U}} \chi_A(x)) = \underline{1}$. From the S^*

closedness of $(X, \omega(\delta))$, it follows that

 $\underline{1} = \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} cl_*(\chi_A)(x) \right) \leq \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} \chi_{cl_*A}(x) \right)$ This implies that there exists $\mathcal{V} \in \in^{(\mathcal{U})}$ such that $\bigvee_{A \in \mathcal{V}} \chi_{cl_*A}(x) = \underline{1}$. Hence, the family of $\{cl_*(A)|A \in \mathcal{V}\}$ is a cover of (X, δ) . Then (X, δ) is S^* closedness.

Conversely, let \mathcal{U} be a family of semiopen L- sets in $(X, \omega(\delta))$ and let \land ($\lor B(x)$) = a. If a = 0, then obviously $x \in X \quad B \in \mathcal{U}$

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \le \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} cl_* B(x) \right)$$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$, we have that

$$b \in \beta(\bigwedge_{x \in X} (\bigvee_{B \in \mathcal{U}} B(x))) \subset \bigcap_{x \in X} \beta(\bigvee_{B \in \mathcal{U}} B(x)) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta(B(x))$$

This implies the family of $\{B_{(b)}|B \in \mathcal{U}\}$ is a semiopen cover of (X, δ) by Lemma 5.3, From the S^* closedness of (X, δ) , there exists $\mathcal{V} \in \in^{(\mathcal{U})}$ such that $\{cl_*(B_{(b)})|B \in \mathcal{V}\}\$ is a cover of (X, δ) . Obviously $\{(cl_*B)_{[b]}|B \in \mathcal{V}\}\$ is a cover of (X, δ) since $cl_*(B_{(b)}) \subset cl_*(B_{[b]}) \subset (cl_*B)_{[b]}$. Hence $b \leq cl_*(B_{(b)}) \subset cl_*(B_{(b)})$ \land (\lor $cl_*B(x)$). Further we have that $x \in X B \in \mathcal{V}$

$$b \leq \bigwedge_{x \in X} (\bigvee_{B \in \mathcal{V}} cl_*B(x)) \leq \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} (\bigvee_{B \in \mathcal{V}} cl_*B(x))$$

This implies that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) = a = \bigvee \{ b | b \in \beta(a) \} \le \bigvee_{\mathcal{V} \in \in^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} cl_* B(x) \right)$$

Therefore $(X, \omega(\delta))$ is S^* closedness.

Corollary 5.6 S^* closedness in L-topological spaces is good extension.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl, 82, pp. 14-32, (1981).
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl, 24, pp. 182-190, (1968).
- [3] B. Ghosh, Semicontinuous and semiclosed mappings and semiconnectedness in fuzzy setting, Fuzzy Sets and Systems, 35, pp. 345-355, (1990).
- [4] G. Gierz, et al., A compendium of continuous Lattices, Springer Verlag, Berlin, 1980.
- [5] S. R. T. Kudri, Semicompactness and S^* -closedness in *L*-fuzzy topological spaces, Fuzzy Sets and Systems, 109, pp. 223-231, (2000).
- [6] S. R. T. Kudri, M. W. Warner, Some good *L*-fuzzy compactnessrelated concepts and their properties I, Fuzzy Sets and Systems, 76, pp. 141-155, (1995).
- [7] S. R. T. Kudri, M. W. Warner, Some good *L*-fuzzy compactnessrelated concepts and their properties II, Fuzzy Sets and Systems, 76, pp. 157-168, (1995).
- [8] Y. M. Liu, M. K. Luo, Fuzzy topology, World Scientific, Singapore, (1997).
- [9] S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy Sets and Systems, 45, pp. 239-244, (1992).
- [10] F. G. Shi, A new notion of fuzzy compactness in *L*-topological spaces, Information Science. 173, pp. 35-48, (2005).
- [11] F. G. Shi, Semicompactness in L-topological spaces, Internatinal Journal of Mathematics and Mathematical Sciences, 12, pp. 1869-1878, (2005).

- [12] F. G. Shi, A new form of fuzzy β-compactness, Proyectiones Journal of Mathematics, 24, pp. 105-119, (2005).
- [13] F. G. Shi, Countable compactness and the Lindelöf property of *L*-fuzzy sets, Iranian Journal of Fuzzy System, 1, pp. 79-88, (2004).
- [14] F. G. Shi, A new approach to fuzzy almost compactness, Proyecciones Journal of Mathematics, 28, pp. 75-87, (2009).
- [15] F. G. Shi, A new form of fuzzy α-compactness, Mathematica Bohemica 131, pp. 15-28, (2006).
- [16] G. J. Wang, Theory of *L*-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an, (1988).

Bo Chen

School of Mathematics and Statistics Southwest University Chongqing 400715 P. R. China e-mail : bobochen@swu.edu.cn