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Abstract
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1. Introduction.

In this work we are concerned with regularity properties of solutions
of abstract retarded functional differential equations (abbreviated,
ARFDE) with unbounded delay.

Let X be a Banach space endowed with a norm ‖·‖. Throughout
this paper we assume that A : D(A) → X is the infinitesimal
generator of a strongly continuous semigroup of linear operators T (t)
defined on X. Our main purpose is to identify the domain of the in-
finitesimal generator of the solution semigroup corresponding to the
initial value problem defined by the linear ARFDE with unbounded
delay

x′(t) = Ax(t) + L(xt), t ≥ 0,(1.1)

with initial condition
x0 = ϕ ∈ B,(1.2)

where B denotes an abstract phase space, L : B → X is a bounded
linear map and xt represents the function defined from (−∞, 0]
into X by xt(θ) = x(t + θ), −∞ < θ ≤ 0.

Throughout this paper we will employ an axiomatic definition of
the phase space B introduced by Hale and Kato [5]. To establish the
axioms of space B we follow the terminology used in the book [9].
Thus, B will be a linear space of functions mapping (−∞, 0] into
X endowed with a seminorm ‖ · ‖B. We will assume that B satisfies
the following axioms:

(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and
xσ ∈ B then for every t in [σ, σ + a) the following conditions
hold:

(i) xt is in B.

(ii) ‖x(t)‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖B,

where H ≥ 0 is a constant; K,M : [0,∞) → [0,∞), K is
continuous and M is locally bounded and H,K and M are
independent of x(·).
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(A-1) For the function x(·) in (A), xt is a B−valued continuous
function on [σ, σ + a).

(B) The space B is complete.

In the theory of retarded functional differential equations with un-
bounded delay frequently we need additional properties of the space B
to obtain some results. Next we denote by C00 the space of continuous
functions from (−∞, 0] into X with compact support. It is clear from
the axioms of phase space that C00 ⊆ B. In this work we consider the
following axioms ([9]).

(C-1) If (ϕn)n is a Cauchy sequence in B such that (ϕn(θ))n converges
to a function ϕ(θ) uniformly on compact subsets of (−∞, 0], then
ϕ ∈ B and ‖ϕn − ϕ‖B → 0 as n →∞.

(C-2) If a uniformly bounded sequence (ϕn)n in C00 converges to a
function ϕ in the compact -open topology then ϕ belongs to B
and ‖ϕn − ϕ‖B → 0, as n →∞.

It is easy to see ([9]) that if (C-2) holds then the space Cb((−∞, 0] :
X) (or in short Cb) formed by the bounded continuous functions ϕ :
(−∞, 0] → X is continuously included in B. Hereafter we also use
the notation UCb((−∞, 0] : X) (abbreviated, UCb) to indicate the
subspace of Cb formed by the functions uniformly continuous . Some
aspects of our results depend on the following property of differentia-
bility of functions with values in phase spaces .

Lemma 1.1 Assume that B satisfies axiom (C-2). Let z : (−∞, a) →
X, a > 0, be a function of class C1 such that z0 = ϕ ∈ Cb and
ϕ′ ∈ UCb. Then the function [0, a) → B, t → zt, is continuosly

differentiable and
d

dt
zt = z′t, 0 ≤ t < a.

Proof. It is clear that zt, z′t ∈ Cb, 0 ≤ t < a, and that for fixed
t < t1 < a the function z′ is uniformly continuous on (−∞, t1]. This
shows that [0, t1] → Cb, t → z′t, is continuous . Hence, for h small
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enough, from the theory of integration of vector functions with values
in Banach spaces ([10]) we obtain that

(∫ t+h

t
z′s ds

)
(θ) =

∫ t+h

t
z′(s + θ) ds

= z(t + h + θ)− z(t + θ)

= zt+h(θ)− zt(θ)

which implies that

zt+h − zt

h
=

1

h

∫ t+h

t
z′s ds

converges to z′t as h → 0.
Throughout this paper we always assume that B is a phase space.

We will denote by B̂ the quotient Banach space B/‖ · ‖ and we write
ϕ̂ for the coset determined by ϕ ∈ B. We also use this notation to
indicate induced maps on B̂ whilst the symbol π will stand for the
quotient map from B into B̂.

It is follows from the axioms of phase space that operators S(t)
and W (t) defined by the expressions

[S(t)ϕ](θ) :=





ϕ(0), −t ≤ θ ≤ 0,

ϕ(t + θ), −∞ < θ < −t,

and

[W (t)ϕ](θ) :=





T (t + θ)ϕ(0), −t ≤ θ ≤ 0,

ϕ(t + θ), −∞ < θ < −t.

are strongly continuous semigroups of linear operators on B.
On the other hand, the solution operator of problem (1.1)-(1.2)

given by V (t)ϕ = xt(·, ϕ), where x(·, ϕ) denotes the mild solution of
(1.1)-(1.2), also is a strongly continuous semigroup on B.

For the general aspects of the theory of strongly continuous semi-
group of linear operators we refer to Pazy [11] and Engel and Nagel
[3]. In particular, Ŝ(t), Ŵ (t) and V̂ (t) are strongly continuous semi-
groups of linear operators on the Banach space B̂. Their infinitesimal
generators will be denoted by B̂, B̂W and ÂV , respectively.
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For some concrete phase spaces the domain of operators B̂, B̂W

and ÂV is well known ([9, 6, 12]). Nevertheless, a general characteri-
zation in the frame of phase spaces defined axiomatically is unknown.
The purpose of this work is, under quite general conditions on X and
B, to obtain some relations among these domains. To establish our
results we need some additional properties of differentiability of func-
tions . For completeness we state them here.

For Banach spaces that have the Radon-Nikodym property (ab-
breviated, RNP) the following result is well known ([2]).

Lemma 1.2 Let X be a Banach space which has the RNP. If a func-
tion f : [0, a] → X is Lipschitz continuous then f is differentiable a.e.
and f(t) = f(0) +

∫ t
0 f ′(s) ds, for 0 ≤ t ≤ a.

We can modify easily this result to work with semi-normed spaces.

Corollary 1.1 Let Y be a complete semi-normed space such that the
quotient space Y/‖ · ‖ has the RNP. If a function f : [0, a] → Y is
Lipschitz continuous then f is differentiable a.e. and ‖f(t)− f(0)−∫ t
0 f ′(s) ds‖ = 0, for 0 ≤ t ≤ a.

Furthermore, the following statement is an easy consequence of
Lemma 1.2 and properties of differentiability of semigroups .

Remark 1.1 Assume that X is a Banach space which has the RNP
and that T (·)x is locally Lipschitz continuous . Then T (·)x is differ-
entiable on (0,∞).

On the other hand, since X can be considered as a closed subspace
of B, if B̂ has the RNP then X also has this property.

Our results are based on the following property of regularity for
mild solutions of the abstract Cauchy problem which was established
in ([4]).

Lemma 1.3 Assume that X is a Banach space which has the RNP
and that f is a function that satisfies the Lipschitz condition

‖f(s, x)− f(t, y)‖ ≤ C (|t− s|+ ‖x− y‖) .
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Let x(·) be the mild solution of the abstract Cauchy problem

x′(t) = Ax(t) + f(t, x(t)), 0 ≤ t ≤ a, x(0) ∈ D(A),

then x ∈ C1([0, a]; X).
In the next section we generalize the above result for ARFDE with

unbounded delay and in section 3 we apply our results to the linear
case.

2. Regularity of mild solutions of ARFDE.

In this section we present a result of regularity for mild solutions of
quasi-linear ARFDE with unbounded delay

x′(t) = Ax(t) + f(t, xt), 0 ≤ t < a,(2.1)

where f : [0, a)× B → X, a > 0, is a continuous function.
We consider the following concept of mild solution.

Definition 2.1 We say that a function x : (−∞, b) → X, b > 0,
is a mild solution of the Cauchy problem (2.1)-(1.2) if x0 = ϕ and
the restriction x : [0, b) → X is continuous and satisfies the integral
equation:

x(t) = T (t)ϕ(0) +
∫ t

0
T (t− s)f(s, xs)ds, 0 ≤ t < b.(2.2)

The problem of existence of mild solutions for equation (2.1) it
has been studied in [7, 8] under several conditions on T (t) and f . In
particular, we can assure existence of mild solutions when f is locally
Lipschitz continuous . In the next result we denote by x(·, ϕ) the mild
solution of problem (2.1)-(1.2). We also refer the reader to [12, 13], as
well as the references indicated therein, for the nonlinear analogue.

Theorem 2.1 Assume that X has the RNP and that W (·)ϕ is locally
Lipschitz continuous . If f satisfies the Lipschitz condition:

‖f(s, ψ1)− f(t, ψ2)‖ ≤ C(|t− s|+ ‖ψ1 − ψ2‖B),(2.3)

for some constants C, r > 0 and for every s, t ∈ [0, r) and
‖ψi − ϕ‖B < r, i = 1, 2, then the following properties are fulfilled :
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(i) The function x(·, ϕ) is of class C1 on (0, b), for some b > 0, and
if ϕ(0) ∈ D(A), then x(·, ϕ) is of class C1 on [0, b).

(ii) If X is reflexive then x(·, ϕ) is of class C1 on [0, b).

(iii) If B̂ has the RNP then the function t → xt(·, ϕ) is differentiable
a.e. on [0, b).

(iv) If B satisfies axiom (C-2), f(0, ϕ) = 0 and W (·)ϕ is differen-
tiable on (0,∞) (resp. on [0,∞)) then the function t → xt(·, ϕ)
is differentiable on (0, b) (resp. on [0, b)).

Proof. In view of previous remark we admit the existence of the
mild solution x(·, ϕ). Next we abbreviate the notation by writing
x = x(·, ϕ). We introduce the functions y, z : (−∞, b) → X where
y(·) is defined by y(t) = T (t)ϕ(0), for t ≥ 0, and y(t) = ϕ(t), for
t < 0, and z(·) is given by the relation

x(t) = y(t) + z(t), −∞ < t < b.(2.4)

It is clear from these definitions and (2.2) that yt = W (t)ϕ, z0 = 0
and

z(t) =
∫ t

0
T (t− s)f(s, xs)ds, 0 ≤ t < b.(2.5)

Proceeding as in ([6], Theorem 2) we can show that z is Lipschitz
continuous . Since zt is continuous with compact support, it follows
from the axioms of phase space that the map t → zt also is Lipschitz
continuous . Moreover, since expression (2.4) yields

xt = yt + zt = W (t)ϕ + zt, 0 ≤ t < b.(2.6)

we obtain that xt also verifies a Lipschitz condition which, together
with (2.3), imply that the function t → f(t, xt) is Lipschitz conti-
nuous . Applying Lemma 1.2 and Theorem 1 in [4] we derive that
z ∈ C1([0, b) : X). On the other hand, from the axiom (A-ii) we know
that

‖T (t)ϕ(0)− T (s)ϕ(0)‖ ≤ H‖W (t)ϕ−W (s)ϕ‖B.



162 Differentiability of Solutions of Linear Functional

Thus, from Remark 1.1 it follows that T (·)ϕ(0) is differentiable on
(0,∞) and the first part of assertion (i) is immediate consequence of
(2.2). Similarly, if ϕ(0) ∈ D(A), then T (·)ϕ(0) is differentiable on
[0,∞) and the same occurs with x(·).

To establish (ii) we turn to use that T (·)ϕ(0) is a function Lipschitz
continuous . Since X is reflexive, from [1]. Theorem 2.1.2(c), it follows
that ϕ(0) ∈ D(A) so that the assertion is consequence of (i).

Since t → xt is Lipschitz continuous , the assertion (iii) is an
immediate consequence of Corollary 1.1.

Finally, if f(0, ϕ) = 0 the function z(·) is of class C1 on (−∞, b). In
fact, in view of that we already have established, only remains to prove
that z′(0) = 0. However, this is a direct consequence of (2.5). Hence,
by Lemma 1.1 we can affirm that the function t → zt is differentiable
on [0, b) and the equality (2.6) implies assertion (iv).

Related with this result some observations are useful. First, we
notice that under the conditions of the theorem x(t, ϕ) ∈ D(A) and
equation (2.1) is verified for t > 0 ([11], Theorem 2.4). On the other
hand, the possible applications of the theorem depend on the hypoth-
esis that the function W (·)ϕ is locally Lipschitz continuous . Next we
establish some conditions to obtain such property.

Proposition 2.1 If T (·)ϕ(0) and S(·)ϕ are locally Lipschitz conti-
nuous then W (·)ϕ is also locally Lipschitz continuous.

Proof. We define R(t) = W (t) − S(t). It is clear from the definitions
of S and W that R(t)ϕ is a continuous function with compact support
included in [−t, 0]. Therefore, for a > 0 fixed and 0 ≤ s ≤ t ≤ a
the function R(t)ϕ − R(s)ϕ is a continuous function with compact
support included in [−a, 0]. Consequently, axiom (A-iii) implies that

‖R(t)ϕ − R(s)ϕ‖B ≤ Ka max
{

max
−t≤θ≤−s

‖T (t + θ)ϕ(0) − ϕ(0)‖,

max
−s≤θ≤0

‖T (t + θ)ϕ(0) − T (s + θ)ϕ(0)‖
}

,

where Ka = max
0≤t≤a

K(t). Since T (·)ϕ(0) is locally Lipschitz continuous
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the above estimate shows that R(·)ϕ is also locally Lipschitz conti-
nuous which in turn implies that W (t)ϕ = R(t)ϕ + S(t)ϕ has the
same property.

We can give a condition to obtain S(·)ϕ to be Lipschitz continuous.

Proposition 2.2 Assume that B satisfies (C-2) and let ϕ ∈ Cb((−∞, 0]; X).

(a) If ϕ is a function uniformly Lipschitz continuous then S(·)ϕ is
locally Lipschitz continuous .

(b) If B̂ is reflexive and if ϕ is a function uniformly Lipschitz con-
tinuous then ϕ̂ ∈ D(B̂).

(c) If ϕ is a function of class C1 such that ϕ′ ∈ UCb and ϕ′(0) = 0,
then ϕ̂ ∈ D(B̂) and B̂ϕ̂ = ϕ̂′.

Proof. Since Cb ↪→ B and S(·) is uniformly bounded on bounded
intervals the assertion (a) follows from the estimate

‖S(t)ϕ− ϕ‖∞ =sup
θ≤0

‖ [S (t) ϕ] (θ)− ϕ (θ) ‖

≤ max

{
max
−t≤θ≤0

‖ϕ (θ)− ϕ (θ)‖ , sup
θ≤−t

‖ϕ (t + θ)− ϕ (θ)‖
}

≤ Ct,
for some constant C ≥ 0 that only depends on ϕ.

The assertion (b) is an immediate consequence of (a) and Theo-
rem 2.1.2(c) in [1].

To prove (c) we define the function x : IR → X by x(θ) =
ϕ(θ), −∞ < θ ≤ 0, and x(t) = ϕ(0), t > 0. It is clear that x
is differentiable and x′ is uniformly continuous and bounded on IR.
By Lemma 1.1 the function t → xt = S(t)ϕ is differentiable on [0,∞)
and

d

dt
Ŝ(t)ϕ̂ = x̂′t

In particular, evaluating the derivative at t = 0 we obtain

B̂ϕ̂ =
d

dt
Ŝ(t)ϕ̂|t=0 = x̂′0 = ϕ̂′.
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3. Applications to linear ARFDE.

In this section we apply Theorem 2.1 to study differentiability of mild
solutions of the linear inhomogeneous ARFDE with unbounded delay

x′(t) = Ax(t) + L(xt) + h(t), t ≥ 0,(3.1)

where L : B → X is a bounded linear map and h : [0,∞) → X is
locally integrable. The mild solution of (3.1)-(1.2), denoted x(·, ϕ, h),
is defined on IR and satisfies

x(·, ϕ, h) = x(·, ϕ, 0) + x(·, 0, h).(3.2)

Initially we consider the homogeneous linear problem (1.1)-(1.2). In
this case V (t)ϕ = xt(·, ϕ, 0), t ≥ 0, is the solution semigroup . With
the notations introduced in the proof of Theorem 2.1 we can rewrite
expression (2.6) as

V (t)ϕ = W (t)ϕ + zt, t ≥ 0.(3.3)

In [6] we have introduced the following additional axiom for phase
spaces .

(C-3) Let a > 0. Let x : (−∞, a] → X be a continuous function
such that x0 = 0 and the right derivative at 0, denoted x′R(0),
exists. If the function ψ defined by ψ(θ) = 0, for θ < 0,

and ψ(0) = x′R(0) belongs to B, then ‖1

h
xh − ψ‖B → 0, as

h → 0+.

We refer the reader to [6] for examples of phase spaces that satisfy
this axiom.

Using (3.3) and proceeding as in theorems 3 and 4 in [6] we can
prove easily that if one of the following conditions holds:

(i) B satisfies axiom (C-3) and the function Γ defined by Γ(θ) =
0, −∞ < θ < 0, and Γ(0) = L(ϕ) belongs to B;

(ii) L(ϕ) = 0,
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then ϕ ∈ D(BW ) if, and only if, ϕ ∈ D(AV ). In fact, in view of (3.3)

to establish the assertion we only need to show that
1

t
zt is convergent

as t → 0+. From (2.5) we can write

z(t) =
∫ t

0
T (t− s)L(V (s)ϕ) ds, t ≥ 0.(3.4)

If we assume that (i) holds, the above expression easily implies that
1

t
zt → Γ, as t → 0+. On the other hand, from the expression for z we

obtain the estimation

‖1

t
zt‖B ≤ 1

t
K(t) max

−t≤θ≤0
‖

∫ t+θ

0
T (t + θ − s)L(V (s)ϕ) ds‖.

Hence, if (ii) is verified then clearly
1

t
zt → 0, t → 0+.

In our next result we consider a different and, in some sense, a more
general condition to relate the differentiability of V (·)ϕ and W (·)ϕ.
As consequence we obtain a new result to compare the domains of
operators ÂV and B̂W .

Theorem 3.1 Assume that X has the RNP and let ϕ ∈ B such that
W (·)ϕ is locally Lipschitz continuous . Then the following properties
are fulfilled :

(a) The mild solution x(·, ϕ, 0) is a function of class C1 on (0,∞)
and V (·)ϕ is locally Lipschitz continuous . If, in addition, ϕ(0) ∈
D(A) then x(·, ϕ, 0) is a function of class C1 on [0,∞).

(b) If B̂ has the RNP then V (·)ϕ is differentiable on (0,∞).

Proof. The assertion (a) follows directly from Theorem 2.1. To prove
(b), we observe that Theorem 2.1 ensures that V (·)ϕ is differentiable
a.e. on [0,∞). Since V (·) is a strongly continuous semigroup from
Remark 1.1 we obtain the differentiability of V (·)ϕ on (0,∞).
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Corollary 3.1 If B̂ is reflexive then D(ÂV ) = D(B̂W ).

Proof. If ϕ̂ ∈ D(B̂W ), then W (·)ϕ is continuosly differentiable and
by part (a) of Theorem 1 it follows that V (·)ϕ is locally Lipschitz con-
tinuous . since B̂ is reflexive from Theorem 2.1.2(c) in ([1]) we obtain
that ϕ̂ ∈ D(ÂV ).

Reciprocally, if ϕ̂ ∈ D(ÂV ), then V (·)ϕ is continuosly differen-
tiable and Lipschitz continuous . From (3.4) it follows easily that z(·)
is Lipschitz continuous . Proceeding as in the proof of Theorem 2.1
we conclude that the function t → zt is also Lipschitz continuous .
Applying now (3.3) we obtain that the same occurs with W (·)ϕ so
that we can complete the proof arguing as before.

This result is similar in nature to Theorem 5.5.6 in [9] which estab-
lishes, for X finite dimensional, that D(A∗

V ) = D(B∗). Thus, in this
case, the domain of adjoint operator A∗

V is independent of L. Turning
now to consider the general abstract case, we can assert, at least in
the case B̂ reflexive, that D(ÂV ) is independent of L. Furthermore,
if ϕ̂ ∈ D(B̂W ), from (3.3) we infer that

[ÂV ϕ̂](0) = [B̂W ϕ̂](0) + L(ϕ)

= Aϕ(0) + L(ϕ).

From these results arise the importance to characterize D(B̂W ) in
order to know D(ÂV ). Our next proposition gives some conditions to

guarantee that an element ϕ̂ belongs to ̂D(BW ).

Proposition 3.1 Assume that B satisfies (C-2) and let ϕ ∈
Cb((−∞, 0]; X) be a function uniformly Lipschitz continuous such that
ϕ(0) ∈ D(A).

(a) If B̂ has the RNP then Ŵ (t)ϕ̂ ∈ D(B̂W ), t > 0.

(b) If B̂ is reflexive then ϕ̂ ∈ D(B̂W ).

The proof will be omitted because is similar to that carried out in
Proposition 2.2.
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Now we are going to study the differentiability of mild solutions
of the inhomogeneous equation (3.1). By the decomposition (3.2) we
can restrict us to consider the initial condition ϕ = 0.

Related with the semigroup T we introduce a class L of functions
defined as follows. We say that a function h : [0,∞) → X belongs to
L if h is locally integrable, locally bounded and for each a > 0 there
exists a constant Ca ≥ 0 such that

‖[T (t2)− T (t1)]h(s)‖ ≤ C|t2 − t1|,
for all 0 ≤ s, t1, t2 ≤ a.

Lemma 3.1 Assume that X has the RNP. Let h ∈ L be a continuous
function . Then for each t ≥ 0 the function s → AT (t − s)h(s) is
integrable on [0, t) and the function u defined by

u(t) =
∫ t

0
T (t− s)h(s) ds, t ≥ 0,(3.5)

is of class C1 with

u′(t) = h(t) +
∫ t

0
AT (t− s)h(s) ds, t ≥ 0.

Proof. Since T (·)h(s) is locally Lipschitz continuous from Remark 1.1
we have that T (·)h(s) is differentiable on (0,∞) which implies that
T (t)h(s) ∈ D(A), for all t > 0. Now, we take t > 0 fixed and consider
the functions

gα(s) =
T (α + t− s)h(s)− T (t− s)h(s)

α
, α > 0,

defined for s ∈ [0, t). It is clear that gα(s) → AT (t − s)h(s), as
α → 0+ and, since h ∈ L, ‖gα(s)‖ ≤ C, for all s ∈ [0, t) and certain
constant C ≥ 0. By the Lebesgue’s dominated convergence theorem
([10]) we conclude that s → AT (t− s)h(s) is integrable on [0, t). We
complete the proof applying Theorem 4.2.4 in [11].

We are in conditions to establish the following regularity property
for mild solutions of the inhomogeneous ARFDE.
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Theorem 3.2 Assume that X has the RNP. If h satisfies one of the
following conditions:

(a) h is locally Lipschitz continuous ;

(b) h ∈ L is a continuous function

then x(·, 0, h) is of class C1 on [0,∞) and the following properties
hold:

(i) If B̂ has the RNP then xt(·, 0, h) is differentiable a.e. on
[0,∞).

(ii) If B satisfies axiom (C-2) and h(0) = 0 then the function
t → xt(·, 0, h) is differentiable on [0,∞).

Proof. If condition (a) holds then the assertions are consequence of
Theorem 2.1 with f(t, ψ) = L(ψ)+h(t) and ϕ = 0. For this reason in
what follows we assume that h satisfies condition (b). We abbreviate
the notation by writing x = x(·, 0, h). Since

x(t) =
∫ t

0
T (t− s)L(xs) ds +

∫ t

0
T (t− s)h(s) ds

we can write
x(t) = z(t) + u(t), t ∈ IR,

where u is defined by (3.5) for t ≥ 0 and u(θ) = 0, for θ ≤ 0 and z is
given by the above expression. This decomposition implies that

xt = zt + ut, t ≥ 0.(3.6)

On the other hand, by Lemma 1 we know that u is locally Lipschitz
continuous on [0,∞) and since ut are continuous functions with com-
pact support, applying axiom (A-iii) we obtain that both the function
t → ut as the function v which is given by

v(t) =
∫ t

0
T (t− s)L(us) ds
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are also locally Lipschitz continuous on [0,∞).
In view of that

z(t) =
∫ t

0
T (t− s)L(zs) ds + v(t), t ≥ 0,

with the argument used in ([6], Theorem 2) we infer that z is locally
Lipschitz continuous on [0,∞). Now repeating the argument used in
the proof of Theorem 2.1 we obtain that z is of class C1 on [0,∞).
Since by Lemma 1 this is also valid for u it follows that x is of class
C1 on [0,∞). The assertion (i) is consequence of Lemma 2. Finally, if
the hypotheses of (ii) are verified, from Lemma 3.1 and Lemma 1 we
obtain that the functions t → zt and t → ut are differentiable , which
completes the proof.

Collecting theorems 3.1, 3.2 and the formula (3.2) we obtain the
following property of differentiability for the solutions of (3.1)-(1.2).

Corollary 3.2 Assume that X has the RNP and let ϕ ∈ B such
that W (·)ϕ is locally Lipschitz continuous . If h satisfies one of the
following conditions:

(a) h is locally Lipschitz continuous ;

(b) h ∈ L is a continuous function ,

then x(·, ϕ, h) is of class C1 on (0,∞). In further, if ϕ(0) ∈ D(A),
then x(·, ϕ, h) is of class C1 on [0,∞).

The argument used in the proof of Theorem 3.2 allows us to gener-
alize to the context of ARFDE with infinite delay the characterization
of the infinitesimal generator of the solution semigroup obtained in
[14] for ARFDE with finite delay modelled in the space of continuous
functions . Previously we introduce a separation axiom for the phase
spaces .

(S) If ϕ ∈ B is a continuous function such that ‖ϕ‖B = 0, then ϕ = 0.

Next we establish a property of differentiability in phase spaces.
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Lemma 3.2 Assume that B satisfies axioms (C-1) and (S). Let x :
(−∞, b] → X, b > 0, be a continuous function such that x0 ∈ B.
Then (∫ b

0
xs ds

)
(θ) =

∫ b

0
x(s + θ) ds, −∞ < θ ≤ 0.

Proof. Let ψn =
k(n)∑

i=1

b

k(n)
xsi

be a Riemann sum of xs, where

si =
b

k(n)
i, i = 1, · · · , k(n), and k(n) → ∞ as n → ∞. Then

ψn →
∫ b

0
xs ds as n → ∞ in the space B. Furthermore, for each

−∞ < θ ≤ 0,

ψn(θ) =
b

k(n)

n∑

i=1

xsi
(θ) =

b

k(n)

k(n)∑

i=1

x(si + θ)

is in turn a Riemann sum for the function x(s + θ) on the interval
[0, b]. Consequently,

ψn(θ) →
∫ b

0
x(s + θ) ds, n →∞.

On the other hand, since x(·) is uniformly continuous on bounded
intervals, the last convergence is uniform for θ in a bounded interval.
Thus, if we define ψ by

ψ(θ) =
∫ b

0
x(s + θ) ds

we have shown that ψn → ψ, n →∞, in the compact-open topology.
Applying axiom (C-1) we can assert that ψn → ψ, n → ∞, in the

space B. Hence it follows that ‖ψ −
∫ b

0
xs ds‖B = 0, which by the

separation axiom implies that

ψ(θ) =
∫ b

0
x(s + θ) ds =

(∫ b

0
xs ds

)
(θ).
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Lemma 3.3 Assume that B satisfies axioms (C-1) and (S). Let z :
(−∞, a) → X, a > 0, be a function of class C1 such that z0 = ϕ ∈ B
and ϕ′ ∈ B. Then the function t → zt(·) is of class C1 on [0, a) and
d
dt

zt = z′t, for t ∈ [0, a).

Proof. Because z′ is continuous an application of the previous lemma
yields

(∫ t

0
z′s ds

)
(θ) =

∫ t

0
z′(s + θ) ds = z(t + θ)− z(θ),

for each θ ≤ 0. Therefore,
∫ t

0
z′s ds = zt − z0, 0 ≤ t < a, from which

we obtain easily our result.
Now we are in conditions to establish the following characterization

of D(ÂV ).

Proposition 3.2 Let ϕ ∈ B be a function of class C1 such that
ϕ′ ∈ B, ϕ(0) ∈ D(A) and ϕ′(0) = Aϕ(0) + L(ϕ). If one of the
following conditions is fulfilled :

(a) The space B satisfies (C-2) and ϕ ∈ Cb((−∞, 0]; X), ϕ′ ∈ UCb;

(b) The space B satisfies (C-1) and (S).

Then ϕ̂ ∈ D(ÂV ) and ÂV ϕ̂ = ϕ̂′.

Proof. Let x = x(·, ϕ) be the mild solution of the homogeneous
problem (1.1)-(1.2). Proceeding as before we can decompose

x(t) = z(t) + u(t), t ∈ IR,

where we have modified our previous notations by defining z0 = 0, u0 =
ϕ and

z(t) =
∫ t
0 T (t− s)L(V (s)ϕ− ϕ) ds,

u(t) = T (t)ϕ(0) +
∫ t
0 T (s)L(ϕ) ds,
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for t ≥ 0. Since V (s)ϕ− ϕ → 0, as s → 0, a simple estimation gives

that
zt

t
→ 0, as t → 0+. Furthermore, u is of class C1 on [0,∞) and

u′(0) = Aϕ(0) + L(ϕ) = ϕ′(0), which shows that u is of class C1 on
IR.

In the case (a), from Lemma 1.1 we infer that t → ut is differen-
tiable and using relation (3.6) we conclude that t → xt = V (t)ϕ is
differentiable at t = 0. Moreover, ÂV ϕ̂ = V̂ ′(0)ϕ̂ = û′0 = ϕ̂′. The
proof in case (b) is similar, but using Lemma 3.3 instead of Lemma 1.1.

It is clear that if L = 0, then V = W . Consequently, taking L = 0
we obtain the following result, which generalizes Proposition 2.2(c).

Corollary 3.3 Let ϕ ∈ B be a function of class C1 such that ϕ′ ∈
B, ϕ(0) ∈ D(A) and ϕ′(0) = Aϕ(0). If one of the following conditions
is fulfilled :

(a) The space B satisfies (C-2) and ϕ ∈ Cb((−∞, 0]; X), ϕ′ ∈ UCb;

(b) The space B satisfies (C-1) and (S).

Then ϕ̂ ∈ D(B̂W ) and B̂W ϕ̂ = ϕ̂′.
Finally, it should be pointed out that there are phase spaces that

satisfy the assumptions considered in our results. As an example we
only mention the space B = C0 × Lp(g), with the terminology of
[9], which consists of all functions ϕ : (−∞, 0] → X such that
ϕ is Lebesgue-measurable and g ‖ϕ‖p is Lebesgue integrable on
(−∞, 0), where g : (−∞, 0) → IR is a positive Lebesgue integrable
function (see Marle [10] for concepts relatives to the integration of
vector functions). The seminorm in B is defined by

‖ϕ‖ = ‖ϕ(0)‖ +
(∫ 0

−∞
g(θ)‖ϕ(θ)‖p dθ

)1/p

.

We will assume that g satisfies conditions (g-6) and (g-7) in the
terminology of [9]. In this case, B is a phase space which verifies
axioms (A), (A-1), (B) and (C-2) ([9], Theorem 1.3.8). Furthermore,
if 1 < p < ∞ and X has the RNP (resp. is reflexive) then B also has
the RNP (resp. is reflexive).
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