Proyecciones Vol. 19, N^o 1, pp. 19-25, May 2000 Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-0917200000100002

ON THE HYPERBOLIC DIRICHLET TO NEUMANN FUNCTIONAL IN ABELIAN LIE GROUPS *

CLAUDIO CUEVAS Universidad de la Frontera, Temuco - Chile

Abstract

We prove the injectivity of the linearization of the hyperbolic Dirichlet to Neumann functional in a "small" compact neighborhood of the identity element e of an abelian Lie group G, under some suitable transversality condition.

AMS subject classification : 35L20, 58G20.

^{*}This work was partially supported by DIUFRO, IN-16/98.

1. Introduction and Statement of the Result

Let $\overline{\Omega}$ be a compact manifold of dimension n with smooth boundary $\partial\Omega$ and let $Met(\overline{\Omega})$ denote the set of all Riemannian metrics g on $\overline{\Omega}$.

We consider the ansitropic wave equation

(1.1)
$$\Box_{g}u = \frac{\partial^{2}u}{\partial t^{2}} - \Delta_{g}u = 0 \text{ in } \Omega \times (0,T),$$
$$u = f \text{ on } \Gamma = \partial\Omega \times (0,T), \ f \in C_{0}^{\infty}(\Gamma),$$
$$u = \frac{\partial u}{\partial t} = 0 \text{ in } \Omega \times \{0\}.$$

There is a unique solution to (1.1); hence we may define the hyperbolic Dirichlet to Neumann map as the linear operator $\Lambda_g : C_0^{\infty}(\Gamma) \longrightarrow C^{\infty}(\Gamma)$, given by

(1.2)
$$\Lambda_g f = du \cdot \nu_g \Big|_{\Gamma} = \left. \frac{\partial u}{\partial \nu_g} \right|_{\Gamma}$$

where u is the unique solution to (1.1) and v_g is the *g*-interior unit normal to $\partial\Omega$. The hyperbolic Dirichlet to Neumann Functional:

(1.3)
$$\begin{array}{ccc} \Lambda \colon \operatorname{Met}(\Omega) & \longrightarrow & \operatorname{O}_p(\Gamma) \\ g & \mapsto & \Lambda_g, \end{array}$$

where $O_p(\Gamma)$ denotes the space of all linear operators from $C_0^{\infty}(\Gamma)$ into $C^{\infty}(\Gamma)$, is known to be invariantly defined on the orbit obtained by the action over $Met(\overline{\Omega})$ of the group \mathcal{D} of all diffeomorphism ψ of $\overline{\Omega}$, each of which restricts to the identity on $\partial\Omega$. A natural conjecture is that this is the only obstruction to the uniqueness of Λ . From the point of view of applications, an even more important problem is to give a method to reconstruct g from Λ_q .

The elliptic Dirichlet to Neumann map was treated by several authors and is closely related to the physical problem referred as Electrical Impedance Tomography, of determining the conductivity of a body from measurement of voltage potential and corresponding current fluxes at the boundary (see [4]).

For fixed g, we consider the following map:

(1.4)
$$\psi \in \mathcal{D} \xrightarrow{A_g} \psi_g^* \in \operatorname{Met}(\overline{\Omega})$$

It is easy to see that the tangent space $T_I \mathcal{D}$ of \mathcal{D} at the identity mapping I is the vector space $\Gamma_0(T\overline{\Omega})$ of all smooth vector fields on $\overline{\Omega}$ which vanish on $\partial\Omega$. On the other hand, the tangent space $T_g(\operatorname{Met}(\overline{\Omega}))$ of $\operatorname{Met}(\overline{\Omega})$ at g is the vector space $\Gamma(S^2\overline{\Omega})$ of all smooth sections of symmetric 2-tensors on $\overline{\Omega}$. We introduce on the spaces $\Gamma_0(T\overline{\Omega})$ and $\Gamma(S^2\overline{\Omega})$ the inner products

(1.5)
$$\langle X, Y \rangle = \int_{\overline{\Omega}} g(X, Y) v_g, \qquad X, Y \in \Gamma_0(T\overline{\Omega}),$$

(1.6)
$$\langle \langle m, l \rangle \rangle = \frac{1}{n} \int_{\overline{\Omega}} tr(\hat{m} \circ \hat{l}) v_g, \qquad m, l \in \Gamma(S^2 \overline{\Omega}),$$

where v_g (resp., tr), denote the volume element (resp., the trace) associated to g and \hat{m} is the unique linear map defined by

(1.7)
$$g(\hat{m}u, v) = m(u, v) \text{ for all } u, v \in \Gamma(T\overline{\Omega}).$$

Considerer as in [3], the formal linearizations of A_g at I and of Λ at g, respectively :

and

(1.9)
$$\Lambda'_g: \Gamma(S^2\overline{\Omega}) \longrightarrow \mathcal{O}_p(\Gamma).$$

Let $(A'_g)^*$ denote the formal adjoint of A'_g with respect to the inner products (1.5) and (1.6) and $diam_g(\Omega)$ the diameter of Ω in the metric g. In [3], the authors stated the following :

Conjecture 1.1 Let $\Omega_0 \subset \Omega$ be a submanifold, $m \in \Gamma(S^2\Omega)$ have support in $\overline{\Omega}_0$ i.e., $m \in \Gamma_0(S^2\overline{\Omega})$ and assume that a) $\Lambda'_g(m) = 0$, b) $(A'_g)^*(m) = 0$ and c) diam $_g(\Omega_0) < T$ is sufficiently small that the exponential map for g is a global diffeomorphism. Then m is identically zero.

As in [3] we refer to condition b) as the Transversality Condition. We remind that condition c) is necessary to avoid the appearance of caustics. The Transversality Condition replace the harmonic hypothese used in [4]. The main results of this paper is:

Theorem 1.1 Conjecture 1.1 holds if G be an abelian Lie group and $\overline{\Omega}$ is a compact neighborhood of G at the identity element e, and g is an invariant metric on G and $m \in \Gamma_0(S^2\overline{\Omega})$.

We are able to obtain an generalization Cardozo-Mendoza Theorem 1.1 [3] as corollary of Theorem 1.1.

Corollary 1.1 Conjecture 1.1 holds if $\overline{\Omega}$ is a bounded domain of \mathbb{R}^n , and g is a metric on \mathbb{R}^n and $m \in \Gamma_0(S^2\overline{\Omega})$.

Corollary 1.2 Conjecture 1.1 holds if $\overline{\Omega}$ is a bounded domain of the Torus T^n , and g is an invariant metric on T^n and $m \in \Gamma_0(S^2\overline{\Omega})$.

Corollary 1.3 Conjecture 1.1 holds if $\overline{\Omega}$ is a bounded domain of the product $\mathbb{R}^n \times T^m$ and g is an invariant metric on $\mathbb{R}^n \times T^m$ and $m \in \Gamma_0(S^2\overline{\Omega})$.

Remark 1.1 In [3], the authors proved that Conjecture 1.1 holds if $\overline{\Omega}$ is a bounded domain of \mathbb{R}^n , $n \geq 2$ and g is the Euclidean metric. They also proved the conjecture when n=2 and g is near the Euclidean metric in the C^3 -topology. In [1] they prove that Conjecture 1.1 holds if $\overline{\Omega}$ is a bounded domain of the hyperbolic space (resp.,n-sphere) and g is the canonical metric in this spaces. In [2], the authors proved the uniqueness conjecture for the case when the manifold is a sufficiently small bounded domain of \mathbb{R}^3 , under suitable geometric conditions and the metric g is C^3 -close to Euclidean metric. We shall make use of the invariant formulas for A'_a , $(A'_a)^*$ and Λ'_a proved in Section 2 [3].

2. Proof of Theorem 1.1

Let G be an abelian Lie group, and Lie(G) the algebra formed by the set of all left invariant vector fields on G, and $\overline{\Omega}$ is a compact neighborhood of G at the identity element e, and $\Gamma_0(S^2\overline{\Omega})$ denote the vector space of all smooth sections of symmetric 2-tensors on G which are supported on $\overline{\Omega}$. **Proof of Theorem 1.1** Let $x \in \Omega$, $v \in Lie(G)$. The geodesic with initial tangent vector $(x, v) \in TG \cong G \times Lie(G)$ is given by $\gamma(t) = x exp(tv)$. Since $x \in \Omega$ there exists an element $A \in Lie(G)$ such that x = exp(A).

Let $\{E_{\mu}\}_{\mu=1,\dots,n}$ a orthonormal frame field in $\Gamma(TG)$ then we can define a orthonormal system $\{\tilde{E}_{\mu}, V_{\mu}\}_{\mu=1,\dots,n}$ in $\Gamma(TTG)$ as follows. We consider the diagram

$$\begin{array}{cccc} TG & \stackrel{E_{\mu},V_{\mu}}{\longrightarrow} & TTG \\ \pi \downarrow & & \downarrow \pi \\ G & \stackrel{E_{\mu}}{\longrightarrow} & TG \end{array}$$

where $\tilde{E}_{\mu}(x,v) = (x,v,E_{\mu},0)$ and $V_{\mu}(x,v) = (x,v,0,E_{\mu}.)$ Let $x = (x_1,...,x_n)$ the canonical coordinates system (of the first kind) of G around the identity e associated to the orthonormal frame field $\{E_{\mu}\}_{\mu=1,...,n}$ and $v = (v_1,...,v_n)$ the canonical coordinates of Lie(G). Now we consider the function $F_t: TG \longrightarrow I\!\!R$ defined by

$$F_t(x,v) = m(x \exp(tv))(v,v)$$

and the operator

$$\mathcal{L} = \sum_{\mu=1}^{n} \tilde{E}_{\mu} V_{\mu} \in \text{End}(C^{\infty}(TG)).$$

We obtain

(2.1)
$$\mathcal{L}F_t = (-t)\Delta_g F_t + 2\sum_{\mu,\beta=1}^n v_\mu E_\beta m_{\mu\beta}(\gamma),$$

where Δ_g denotes the Laplace-Beltrami operator associated to the metric g and $m_{\mu\beta} = m(E_{\mu}, E_{\beta})$.

On the other hand, the Transversality Condition satisfied by m means that

(2.2)
$$E_1(m_{\mu 1}) + \dots + E_n(m_{\mu n}) = 0$$
, $\mu = 1, \dots, n$

Using (2.1) and (2.2) we conclude that

(2.3)

$$\mathcal{L}F_t = (-t)\Delta_g F_t.$$

We define

(2.4)
$$H^{k}(x,v) = \int_{-\infty}^{\infty} (-t)^{k} F_{t}(x,v) dt$$

for all k = 0, 1, ...Using (2.3), it is easy to show that

(2.5)
$$\mathcal{L}H^k = \Delta_g H^{k+1}, \quad k = 0, 1, 2, \dots$$

If we fix v, since m is supported in $\overline{\Omega}$, it follows that $H^k(\cdot, v)$ for all k = 1,2,... vanish on a non-empty open subset of G. From Proposition 3.1 in [3], $H^0 = 0$ and hence H^1 , and in fact all H^k are harmonic functions. Therefore H^k is identically zero for all k = 0,1,2,....

Observe that $t \to F_t$ is supported in some closed interval [a, b] containing zero. Since the subalgebra generated by the family of functions $\{(-t)^k\}_{k=0.1...}$ is dense in $C([a, b], \mathbb{R})$, we obtain that $t \to F_t$ is identically zero. If we take t = 0 and recall that m is symmetric, we conclude that m is identically zero.

References

- Cardoso, F. and Cuevas, C., "On the Hyperbolic Dirichlet to Neumann functional in Hⁿ and Sⁿ", Proyectiones Vol. 17, N^o 1, pp. 63 - 70, (1998).
- Cardoso, F. and Cuevas, C., "On the Hyperbolic Dirichlet to Neumann functional", to appear Portugaliae Mathematica. Vol. 56, N^o 4, (1999)
- Cardoso, F. and Mendoza, R., "On the Hyperbolic Dirichlet to Neumann functional", Comm. in Partial Diff. Equations, 21, pp. 1235 - 1252, (1996).
- Uhlmann, G., "Inverse boundary value problems and applications". Astérisque, 207, pp. 153 – 211, (1992).

Received : April 10, 1999.

Claudio Cuevas

Departamento de Matemáticas Facultad de Ingeniería Universidad de la Frontera Casilla 54-D Temuco Chile