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Abstract

In this note we make a review of the concepts of connection and co-
variant derivative on modules, in a purely algebraic context. Through-
out the text, we consider algebras over an algebraically closed field of
characteristic 0 and module will always mean left module. First, we
concentrate our attention on a k—algebra A which is commutative, and
use the Kähler differentials module, Ω1A/k, to define connection (see

Subsection 2.1). In this context, it is verified that the existence of
connections implies the existence of covariant derivatives (cf. Prop.
2.3), and that every projective module admits a connection (cf. Prop.
2.5). Next (in Section 3), we focus our attention in the discussion
of some counterexamples comparing these two notions. In fact, it is
known that these two notions are equivalent when we consider regular
k-algebras of finite type (see [18], Prop. 4.2). As well as, that there
exists a connection on M if, and only if, the Atiyah-Kodaira-Spencer
class of M , c(M), is zero (see [17], Prop. 4.3). Finally, we take into
account the case where A is (not necessarily commutative) and it is
used the bimodule, Ω1, of noncommutative differentials introduces by
Connes ([9], [10]) in place of Kähler differentials to define a connec-
tion. In this case, it is proven that a module admits such connection
if, and only if, it is a projective module (see [25], Theorem 5.2).
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1. Introduction

The notions of connection and covariant derivative come from Riemannian
geometry, where there is no distinction between them (just different points
of view). We begin by doing a brief historical review of these notions.

In 1869 the German mathematician and physicist Elwin Bruno Christof-
fel (1829—1900) published Über die Transformation der homogenen Differ-
entialausdrücke zweiten Grades in which he introduced the famous symbols
Γkij (Christoffel’s notation was

n
k
ij

o
) ([8]). What Christoffel did not realize

was the fact that the symbols he had discovered themselves determine a
connection on the C∞U —module of sections of the tangent bundle, Γ(TU) (C∞U
denote the R—algebra of all infinitely differentiable real-valued functions on
the differential manifold U).

It was noticed after by the Italian mathematicians Gregorio Ricci-
Curbastro (1853—1925) and Tullio Levi-Civita (1873—1941) (in [26]) that
the Christoffel symbols obtained from the Riemannian metric could be
used to create a “coordinate free” differential calculus. This extension of
the Differential Calculus allowed a modification of partial differentiation to
spaces with Riemannian metric (i.e. non-Euclidean) by means of a covari-
ant derivative.

In fact, they defined the covariant derivative of a vector field X (X =Pn
j=1X

j ∂
∂xj

in local coordinates) to be: An R—linear endomorphism of

Γ(TU) (the sections of the tangent bundle associated to the n—dimensional
differential manifold U) defined locally by the endomorphisms ∇1,...,∇n

where the k—th component of∇iX is given by (∇iX)
k = ∂Xk

∂xi
+
Pn

j=1X
jΓkij .

In the Euclidean space Rn with the usual Riemannian metric, the sum is
zero (since all the Christoffel symbols are zero) and hence the covariant
derivative is just an ordinary partial derivative.

In the 1920’s the French mathematician Élie Joseph Cartan (1869—1951)
developed a new notion of connection, the projective and conformal con-
nections (see [5] and [6]).

In 1950 the French mathematician Jean-Louis Koszul gave an algebraic
framework for regarding a connection as a differential operator. The Koszul
connection was both more general than that of Levi-Civita, and was easier
to work with because it finally was able to eliminate (or at least to hide)
the awkward Christoffel symbols from the connection formalism ([24]).

It was Cartan’s student Charles Ehresmann (1905—1979) who finally
untangled and successfully classified all of the generalized and specific con-
nections which had emerged in the first half of the 20th century ([15]). He
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began this endeavor in an effort to understand Cartan’s connections from a
global point of view. Toward this end Ehresmann introduced the concept of
fiber bundles (independently of Whitney and Steenrod). Ehresmann pub-
lished his first notes on the subject during the period 1941-1944 in which he
defines locally trivial principal bundles and their associated fiber bundles
(also locally trivial). In his 1943 paper Sur les espaces fibrés associés une
variété différentiable a manifold is defined by means of an atlas of local
charts for the first time ([14]).

For example, in [4] an (affine) connection on the differential manifold
U is defined as a mapping D : Γ(TU) × Γ(TU) → Γ(TU) where D(X,Y ) =
DX(Y ) satisfy the following three properties for every f ∈ C∞U andX,Y,Z ∈
Γ(TU):

DfX+Y (Z)=fDX(Z)+DY (Z),
DX(Y+Z)=DX(Y ) +DX(Z)
DX(fY )=fDX(Y )+X(f)Y.

Since any vector field can be considered as a derivation in C∞U , i.e.
Γ(TU) = Der(C∞U ) (cf. [22]). So D above can be thought as an C∞U —linear
homomorphism from Der(C∞U ) to EndR(Γ(TU)) satisfying the third condi-
tion. Thus, it is very natural to study this notion in a purely algebraic
context, we will do that in Subsection 2.1, where we call covariant deriva-
tive such kind of homomorphism (see also [20] and [23]). In particular, we
can consider covariant derivatives for other vector bundles E on U . Related
to this see example 2.6.

On the other hand, the notion of connection has appears in physics
from time to time. For example, in 1954 the Chinese physicist Chen-Ning
Franklin Yang (1922) and the American physicist Robert L. Mills (1927-
1999) proposed a Gauge theory that allows us to understand the interaction
proton-neutron. In their mathematical formulation, appear the now called
Yang-Mills functional, which it is defined over the set of connection of a
fix vector bundle. For example, if you consider the trivial complex vector
bundle R4 ×C→ R4 with a given hermitian product on its sections, then
we can deduce the Maxwell’s equations of electrodynamics ([28]).

However the notion of connection reappears again in the context of non-
commutative geometry ([9], [10]). In fact, Connes introduced the notion
of noncommutative differentials, which was used in place of Kähler differ-
entials (in the definition of connection given in Subsection 2.1) by Krämer
(in [25]), to conclude that the existence of such connections, it is verified
exactly for projective modules over not (necessarily) commutative rings (cf.
Theorem 5.2).
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2. Connection and Covariant Derivative over modules

Let k be an algebraically closed field of characteristic 0, A a commutative
k—algebra, and M an A—module (module means left module).

A derivation from A to M is a k—linear map ∂ : A → M such that
∂(ab) = a∂(b) + b∂(a) for every a, b ∈ A.

One can readily verify under this definition that ∂(1) = 0 and hence
∂(r) = 0 for any r ∈ k.

Set Der(A,M) be the A—module of derivation from A toM and Der(A) =
Der(A,A).
The Kähler differential module, Ω1A/k. The module of Kähler differential is

an A—module Ω1A/k together with an universal derivation d : A → Ω1A/k
which is universal in the following sense: for any A—module M , for any
derivation ∂ ∈ Der(A,M), there exists a unique A—module homomorphism
∂̂ : Ω1A/k −→M such that ∂̂ ◦ d = ∂.

2.1. Example. Let A = k[x1, ..., xn] be the ring of polynomials in n
variables. Then

• Der(A) is a free A—module with basis {∂1, ..., ∂n} (here ∂i = ∂
∂xi

for
i = 1, ...n).

• Follows from the universal property that Ω1A/k
∼= An with dxi = ei

for i = 1, ..., n ({ei} is the canonical basis of the free A—module An).

2.2. Remarks. Let A be a commutative k—algebra.

1. The module of Kähler differential, Ω1A/k, exists (see [21], [13]).

2. Λ : HomA(Ω
1
A/k,M) −→ Der(A,M) defined by ϕ 7→ ϕ ◦ d it is an

isomorphism of A—modules. In particular,

HomA(Ω
1
A/k, A)

∼= Der(A).(2.1)

{y1, ..., yk} is a set of generators of the k—algebra A, then {dy1, ..., dyk}
is a set of generators of the A—module Ω1A/k. Thus it is a finitely
generated A—module, and therefore also finitely presented, since A
is a Noetherian ring. presented. In fact, since A is k—algebra of
finite type, we have that A = S/I, where S = k[x1, ..., xn] is the
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polynomial algebra in n variables and I an ideal in S. So, follows from
Lemma 2.1.2 in [3] that Der(S/I) ∼= {∂ ∈ Der(S) | ∂(I) ⊆ I}/IDer(S),
which is a submodule of Der(S)/IDer(S) ∼= (S/I)n = An. Since A is
Noetherian, it is a finitely generated A—module, and therefore also
finitely presented.

3. If Der(A) is a finitely generate A—module having {∂1, ..., ∂n} as a set of
generators, then {∂̂1, ..., ∂̂n} generated HomA(Ω

1
A/k, A) as A—module.

2.1. Connection & Covariant Derivative

We define a connection on M to be a k—linear homomorphism

∇ :M −→ Ω1A/k ⊗A M

satisfying ∇(am) = a∇(m) + da ⊗m, for all a ∈ A and m ∈ M (d is the
universal derivation).

We denote by Endk(M) the vector space of k—linear endomorphisms
of M . We will consider the notion of a covariant derivative on M , as an
A—linear homomorphism

D : Der(A) −→ Endk(M)
∂ 7−→ D∂

such that D∂(am) = aD∂(m) + ∂(a)m for every a ∈ A and m ∈M .

2.3. Proposition. Let A be a commutative k—algebra. If the A—module
M has a connection, then M has a covariant derivative.

Proof. Let ∇ :M −→ Ω1A/k⊗AM be a connection onM . Now, we use the

universal property of tensor products to associate to each ∂ ∈ Der(A) an A—
linear homomorphism e∂ : Ω1A/k ⊗AM −→M such that e∂(δ⊗m) = ∂̂(δ)m,

here ∂̂ comes from the universal property of the Kähler differential module.
Now define D∂ : M → M by D∂ = e∂ ◦ ∇. An easy verification show

that D∂ ∈ Endk(M) and that ∂ 7→ D∂ defines a covariant derivative on
M .

Thus we concluded easily that.

2.4. Corollary. Let A be a commutative k—algebra. If the A—module M
does not admit a covariant derivative, then neither admit connections.
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So an important question here is to know what class of modules admit
connections. For example, ∇ : (t) → Ω1[t]/ ⊗[t] (t) ∼= (t) given by the usual
derivation d

dt defines a connection on the non-projective [t]—module (t). On
the other hand, as we shall see in the next proposition, every projective
module has a connection.

2.5. Proposition. Let A be a commutative k—algebra and M an A—
module. Set Con(M) = {∇ | ∇ is a connection on M}. Then

1. Every projective A—module admits a connection.

2. If ∇ ∈ Con(M) and L ∈ EndA(M,Ω1A/k⊗AM) then∇+L ∈ Con(M).

3. If Con(M) 6= ∅, then ⊕ : Con(M)×EndA(M,Ω1A/k⊗AM)→ Con(M)
given by∇⊕L = ∇+L defines a right action of EndA(M,Ω1A/k⊗AM)
on Con(M), which is free and transitive. Thus Con(M) is an affine
space. In particular, EndA(M,Ω1A/k ⊗A M) can be identified with

Con(M).

Proof. We first established that free modules have a connection. If F is
a free A—module with basis {uj}j∈J , then define ∇ : F −→ Ω1A/k ⊗A F by

∇(m) = P
i∈J d(ai) ⊗ ui, if m =

P
i∈J aiui (ai 6= 0 only for a finite set of

i). It is easy to conclude that ∇ is a connection on F .

Now, let M be a projective A—module. Thus we can consider an A—
module N such that M × N is a free A—module. Hereafter, let ∇ be a
connection on M ×N and define

e∇ :M −→ Ω1A/k ⊗A M by e∇(m) = p1(∇(m, 0)),

where p1 is the projection from Ω
1
A/k⊗A(M×N) ∼= (Ω1A/k⊗AM)×(Ω1A/k⊗A

N) to Ω1A/k ⊗A M . It is a straightforward verification to show that e∇ is a
connection on M .

The verification on second statement we left to the reader.

To prove the third statement, first note that ∇+L defines a connection
on M for every ∇ ∈ Con(M) and L ∈ EndA(M,Ω1A/k). Now, follows from

the definitions that ⊕ defines a free right action of EndA(M,Ω1A/k ⊗A M)

on Con(M). To verify that this action is transitive, let us consider ∇,∇0 ∈
Con(M). Since Con(M) ⊂ Homk(M,Ω1A/k ⊗A M), we get the k—linear

homomorphism ∇ − ∇0 : M → Ω1A/k ⊗A M given by (∇ − ∇0)(m) =
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∇(m) − ∇0(m), if m ∈ M . So, now it is sufficient to prove that the k—
linear homomorphism ∇−∇0 is also an A—linear homomorphism. In fact,

(∇−∇0)(am) = ∇(am)−∇0(am)
= a∇(m)− da⊗m− (a∇0(m)− da⊗m)
= a(∇−∇0)(m).

Finally, fix ∇0 ∈ Con(M) and note that L 7→ ∇0 ⊕ L defined from
EndA(M,Ω1A/k ⊗A M) onto Con(M), it is a bijection.

2.6. Example. The C∞U —module Γ(E) admits a connection
Let U be a compact differentiable manifold and C∞U be the commutative

R—algebra of all infinitely differentiable real-valued functions on U . For a
differentiable (or smooth) vector bundle E on U , set Γ(E) be the space of
differentiable sections.

Next, we remember the correspondence established by Swan in [30]
(details may be found in [27]) between

{ vector bundles over cal U}⇐⇒ { finitely generated projective C∞U —modules}.

In fact, it is proven that: Γ(E) is a finitely generated projective C∞U —module.
Conversely, if E be a finitely generated projective C∞U —module, then there
exists a vector bundle E such that E ∼= Γ(E).

Since every projective module admits a connection (cf. Prop. 2.5) and
consequently a covariant derivative (cf. Prop. 2.3). Then the C∞U —module
Γ(E) admits a connection, as well as a covariant derivative.

3. Some Counterexamples

We consider the commutative R—algebra A given by

A =

⎧⎨⎩c0 +
nX
i=1

aix
i +

mX
j=1

bjy
j | n,m ∈N, c0, ai, bi ∈ R and xy = 0

⎫⎬⎭ ,

(3.1)

with the usual operations of addition and multiplication on the polynomial
ring.
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Since each f in A can be written in a unique way as f = f0 + f1(x)x+
f2(y)y, then we define ∂i : A −→ A for 1 ≤ i ≤ 2 by

∂1(f) = x(f1(x) + xf1
0(x)) and ∂2(f) = y(f2(y) + yf2

0(y)),(3.2)

here f1
0 and f2

0 denote the usual derivative of the polynomials f1 and f2,
respectively.

3.1. Lemma. Let ∂1 and ∂2 as in (3.2). Then

1. f∂1+g∂2 = 0⇐⇒ f = ya and g = xb for some a, b ∈ A. In particular,
it is verified that y∂1 = 0 and x∂2 = 0.

2. ∂1 and ∂2 ∈ Der(A) and Der(A) = A∂1 +A∂2.

3. {∂1, ∂2} is a minimal set of generators of the A—module Der(A).

4. If N = {(αy, βx) ∈ A2 | α, β ∈ A}, then (a, b) + N 7→ a∂1 + b∂2
defines an A—linear isomorphism from A2/N to Der(A).

Proof. The first statement follows from the definition of ∂1 and ∂2, to-
gether with the fact that A is a R—vector space with basis

{1, x, ..., xn, ..., y, ..., ym, ...}. In fact, f = yf2(y) and g = xg1(x), if we write
f = f0 + f1(x)x+ f2(y)y and g = g0 + g1(x)x+ g2(y)y.

It is a straightforward verification to show that ∂1 and ∂2 belong to
Der(A). Now consider ∂ ∈ Der(A) and set

∂(x) = a0 + a1(x)x+ a2(y)y,
∂(y) = b0 + b1(x)x+ b2(y)y.

(3.3)

Having in mind that xy = 0, we concluded that 0 = x∂(y) + y∂(x).
Thus substituting (3.3) in the last equation, we get that

∂(x) = a1(x)x and ∂(y) = b2(y)y.(3.4)

Thus from (3.3) we obtain that ∂ = a1(x)∂1+ b2(y)∂2. Therefore Der(A) =
A∂1 +A∂2.

Now suppose that ∂ is a generator of the A—module Der(A). Thus we
have that

∂1 = (α0 + α1(x)x+ α2(y)y)∂
∂2 = (β0 + β1(x)x+ β2(y)y)∂.

(3.5)
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We can write ∂ = p(x)∂1 + q(y)∂2 and substitute it in (3.5). Then
keeping in mind that y∂1 = 0 = x∂2 (cf. first statement), we conclude that

∂1 = p(x)(α0 + α1(x)x)∂1 + q(y)(α0 + α2(y)y)∂2
∂2 = p(x)(β0 + β1(x)x)∂1 + q(y)(β0 + β2(y)y)∂2.

(3.6)

So evaluating the expression for ∂2 in (3.6) at y, we get that y =
q(y)(β0 + β2(y)y)y which implies that q(y) 6= 0. Now let us to evaluate
the expression for ∂1 in (3.6) at x and y, respectively. Then we obtain

x = p(x)(α0 + α1(x)x)x and 0 = q(y)(α0 + α2(y)y)y.(3.7)

Since q(y) 6= 0, then from the last equality above we get that α0 =
0 = α2(y), thus the first equality in (3.7) becomes x = p(x)α1(x)x

2. The
last equation implies that 1 = p(x)α1(x)x. Thus we have arrived at a
contradiction. So the third statement is proved.

The last item follows from the other statements already proved in this
lemma.

3.2. Lemma. Set K = {(αy, αx) ∈ A2 | α ∈ A} and let dA : A→ A2/K
be defined by a 7→ (∂a∂x ,

∂a
∂y ) +K. Then we have that:

1. dA is a derivation.

2. The pair (A2/K, dA) verifies the universal property of Ω1A/k. In par-
ticular, we conclude that Ω1A/k

∼= A2/K as A—modules.

3. The elements δ1 = dx and δ2 = dy (in Ω1A/k) generated Ω
1
A/k as an

A—module. Moreover

fδ1 + gδ2 = 0⇐⇒ f = αy and g = αx for some α ∈ A.(3.8)

4. yδ1 6= 0 and xδ2 6= 0.

Proof. It is a straightforward verification to show that dA is a derivation.
On the other hand, if N is an A—module and ∂ ∈ Der(A, N), then define
ϕ : A2 −→ N by ϕ(α, β) = α∂(x) + β∂(y). Note that ϕ is an A—linear
homomorphism such that K ⊂ ker(ϕ). So it induces an A—linear homomor-
phism ∂̂ from A2/K to N such that ∂̂((α, β)+K) = ϕ(α, β). After an easy
computation we conclude that ∂̂ is the unique A—linear homomorphism
such that ∂̂ ◦ dA = ∂.
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Now, observe that applying the universal property to the A—module
Ω1A/k and d (the universal derivation). We obtain an A—linear isomorphism
ψ : A2/K −→ Ω1A/k such that (1, 0) +K 7→ dx and (0, 1) +K 7→ dy. From
where we deduce easily the third statement.

Finally, let us assume that yδ1 = 0, so applying the inverse of the A—
linear isomorphism ψ above, we obtain that (y, 0) + K = K which implies
that y = αy and 0 = αx for some α in A. Writing α = α0+xα1(x)+yα2(y)
we achieve that:

y = α0y + α2(y)y
2 and 0 = α0x+ α1(x)x

2.

Since {1, x, x2, ..., y, y2, ...} it is a basis of theR—vector spaceA, we conclude
using the equations above that α0 = 1 and α0 = 0. Thus we have arrived
to a contradiction. In a similar way we can show that xδ2 6= 0.

3.1. A module without covariant derivative

Let A be the R—algebra defined in (3.1) and set M = Ω1A/k.
Let us suppose that there exists a covariant derivative D on M . For

simplicity, we will use the notation Di instead of D∂i for i = 1, 2. Assume
that:

D2δ
1 = aδ1 + bδ2 for some a, b ∈ A.(3.9)

Since x∂2 = 0 (see Lemma 3.1), we obtain using (3.9) that

0 = Dx∂2δ
1 = xD2δ

1 = x(aδ1 + bδ2) = xaδ1 + xbδ2.(3.10)

Then follows from (3.10) and (3.8) that xa = µy for some µ ∈ A.
Writing µ = µ0 + xµ1(x) + yµ2(y) we achieve that:

xa = (µ0 + yµ2(y))y.(3.11)

Now setting a = a0 + xa1(x) + ya2(y), follows from (3.11) that a0 = 0.

Now have in mind one more time that x∂2 = 0, and ∂2(x) = 0, ∂2(y) = y
(cf. (3.2)) to conclude from (3.8) and (3.9) that:

0 = D2(yδ
1 + xδ2) = D2(yδ

1) +D2(xδ
2) = yD2(δ

1) + yδ1 + xD2(δ
2)

= y(1 + a)δ1 + ybδ2.

Then follows from (3.8) that

y(1 + a) = νy and yb = νx for some ν ∈ A.
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Now writing ν = ν0 + xν1(x) + yν2(y), we get

y(1 + a) = (ν0 + yν2(y))y and yb = (ν0 + xν1(x))x.(3.12)

Thus follows from the second equality in (3.12) that ν0 = 0 and conse-
quently that 1 + a0 = 0, i.e. a0 = −1 (after substitution of ν0 = 0 in the
first equality in (3.12)). Thus we have arrived at a contradiction.

3.2. A module with covariant derivative and without connection

Let A be the commutative R—algebra defined in (3.1).

• The A—module M = Der(A) has a covariant derivative.
Define ϕi : A2 −→ M for i = 1, 2 by ϕi(a, b) = ∂i(a)∂1 + ∂i(b)∂2 (with

∂1 and ∂2 as in (3.2)). Note that each ϕi is an R—linear homomorphism
and that N is contained in the kernel of both homomorphisms. Thus they
induce R—linear endomorphisms from A2/N toM , which (keeping in mind
the isomorphism in lemma 3.1) determine the R—linear endomorphisms
Di ∈ EndR(M) such that

Di(a∂1 + b∂2) = ∂i(a)∂1 + ∂i(b)∂2 i = 1, 2.

Now we consider ϕ : A2 −→ EndR(M) defined by ϕ(a, b) = aD1 +
bD2. Note that ϕ is an A—linear homomorphism such that N ⊂ ker(ϕ)
(since yD1 = xD2 = 0). Thus, using again the isomorphism in lemma 3.1,
we conclude that ϕ induces an A—linear homomorphism D : Der(A) −→
Endk(M) such that Da∂1+b∂2 = aD1 + bD2.

Now, an easy verification shows that D∂i(am) = aD∂i(m) + ∂i(a)m for
any a ∈ A and m ∈ M . Having in mind that Da∂1+b∂2 = aD1 + bD2

and doing some more computations, we concluded that D is a covariant
derivative on M = Der(A).
• The A—module M = Der(A) does not have a connection.

Suppose that M admits a connection ∇. Thus we can write

∇(∂1) =
2X

i,j=1

aijδ
i ⊗ ∂j(3.13)

with δi (i = 1, 2) as in Lemma 3.2 and aij ∈ A.
Now remember that y∂1 = 0 (cf. lemma 3.1). Therefore

0 = ∇(y∂1) = y∇(∂1) + δ2 ⊗ ∂1.(3.14)
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Furthermore, if we multiply both sides of Eq. (3.13) by y (and have in
mind that y∂1 = 0), we get:

y∇(∂1) = a12yδ
1 ⊗ ∂2 + a22yδ

2 ⊗ ∂2.(3.15)

Since yδ1+ xδ2 = 0 (cf. third statement in Lemma 3.2), after substitu-
tion Eq. (3.15) becomes

y∇(∂1) = (a22y − a12x)δ
2 ⊗ ∂2.(3.16)

Substituting (3.16) in Eq. (3.14), we arrive to equation:

0 = (a22y − a12x)δ
2 ⊗ ∂2 + δ2 ⊗ ∂1.(3.17)

On the other hand, since {∂1, ∂2} is a set of generators of the A—module
Der(A), then {∂̂1, ∂̂2} it is a set of generators of HomA(Ω

1
A/k,A) as an A—

module, which verified that

∂̂1(δ
1) = x, ∂̂1(δ

2) = 0, ∂̂2(δ
1) = 0 and ∂̂2(δ

2) = y.(3.18)

Next, we apply the universal property of tensor products to get the
A—linear homomorphism φ : Ω1A/k ⊗A Der(A) −→ EndA(Ω1A/k) such that

δi ⊗ ∂j 7→ φij with φij(δ
k) = ∂̂j(δ

k)δi for any i, j, k ∈ {1, 2}.
Now applying φ to Eq. (3.17), we obtain:

0 = (a22y − a12x)φ22 + φ21.(3.19)

So evaluating the homomorphism in (3.19) at δ1, we get (using (3.18)
that 0 = xδ2. Now, the last statement in lemma 3.2 assures us that xδ2 6= 0.
Thus we have arrived at a contradiction.

4. Equivalent notions and obstruction

Eriksen has proven in Proposition 4.7 (at p. 51 in [18]) that the notions
of connections and covariant derivative are equivalent when we consider
regular k-algebras of finite type. For the reader’s convenience, we review
Eriksen’s proof giving a few more details in the next proposition.

4.1. Lemma. Let A be a commutative k—algebra of finite type then Ω1A/k
and Der(A) are finitely presented A—modules.
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Proof. We first prove that Ω1A/k is a finitely presented A—module. In fact,

if {y1, ..., yk} is a set of generators of the k—algebra A, then {dy1, ..., dyk}
is a set of generators of the A—module Ω1A/k. Thus it is a finitely generated
A—module, and therefore also finitely presented, since A is a Noetherian
ring.

In order to prove the second statement, we recall that A = S/I, for
some polynomial algebra S = k[x1, ..., xn] in n variables and some ideal I
in S, since A is k—algebra of finite type. So, follows from Lemma 2.1.2 in
[3] that Der(S/I) ∼= {∂ ∈ Der(S) | ∂(I) ⊆ I}/IDer(S), which is a submodule
of Der(S)/IDer(S) ∼= (S/I)n = An. Since A is Noetherian, it is a finitely
generated A—module, and therefore also finitely presented.

4.2. Proposition. Let A be a regular, commutative k—algebra of finite
type. Then, every covariant derivative induces a connection. In fact, this
establishes a correspondence between the notions of connection and covari-
ant derivative.

Proof. Having in mind the isomorphism in (2.1) which associated to each
derivation ∂ ∈ Der(A) the A—linear homomorphism ∂̂ : Ω1A/k → A such

that ∂ = ∂̂ ◦ d. Next, we use the universal property of tensor products to
conclude that there exists a unique A—linear homomorphism

Ψ : Ω1A/k ⊗A M −→ HomA(Der(A),M) such that Ψ(δ ⊗m)(∂) = ∂̂(δ)m.

We propose in what follows to show that Ψ is an isomorphism. In order to
do that, we are going to verify that, Ψp, the localization of Ψ at the prime
ideal p of A is an isomorphism for any prime ideal in A.

We begin by noting that:

(Ω1A/k ⊗A M)p ∼= (Ω1A/k)p ⊗Ap Mp (See Proposition 3.7 in [1])
∼= Ω1Ap/k

⊗Ap Mp (See Proposition 16.9 in [13])
∼= A

np
p ⊗Ap Mp

∼=M
np
p (See Theorem 8.8 in [21])

(4.1)
To arrive to the isomorphism in the last line above, we use the hypoth-

esis of regularity of A and denote by np the Krull dimension of Ap.
Now, Prop. 16.9 (in [13]) assured us that (Ω1A/k)p

∼= Ω1Ap/k
as Ap—

modules. So, keeping in mind that Ω1A/k is an A—module finitely pre-

sented, we can apply Prop. 2.10 (in [13]) to concluded that (Der(A))p ∼=
(HomA(Ω

1
A/k, A))p

∼= HomAp((Ω
1
A/k)p, Ap) ∼= HomAp(Ω

1
Ap/k

, Ap). Now,
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follows from the universal property of the module of Kähler differentials,
Ω1Ap/k

, that (Der(A))p ∼= Der(Ap) as Ap—modules. Moreover, using again the
regularity of A, we have:

Der(Ap) ∼= HomAp(Ω
1
Ap/k

, Ap) ∼= HomAp(A
np
p , Ap) ∼= Anp

p .(4.2)

Thus from (4.2) we have

HomAp(Der(Ap),Mp)∼=HomAp(A
np
p ,Mp)∼=(HomAp(Ap,Mp))

np ∼= Mnp
p .

(4.3)
Now, having in mind that (Der(A))p ∼= Der(Ap) as Ap—modules, and that

Der(A) is also an A—module finitely presented, we can apply one more time
Prop. 2.10 (in [13]) and (4.3) to get:

(HomA(Der(A),M))p∼=HomAp((Der(A))p,Mp) ∼=Mnp
p .(4.4)

Now let us consider {δ1, ..., δnp} be a basis of the free Ap—module Ω
1
Ap/k

and {∂1, ..., ∂np} be a basis of the free Ap—module Der(Ap).
Right now, if a1, ..., anp are the unique elements in Ap such that d(

a
1 ) =Pnp

j=1 ajδ
j (here d is the universal derivation for Ω1Ap/k

). Then follows from

the isomorphisms in (4.1) that the element da
1 ⊗

m
1 is taken in (a1

m
1 , ..., anp

m
1 ).

Hereafter follows from the isomorphism in (4.4) that the elementΨp(
da
1 ⊗

m
1 ) determine an Ap—linear homomorphism such that ∂i 7→ ∂i(

a
1 )

m
1 =Pnp

j=1 ∂̂i(δ
j)aj

m
1 for i = 1, ..., np (have in mind that ∂i(α) = ∂̂i(dα) for

every α ∈ Ap).
Thus Ψp :M

np
p −→M

np
p is given by

Ψp(m1, ...,mnp) =

µ npX
i=1

∂̂1(δ
i)mi, ...,

npX
i=1

∂̂np(δ
i)mi

¶
.

Finally, note that the isomorphism in (4.2) takes ∂i to vi = (∂̂i(δ
1), ..., ∂̂i(δ

np)).
So {v1, ..., vnp} is a basis of the free Ap—module A

np
p , so (∂̂i(δ

j)) is a change
of basis matrix of the free Ap—module A

np
p , which allows to conclude that

Ψp is an isomorphism for every prime ideal p of A. Therefore Ψ is an
isomorphism.

Now let D : Der(A) −→ Endk(M) be a given covariant derivative onM .
For each m ∈ M define φm : Der(A) → M by ∂ 7→ D∂(m). A straightfor-
ward verification shows that φm is an A—linear homomorphism.

Next define ∇ : M −→ Ω1A/k ⊗A M by ∇(m) = Ψ−1(φm). We leave to
the reader the task of verifying that ∇ is a connection on M .
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4.1. Hochschild cohomology and obstruction

Let A be a commutative k—algebra and let Q be an A—bimodule. We
define Hochschild-cohomology on A with values in Q as the cohomology of
the following complex:

Let Cn(A,Q) = Homk(⊗nkA,Q) for all n ≥ 0, thus C0(A,Q) ≡ Q (since
⊗0kA = k), C1(A,Q) = Homk(A,Q), C

2(A,Q) = Homk(A ⊗k A,Q) and
so on. Let us also consider the coboundary operators dn : Cn(A,Q) −→
Cn+1(A,Q) be given by

dn(ϕ)(a1 ⊗ · · ·⊗ an+1) = a1ϕ(a2 ⊗ · · ·⊗ an+1)
+

Pn
i=1(−1)iϕ(a1 ⊗ · · ·⊗ aiai+1 ⊗ · · ·⊗ an+1)

+ (−1)n+1ϕ(a1 ⊗ · · ·⊗ an)an+1.

HHn(A,Q) = ker(dn)/Im(dn−1) (have in mind that Im(d−1) = 0) will
denote the nth Hochschild cohomology.

In fact, d0 : Q −→ Homk(A,Q) is given by d0(q)(a) = aq − qa, so an
easy verification shows that Im(d0) ⊂ Der(A,Q). Also, we have that d1 :
Homk(A,Q) −→ Homk(A⊗kA,Q) is given by d1(ϕ)(a1⊗a2) = a1ϕ(a2)−
ϕ(a1a2) + ϕ(a1)a2, so ker(d

1) = Der(A,Q). Therefore, HH0(A,Q) = {q ∈
Q | aq = qa∀a ∈ A} and HH1(A,Q) = Der(A,Q)/Im(d0) (the elements in
Im(d0)are usually named inner derivations).

Thus, we have the following exact sequence:

0→ HH0(A,Q)→ Q
d0→ Der(A,Q)→ HH1(A,Q)→ 0(4.5)

Let us now considerQ = Homk(N,P ). Note thatHH0(A,Homk(N,P )) =
HomA(N,P ) and HH1(A,Homk(N,P )) ' Ext1A(N,P ) (the last isomor-
phism is proved at p. 170 in [7]), and the exact sequence (4.5) takes the
form:

0→ HomA(N,P )→ Homk(N,P )
d0→ Der(A,Homk(N,P ))

σ→ Ext1A(N,P )→ 0
(4.6)

The next proposition was proved by Eriksen (at p. 5 in [17]). In fact,
we bring out the part what we are interested in.

4.3. Proposition. There exists an obstruction c(M) ∈ Ext1A(M,Ω1A/k⊗A
M), which is canonical and has the property that:

There exists a connection on M if and only if c(M) = 0.

c(M) is called the Atiyah-Kodaira-Spencer class of M .
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Proof. Let us consider c : A→ Homk(M,Ω1A/k ⊗A M) given by

c(a)(m) = da⊗m where d is the universal derivation. It’s verified that
c ∈ Der(A,Homk(M,Ω1A/k ⊗A M)). Now makes N =M and P = Ω1A/k ⊗A
M in (4.6) and let c(M) = σ(c). Note that, if there is a connection ∇
on M then ∇ ∈ Homk(M,Ω1A/k ⊗A M) and d0(∇) = c, which allows to

conclude that c(M) = σ(c) = σ(d0(∇)) = 0 (from the exactness in (4.6)).
Reciprocally, if c(M) = 0 then σ(c) = 0, so again from the exactness
in (4.6), we have that there exists ω ∈ Homk(M,Ω1A/k ⊗A M) such that

d0(ω) = c, so ω is a connection on M .

5. Connections defined via noncommutative differentials

The result listed here can be found in Krähmer’s Lecture 1 [25] and [29].

Here we considerer a k—algebra A not necessarily commutative. Now,
if Ω is an A—bimodule, then we say that ∂ : A → Ω is a derivation, if
∂(ab) = a∂(b) + ∂(a)b for any a, b ∈ A (since ∂(r) = 0 for r ∈ k, easily we
conclude that ∂ is k—linear).

Next we consider A⊗k A as an A—bimodule (with the A—actions given
by right multiplication in the second tensor component).

Let µ : A⊗k A→ A the multiplication map determined by a⊗ b 7→ ab.
Note that µ is an homomorphism of A—bimodules, so Ω1 := ker(µ) is an
A—bimodule. Note that

d : A→ Ω1 given by d(a) = 1⊗ a− a⊗ 1(5.1)

is a derivation.
Krähmer proved in [25] that:

5.1. Proposition. Notation as above. It is verified that:

1. {da | a ∈ A} generated Ω1 as an A—bimodule.

2. (Ω1, d) satisfied the following universal property: If L is any A—
bimodule and ∂ : A → L is a derivation with ∂(k) = 0, then ∂
factors uniquely through d, that is, there is a unique A—bimodule
homomorphism ∂̂ : Ω1 → L such that ∂ = ∂̂ ◦ d.

We define a connection on M to be an k—linear homomorphism

∇ :M −→ Ω1 ⊗A M
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satisfying ∇(am) = a∇(m) + da ⊗m, for all a ∈ A and m ∈ M (d as in
(5.1)).

Krähmer also established the equivalence between

{ projective A—modules }⇐⇒ { A—modules that admit connection }.

5.2. Theorem. The connections on an A—module M correspond bijec-
tively to A—linear splittings of the action map A⊗kM → A (a⊗m 7→ am).
In particular, M admits a connection if and only if it is projective.

Proof. See the Theorem at p. 13 in [25] or Corollary 3.4 in [29].

5.1. The motivation for considering noncommutative differentials

One of the major advances of science in the 20th century was the discov-
ery of a mathematical formulation of quantum mechanics by Heisenberg in
1925. From a mathematical point of view, transition from classical mechan-
ics to quantum mechanics amounts to, among other things, passing from the
commutative algebra of classical observables to the noncommutative alge-
bra of quantum mechanical observables. Recall that in classical mechanics
an observable (e.g. energy, position, momentum, etc.) is a function on a
manifold called the phase space of the system. Immediately after Heisen-
bergs work, ensuing papers by Dirac [12] and Born-Heisenberg-Jordan [2],
made it clear that a quantum mechanical observable is a (selfadjoint) op-
erator on a Hilbert space called the state space of the system. Thus the
commutative algebra of functions on a space is replaced by the noncommu-
tative algebra of operators on a Hilbert space.

In the early 80’s, Alain Connes ([9], [10]) realized that a similar pro-
cedure can in fact be applied to areas of mathematics where the classical
notions of space (e.g. measure space, or a smooth space) can not be used
and can be replaced by a new idea of space, represented by a noncommu-
tative algebra. His motivation can from the correspondence:

{ Compact Haudorff spaces }⇐⇒ { commutative C∗—algebras } X 7→ CX .

Which was established in the late 40’s by the two Russian mathematicians
Gelfand and Naimark (in [19]).

So when Noncommutative Geometry meets General Relativity a natural
question arises about a satisfactory generalization of the notion of a linear
connection. In order to do that Connes ([9]) has defined connections on
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modules using noncommutative differential forms. After this notion was
extend to bimodules by Cuntz—Quillen in [11].

5.3. Remark. The seed of the notion of connection coming from 1869
paper by Christofell ([8]) has grown to be a great tree. One of his latest
fruit appear in theoretical physics around 1964 and reappear in the real
word at CERN as the Higgs boson of the Standard Model on July 2012
(see [16]).
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