Proyecciones Journal of Mathematics
Vol. 36, N ${ }^{o}$ 2, pp. 283-298, June 2017.
Universidad Católica del Norte
Antofagasta - Chile

Some new classes of vertex-mean graphs

A. Lourdusamy
St. Xavier's College (Autonomous), India
and
M. Seenivasan
Sri Paramakalyani College, India
Received : April 2016. Accepted : January 2017

Abstract

A vertex-mean labeling of a (p, q) graph $G=(V, E)$ is defined as an injective function $f: E \longrightarrow\left\{0,1,2, \ldots, q_{*}\right\}, q_{*}=\max (p, q)$ such that the function $f^{V}: V \longrightarrow \mathbf{N}$ defined by the rule $f^{V}(v)=$ Round $\left(\frac{\sum_{e \in E_{v}} f(e)}{d(v)}\right)$ satisfies the property that $f^{V}(V)=\left\{f^{V}(u): u \in V\right\}=\{1,2, \ldots, p\}$, where E_{v} denotes the set of edges in G that are incident at v, \mathbf{N} denotes the set of all natural numbers and Round is the nearest integer function. A graph that has a vertex-mean labeling is called vertex-mean graph or V-mean graph. In this paper, we study V-mean behaviour of certain new classes of graphs and present a method to construct disconnected V-mean graphs.

MSC (2010) : Primary: 05C78; Secondary: 52C30.
Keywords : Mean labeling, edge labeling, vertex-mean labeling, vertexmean graphs.

1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a label for each edge $x y$ depending on the vertex labels. An edge labeling of a graph G is an assignment f of labels to the edges of G that induces a label for each vertex v depending on the labels of the edges incident on it. Vertex labelings such as graceful labeling, harmonious labelingand mean labeling and edge labelings such as edge-magic labeling, (a,d)-anti magic labeling and vertex-graceful labeling are some of the interesting labelings found in the dynamic survey of graph labeling by Gallian[2]. In fact Acharya and Germina [1] has introduced vertex-graceful graphs, as an edge-analogue of graceful graphs.

A mean labeling f is an injective function from V to the set $\{0,1,2, \ldots, q\}$ such that the set of edge labels defined by the rule $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ for each edge $u v$ is $\{1,2, \ldots, q\}$. The mean labeling was introduced by Somasundaram and Ponraj [4]. Observe that, in a variety of practical problems, the arithmetic mean, X, of a finite set of real numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ serves as a better estimate for it, in the sense that $\sum\left(x_{i}-X\right)$ is zero and $\sum\left(x_{i}-X\right)^{2}$ is the minimum. If it is required to use a single integer in the place of X then $\operatorname{Round}(X)$ does this best, in the sense that $\sum\left(x_{i}-\operatorname{Round}(X)\right)$ and $\sum\left(x_{i}-\right.$ $\operatorname{Round}(X))^{2}$ are minimum, where $\operatorname{Round}(Y)$, nearest integer function of a real number, gives the integer closest to Y; to avoid ambiguity, it is defined to be the nearest integer greater than Y if the fraction of y is 0.5 . Motivated by this and the concept of vertex-graceful graphs, Lourdusamy and Seenivasan [3] introduced vertex-mean labeling as an edge analogue of mean labeling as follows:

A vertex-mean labeling of a (p, q) graph $G=(V, E)$ is defined as an injective function $f: E \longrightarrow\left\{0,1,2, \ldots, q_{*}\right\}, q_{*}=\max (p, q)$ such that the function $f^{V}: V \longrightarrow \mathbf{N}$ defined by the rule $f^{V}(v)=\operatorname{Round}\left(\frac{\sum_{e \in E_{v}} f(e)}{d(v)}\right)$ satisfies the property that $f^{V}(V)=\left\{f^{V}(u): u \in V\right\}=\{1,2, \ldots, p\}$, where E_{v} denotes the set of edges in G that are incident at v and \mathbf{N} denotes the set of all natural numbers. A graph that has a vertex-mean labeling is called vertex-mean graph or V-mean graph. They, obtained necessary conditions for a graph to be a V-mean graph, and proved that any 3 -regular graph of order $2 m, m \geq 4$ is not a V-mean graph. They also proved that the path P_{n}, where $n \geq 3$ and the cycle C_{n}, the Corona $P_{n} \odot K_{m}^{C}$, where $n \geq 2$ and $m \geq 1$, the star graph $K_{1, n}$ if and only if $n \equiv 0(\bmod 2)$, and the crown
$C_{n} \odot K_{1}$ are V-mean graphs. A dragon is a graph obtained by identifying an end point of a path P_{m} with a vertex of the cycle C_{n} and $m P_{n}$ denotes the disjoint union of m copies of the path P_{n}. For $3 \leq p \leq n-r, C_{n}(p, r)$ denotes the graph obtained from the cycle C_{n} with consecutive vertices v_{1}, v_{2}, \ldots, v_{n} by adding the r chords $v_{1} v_{p}, v_{1} v_{p+1}, \ldots, v_{1} v_{p+r-1}$. In this paper we present the V-mean labeling of the following graphs:

1. The graph $S\left(K_{1, n}\right)$, obtained by subdividing every edge of $K_{1, n}$,
2. Dragon graph,
3. The graph obtained by identifying one vertex of the cycle C_{3} with the central vertex of $K_{1, n}$,
4. The graph $C_{n}(3,1)$,
5. The graph obtained from the two cycles C_{n} and C_{m} by adding a new edge joining a vertex of C_{n} and C_{m} where $m \in\{n, n+1, n+2\}$,
6. The graph $C_{n} \cup C_{m}$,
7. The graph obtained by identifying one vertex of the cycle C_{m} with a vertex of C_{n} when $m=3$ or 4 .

We also explain a method to obtain disconnected V-mean graphs from V-mean graphs. Following are some of the graphs so obtained: the graph $\bigcup_{i=1}^{k} P_{n_{i}}$, where $n_{i} \geq 3$, the graph $m P_{n}$ where $m \geq 1$ and $n \geq 3$, the graph $C_{n} \cup\left(\bigcup_{i=1}^{k} P_{n_{i}}\right)$, where $n_{i} \geq 3$, the graph $C_{n} \cup k P_{m}$ where $m \geq 3$, the graph $C_{n} \cup C_{m} \cup\left(\bigcup_{i=1}^{k} P_{n_{i}}\right)$, where $n_{i} \geq 3$, the graph $C_{n} \cup C_{m} \cup k P_{t}$ where $t \geq 3$.

2. New classes of V-mean graphs

Theorem 2.1. The graph $S\left(K_{1, n}\right)$, obtained by subdividing every edge of $K_{1, n}$, exactly once, is a V-mean graph.

Proof. Let $V=\left\{u, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E=\left\{u v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$ be the vertex set and edge set of $S\left(K_{1, n}\right)$ respectively. Then G has order $2 n+1$ and size $2 n$.

Figure 1. V-mean labeling of $S\left(K_{1,5}\right)$ and $S\left(K_{1,6}\right)$
case 1: n is odd.
Let $n=2 m+1$. Define $f: E \longrightarrow\{0,1,2, \ldots, 4 m+3\}$ as follows:

$$
\begin{gathered}
f\left(u v_{i}\right)=\left\{\begin{array}{lll}
2 i & \text { if } & 1 \leq i \leq m \\
2 i+1 & \text { if } & m+1 \leq i \leq n
\end{array},\right. \text { and } \\
f\left(u_{i} v_{i}\right)=\left\{\begin{array}{cll}
2 i-1 & \text { if } & 1 \leq i \leq m+1 \\
2 i & \text { if } & m+2 \leq i \leq n
\end{array}\right.
\end{gathered}
$$

Then it is easy to verify that

$$
\begin{aligned}
& f^{V}(u)=2 m+3, \\
& f^{V}\left(u_{i}\right)=\left\{\begin{array}{lll}
2 i & \text { if } & 1 \leq i \leq m+1 \\
2 i+1 & \text { if } & m+2 \leq i \leq n
\end{array},\right. \text { and } \\
& f^{V}\left(w_{i}\right)=\left\{\begin{array}{lll}
2 i-1 & \text { if } & 1 \leq i \leq m+1 \\
2 i & \text { if } & m+2 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

Hence

$$
f^{V}(V)=\{1,2,3, \ldots, 4 m+3\}
$$

case 2: n is even.
Let $n=2 m$. Define $f: E \longrightarrow\{0,1,2, \ldots, 4 m+1\}$ as follows:

$$
\begin{aligned}
& f\left(u v_{i}\right)=\left\{\begin{array}{lll}
2 i & \text { if } & 1 \leq i \leq m \\
2 i-1 & \text { if } & i=m+1 \\
2 i+1 & \text { if } & m+2 \leq i \leq n
\end{array},\right. \text { and } \\
& f\left(u_{i} w_{i}\right)=\left\{\begin{array}{lll}
2 i-1 & \text { if } & 1 \leq i \leq m \\
2 i+1 & \text { if } & i=m+1 \\
2 i & \text { if } & m+2 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

Then, it is easy to verify that

$$
\begin{aligned}
& f^{V}(u)=2 m+1, \\
& f^{V}\left(u_{i}\right)=\left\{\begin{array}{lll}
2 i & \text { if } & 1 \leq i \leq m+1 \\
2 i+1 & \text { if } & m+2 \leq i \leq n
\end{array},\right. \text { and } \\
& f^{V}\left(w_{i}\right)=\left\{\begin{array}{lll}
2 i-1 & \text { if } & 1 \leq i \leq m+1 \\
2 i+1 & \text { if } & i=m+1 \\
2 i & \text { if } & m+2 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

Hence

$$
f^{V}(V)=\{1,2,3, \ldots, 4 m+1\}
$$

Thus, $S\left(K_{1, n}\right)$ is V-mean. $\square V$-mean labeling of $S\left(K_{1,5}\right)$ and $S\left(K_{1,6}\right)$ are shown in Figure 1.

Theorem 2.2. A dragon graph is V-mean.

Proof. Let G be a dragon consisting of the path $P_{m}: v_{1} v_{2} \ldots v_{m}$ and the cycle $C_{n}: u_{1} u_{2} \ldots u_{n}$. Let v_{m} be identified with u_{n} and $r=\left\lceil\frac{n}{2}\right\rceil$. Let $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq m-1, e_{i+1}^{\prime}=u_{i} u_{i+1}, 1 \leq i \leq n-1$ and $e_{1}^{\prime}=u_{n} u_{1}$ be the edges of G. Observe that G has order and size both equal to $m+n-1$. The edges of G are labeled as follows:
For $1 \leq i \leq m-1$, the integer i is assigned to the edge e_{i}. The odd and even integers from 1 to n are respectively arranged in increasing sequences $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-r}$ and $m-1+\alpha_{k}$ is assigned to e_{k}^{\prime} and $m-$ $1+\beta_{k}$ is assigned to e_{n-k+1}^{\prime}.

vertex	induced edge label
$v_{i}, 1 \leq i \leq m-1$	i
$u_{k}, 1 \leq k \leq n-r$	$m-1+\beta_{k}$
$u_{n-k+1}, 1 \leq i \leq r$	$m-1+\alpha_{k}$

Table 1. Induced vertex labels

Clearly the edges of G receive distinct labels from $\{0,1,2, \ldots, m+n-1\}$ and the vertex labels induced are $1,2, \ldots, m+n-1$ as illustrated in Table 1. Thus G is V-mean.

For example V-mean labelings of dragons obtained from P_{5} and C_{7} and P_{6} and C_{7} are shown in Figure 2.

Figure 2. V-mean labelings of dragons

Theorem 2.3. Let G be a graph obtained by identifying one vertex of the cycle C_{3} with the central vertex of $K_{1, n}$. Then G is V-mean.

Proof. Let u_{1}, u_{2}, u_{3} be the consecutive vertices of C_{3}. Let $V\left(K_{1, n}\right)=$ $\left\{w, w_{1}, w_{2}, \ldots, w_{n}\right\}$ with $\operatorname{deg} w=n$ and u_{1} be identified with w. Then G is of order and size both equal to $n+3$. Let $r=\left\lfloor\frac{n}{2}\right\rfloor$. Define $f: E(G) \longrightarrow$ $\{0,1,2, \ldots, n+3\}$ as follows:

$$
\begin{gathered}
f\left(w u_{2}\right)=r+2, f\left(w u_{3}\right)=r+4, f\left(u_{2} u_{3}\right)=r+3, \text { and } \\
f\left(w w_{i}\right)= \begin{cases}i & \text { if } 1 \leq i \leq r+1 \\
i+3 & \text { if } r+2 \leq i \leq n\end{cases}
\end{gathered}
$$

Then, it follows easily that

$$
f^{V}(w)=r+2, f^{V}\left(u_{2}\right)=r+3, f^{V}\left(u_{3}\right)=r+4, \text { and }
$$

$$
f^{V}\left(w_{i}\right)= \begin{cases}i & \text { if } 1 \leq i \leq r+1 \\ i+3 & \text { if } r+2 \leq i \leq n\end{cases}
$$

Hence $f^{V}(V(G))=\{1,2,3, \ldots n+3\}$. Thus G is a V-mean graph. V-mean labeling of the graphs obtained from $K_{1,5}$ and $K_{1,6}$ by idenntifying the central vertex of each with a vertex of C_{3} as shown in Figure 3.

Figure 3. V-mean labeling of G obtained from $K_{1,5}$ and $K_{1,6}$

Theorem 2.4. The graph $C_{n}(3,1)$ is a V-mean graph.

Proof. Let $G=C_{n}(3,1)$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G)=$ $\left\{v_{1} v_{3}, v_{n} v_{1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Then G has order n and size $n+1$. Let $r=\left\lceil\frac{n}{2}\right\rceil$. The edges of G are assigned labels as follows: Define $f: E(G) \longrightarrow\{0,1,2, \ldots, n+1\}$ as follows : The integers $0,1,2,3$ are respectively assigned to the edges $v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}$, and $v_{n} v_{1}$. The odd and even integers of $\{4,5,6, \ldots, n\}$ are respectively arranged in increasing sequences $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r-2}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-r-1}$ and α_{k} is assigned to $v_{k+2} v_{k+3}$, and β_{k} is assigned to $v_{n-k} v_{n-k+1}$.

Vertex	Induced edge label
v_{1}	2
v_{2}	1
v_{3}	3
v_{n}	$\beta_{1}=4$
$v_{k+3}, 1 \leq k \leq n-r-2$	β_{k+1}
$v_{n-k}, 1 \leq k \leq r-2$	α_{k}

Table 2. Induced vertex labels

Clearly the assignment is an injective function and the set of induced vertex labels is $\{1,2, \ldots, n\}$, as illustrated in Table 2. Thus G is a V-mean graph. $\square V$-mean labeling of $C_{8}(3,1)$ and $C_{9}(3,1)$ are shown in Figure 4.

Figure 4. V-mean labeling of $C_{n}(3,1)$ for $n=8,9$.

Theorem 2.5. If $m \in\{n, n+1, n+2\}$, the graph obtained from the two cycles C_{n} and C_{m} by adding a new edge joining a vertex of C_{n} and C_{m} is a V-mean graph.

Proof. Let G be the graph consisting of two cycles $C_{n}: v_{1} v_{2} \ldots v_{n}$ and $C_{m}: u_{1} u_{2} \ldots u_{m}$ and $e_{0}=v_{n} u_{1}$ be the bridge connecting them. Then G has
order $m+n$ and size $m+n+1$. Let $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$ and $e_{i}^{\prime}=u_{i} u_{i+1}, 1 \leq i \leq m-1$, and $e_{m}^{\prime}=u_{m} u_{1}$. Let $r=\left\lceil\frac{n}{2}\right\rceil$. Define $f: E(G) \longrightarrow\{0,1,2, \ldots, m+n+1\}$ as follows:

$$
\begin{gathered}
f\left(e_{i}\right)= \begin{cases}1 & \text { if } i=0 \\
2 i+1 & \text { if } 1 \leq i \leq r-1, \\
2(n-i) & \text { if } r \leq i \leq n\end{cases} \\
f\left(e_{i}^{\prime}\right)=n+i \text { if } 1 \leq i \leq m .
\end{gathered}
$$

Then

$$
\begin{gathered}
f^{V}\left(v_{i}\right)= \begin{cases}2 i & \text { if } 1 \leq i \leq r-1 \\
2(n-i)+1 & \text { if } r+1 \leq i \leq n \\
2(n-i) & \text { if } n \text { is even and } i=r \\
2(n-i)+1 & \text { if } n \text { is odd and } i=r\end{cases} \\
f^{V}\left(u_{i}\right)=n+i \text { if } 1 \leq i \leq m .
\end{gathered}
$$

Clearly f is an injective function and the set of induced vertex labels is $\{1,2, \ldots, n+m\}$. Hence the theorem.

A V-mean labeling of the graph obtained from C_{7} and C_{9} is shown in Figure 5.

Figure 5. A V-mean labeling of a graph obtained from C_{7} and C_{9}
Theorem 2.6. The graph $C_{n} \cup C_{m}$ is a V-mean graph.

Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the edge set of C_{n} such that $e_{i}=v_{i} v_{i+1}$, $1 \leq i \leq n-1, e_{n}=v_{n} v_{1}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}\right\}$ be the edge set of C_{m} such that $e_{i}^{\prime}=u_{i} u_{i+1}, 1 \leq i \leq m-1, e_{m}^{\prime}=u_{m} u_{1}$. Then the graph $G=C_{n} \cup C_{m}$ has order and size both equal to $m+n$. Let $m \geq n$. Define $f: E(G) \longrightarrow\{0,1,2, \ldots, m+n\}$ as follows:

$$
\begin{gathered}
f\left(e_{i}\right)= \begin{cases}i-1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
i & \text { if }\left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n-1, \\
n+1 & \text { if } i=n\end{cases} \\
f\left(e_{i}^{\prime}\right)=\left\{\begin{array}{ll}
n+2 i+1 & \text { if } 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1 \\
n+2(m-i) & \text { if }\left\lceil\frac{m}{2}\right\rceil \leq i \leq m
\end{array} .\right.
\end{gathered}
$$

Then

$$
\begin{gathered}
f^{V}\left(v_{i}\right)= \begin{cases}\left\lfloor\frac{n}{2}\right\rfloor+1 & \text { if } i=1 \\
i-1 & \text { if } 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1, \\
i & \text { if }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n\end{cases} \\
f^{V}\left(u_{i}\right)= \begin{cases}n+2 i & \text { if } 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor \\
n+2(m-i)+1 & \text { if }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m\end{cases}
\end{gathered}
$$

Clearly f is an injective function and the set of induced vertex labels is $\{1,2, \ldots, n+m\}$. Hence the theorem.

A V-mean labeling of $C_{8} \cup C_{12}$ is shown in Figure 6.

Figure 6. A V-mean labeling of $C_{8} \cup C_{12}$

Theorem 2.7. If $m \in\{3,4\}$, the graph G obtained by identifying one vertex of the cycle C_{m} with a vertex of C_{n} is a V-mean graph.

Proof.

case $1 m=3$.
Let G be the graph consisting of two cycles $C_{3}: v_{1} v_{2} v_{3} v_{1}$ and C_{n} : $v_{3} v_{4} \ldots v_{n+2} v_{3}$. Let $r=\left\lceil\frac{n}{2}\right\rceil$. Define $f: E(G) \longrightarrow\{0,1,2, \ldots, n+3\}$ as follows: The integers $0,1,2,3,4$ are assigned respectively to the edges $v_{1} v_{2}, v_{3} v_{1}, v_{n+2} v_{3}, v_{2} v_{3}, v_{3} v_{4}$. The odd and even integers of $\{5,6,7, \ldots, n+2\}$ are arranged respectively in increasing sequences $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r-1}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-r-1}$ and α_{k} is assigned to $v_{k+3} v_{k+4}$, and β_{k} is assigned to $v_{n+2-k} v_{n+3-k}$.

Vertex	vertex label
$v_{k}, k=1,2,3$	k
v_{n+2}	4
v_{4}	$\alpha_{1}(=5)$
$v_{k+4}, 1 \leq k \leq n-r-1$	β_{k}
$v_{n-k+2}, 1 \leq k \leq r-2$	α_{k+1}

Table 3. Induced vertex labels

Vertex	vertex label
v_{1}	3
v_{2}	1
v_{3}	2
v_{4}	4
v_{5}	5
v_{n+3}	6
v_{6}	$\alpha_{1}(=7)$
β_{k}	
$v_{k+6}, 1 \leq k \leq n-r-2$	β_{k+1}
$v_{n-k+3}, 1 \leq k \leq r-2$	α_{k+1}

Table 4. Induced vertex labels

Clearly the assignment is an injective function and the set of induced vertex labels is $\{1,2, \ldots, n+2\}$, as illustrated in Table 3. Thus G is a V-mean graph.
case $2 m=4$.

Let G be the graph consisting of two cycles $C_{4}: v_{1} v_{2} v_{3} v_{4} v_{1}$ and C_{n} : $v_{4} v_{5} \ldots v_{n+3} v_{4}$. Let $r=\left\lfloor\frac{n}{2}\right\rfloor$. Define $f: E(G) \longrightarrow\{0,1,2, \ldots, n+4\}$ as follows: The integers $0,1,2,3,4,5,6$ are assigned respectively to the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{n+3} v_{4}, v_{4} v_{5}, v_{4} v_{1}, v_{5} v_{6}$. The odd and even integers of $\{7,8, \ldots, n+3\}$ are arranged respectively in increasing sequences $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r-1}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-r-2}$ and α_{k} is assigned to $v_{k+5} v_{k+6}$, and β_{k} is assigned to $v_{n+3-k} v_{n+4-k}$.

Clearly the assignment is an injective function and the set of induced vertex labels is $\{1,2, \ldots, n+3\}$, as illustrated in Table 4 . Thus G is a V-mean graph.

Fox example V-mean labeling of graphs obtained from C_{3} and C_{8} and C_{4} and C_{8} are shown in Figure 7.

Figure 7.

3. Some disconnected V-mean graphs

In this section we present a method to construct disconnected V-mean graphs from V-mean graphs. The following observation is obvious from the definition of V-mean labeling.
Observation 3.1. If f is any V-mean labeling of a (p, q) graph G, then $f(e) \geq p$ for some edge $e \in E(G)$. In particular, if $p \geq q$ then $f(e) \leq p$ for every edge $e \in E(G)$ and hence $f(e)=p$ for some edge $e \in E(G)$.
Notation 3.2. We call a V-mean labeling f of a graph $G(p, q)$ as type- A, if $f(e) \leq p$ for every edge $e \in E(G)$, type- B if $f(e) \geq 1$ for every edge $e \in E(G)$, and type-AB if $1 \leq f(e) \leq p$ for every edge $e \in E(G)$. For $S \in\{A, B, A B\}$, we call G as V-mean graph of type-S if it has a V-mean labeling f of type-S.
Remark 3.3. We observe that the V-mean graphs presented in [3] and Theorem 2.1 through Theorem 2.7 can be classified as given in Table 5.

S.N0	V-mean Graph	Type
1	C_{n}	A
2	$C_{n} \odot K_{1}^{C}$	A
3	$C_{n}(3,1)$	A
4	The graph consisting of two cycles C_{n} and C_{m} connected by a bridge	A
5	The graph $C_{n} \cup C_{m}$ where $m \in\{n, n+1, n+2\}$	A
6	The graph obtained by identifying one vertex of the cycle C_{m} with a vertex of C_{n} when $m=3$ or 4	A
7	P_{n} where $n \geq 3$	$A B$
8	$P_{n} \odot K_{m}^{C}$ where $n \geq 2$	$A B$
9	$K_{1, n}$ if and only if $n \equiv 0(\bmod 2)$	$A B$
10	The graph $S\left(K_{1, n}\right)$, obtained by subdividing every edge of $K_{1, n}$	$A B$
11	Dragon graph	$A B$
12	The graph obtained by identifying one vertex of cycle C_{m} with the central vertex of $K_{1, n}$ when $m=3$ or 4	$A B$

Table 5. V-mean graphs

Let f be a V-mean labeling of $G\left(p_{1}, q_{1}\right)$ and g be a V-mean labeling of $H\left(p_{2}, q_{2}\right)$. Observe that the graph $G \cup H$ has order $p=p_{1}+p_{2}$ and size $q=q_{1}+q_{2}$. Define $h: E(G \cup H) \longrightarrow\left\{0,1,2, \ldots, q_{*}\right\}$ as follows:

$$
h(e)= \begin{cases}f(e) & \text { if } e \in E(G) \\ g(e)+p_{1} & \text { if } e \in E(H)\end{cases}
$$

Suppose f is of type- A and g is of type- B. Then $f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $g(e) \geq 1$ for every edge $e \in E(H)$. As f and g are injective functions, $f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $g(e)+p_{1} \geq p_{1}+1$ for every edge $e \in E(H), h$ is injective.

Suppose f is of type- A and g is of type- $A B$. Then $f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $1 \leq g(e) \leq p_{2}$ for every edge $e \in E(H)$. As f and g are injective functions, $f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $p_{1}+1 \leq g(e)+p_{1} \leq p_{1}+p_{2}$ for every edge $e \in E(H), h$ is injective and $h(e) \leq p$ for every edge $e \in E(G \cup H)$.

Suppose f is of type- $A B$ and g is of type- B. Then $1 \leq f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $g(e) \geq 1$ for every edge $e \in E(H)$. As f and g are injective functions, $1 \leq f(e) \leq p_{1}$ for every edge $e \in E(G)$ and
$p_{1}+1 \leq g(e)+p_{1}$ for every edge $e \in E(H), h$ is injective and $h(e) \geq 1$ for every edge $e \in E(G \cup H)$.

Suppose, both f and g are of type- $A B$. Then $1 \leq f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $1 \leq g(e) \leq p_{2}$ for every edge $e \in E(H)$. As, f and g are injective functions, $1 \leq f(e) \leq p_{1}$ for every edge $e \in E(G)$ and $p_{1}+1 \leq g(e)+p_{1} \leq p_{1}+p_{2}$ for every edge $e \in E(H), h$ is injective and $1 \leq h(e) \leq p$ for every edge $e \in E(G \cup H)$.

The set of induced vertex labels of $G \cup H$ in all four cases is as follows:

$$
\begin{gathered}
h^{V}(V(G \cup H))=\left\{f^{V}(v): v \in V(G)\right\} \cup\left\{p_{1}+g^{V}(u): u \in V(H)\right\} \\
=\left\{1,2, \ldots, p_{1}\right\} \cup\left\{p_{1}+1, p_{1}+2, \ldots, p_{1}+p_{2}\right\} \\
=\left\{1,2, \ldots, p_{1}+p_{2}\right\} .
\end{gathered}
$$

Thus we have the following four theorems.
Theorem 3.4. If $G\left(p_{1}, q_{1}\right)$ is a V-mean graph of type- A and $H\left(p_{2}, q_{2}\right)$ is a V-mean graph of type- B, then $G \cup H$ is V-mean.

Theorem 3.5. If $G\left(p_{1}, q_{1}\right)$ is a V-mean graph of type- A and $H\left(p_{2}, q_{2}\right)$ is a V-mean graph of type- $A B$, then $G \cup H$ is V-mean graph of type- A.

Theorem 3.6. If $G\left(p_{1}, q_{1}\right)$ is a V-mean graph of type- $A B$ and $H\left(p_{2}, q_{2}\right)$ is a V-mean graph of type- B, then $G \cup H$ is V-mean graph of type- B.

Theorem 3.7. If both $G\left(p_{1}, q_{1}\right)$ and $H\left(p_{2}, q_{2}\right)$ are V-mean graphs of type$A B$ then the graph $G \cup H$ is V-mean graph of type- $A B$.

Corollary 3.8. Let G be a tree or a unicyclic graph or a two regular graph. If G is V-mean and H is a V-mean graph of type- B, then $G \cup H$ is V-mean.

Corollary 3.9. If $G(p, q)$ is V-mean graph of type- $A B$ then, the graph $m G$ is V-mean graph type- $A B$.

Corollary 3.10. If both $G\left(p_{1}, q_{1}\right)$ and $H\left(p_{2}, q_{2}\right)$ are V-mean graphs of type- $A B$, then the graph $m G \cup n H$ is V-mean graph of type- $A B$.

Corollary 3.11. If $G\left(p_{1}, q_{1}\right)$ is a V-mean graph of type- A and $H\left(p_{2}, q_{2}\right)$ is a V-mean graph of type- $A B$, then $G \cup m H$ is V-mean graph of type- A.

It is interesting to note that a number of disconnected V-mean graphs can be obtained by applying Theorem 3.4 through Corollary 3.11 on V mean graphs listed in Table 5. For example, the graph $\bigcup_{i=1}^{k} P_{n_{i}}$, where $n_{i} \geq 3$, the graph $m P_{n}$ where $n \geq 3$, the graph $C_{n} \cup\left(\bigcup_{i=1}^{k} P_{n_{i}}\right)$, where $n_{i} \geq 3$, the graph $C_{n} \cup k P_{m}$ where $m \geq 3$, the graph $C_{n} \cup C_{m} \cup\left(\bigcup_{i=1}^{k} P_{n_{i}}\right)$, where $n_{i} \geq 3$, the graph $C_{n} \cup C_{m} \cup k P_{t}$ where $t \geq 3$ are some of such graphs. To illustrate this a V-mean labeling of $C_{10} \cup P_{4} \cup P_{5}$ and a V-mean labeling of $\left(C_{8} \cup C_{12}\right) \cup K_{1,8}$ are given in Figure 8 and Figure 9 respectively.

References

[1] B. D. Acharya and K. A. Germina, Vertex-graceful graphs, Journal of Discrete Mathematical Science \& Cryptography, Vol. 13, No. 5, pp. 453-463, (2010).
[2] J. A. Gallian. A dynamic survey of graph labeling. The electronic journal of combinatorics, 18, (2011) \#DS6.
[3] A. Lourdusamy and M. Seenivasan. Vertex-mean graphs. International journal of Mathematical Combinatorics, 3, pp. 114-120, (2011).
[4] S. Somasundaram and R. Ponraj, Mean labelings of graphs, Natl Acad, Sci. Let., 26, pp. 210-213, (2003).

A. Lourdusamy

Department of Mathematics,
St.Xavier's College (Autonomous),
Palayamkottai, Tirunelveli,
India
e-mail : lourdugnanam@hotmail.com
and

M. Seenivasan

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tirunelveli, India
e-mail : msvasan_22@yahoo.com

