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Abstract

Let X be a 0-dimensional Hausforff topological space, E, F non-
archimedean Banach spaces and Cb(X,E) the space of all continuous
E-valued functions on X provided with two strict topologies. In this
paper we show that every F−valued linear operator which is strictly
continuous can be represented by a certain L(E,F )−valued measure
defined on the ring of all clopen subsets of X.
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1. Introduction and notations

By the classical Riesz Representation Theorem, a linear functional u on the
space of continuous real functions on a compact Hausdorff space X, is con-
tinuous for the topology of uniform convergence if, and only if, there exists
a bounded regular Borel measure m on X such that u (f) =

R
fdm. The

Riesz Representation Theorem has been extended to many other spaces
(see [8]) and linear operators instead of linear functional (see [4]). The re-
lation between vector measures, linear operators and strict topologies in the
classical case have been studied by several authors (see [1] [4]). Analogous
situation in the non-archimedean case is studied in [5].

This paper is devoted to extend the work given in [5] for another two
strict topologies. Throughout this work, X will be a zero dimensional
Hausdorff topological space, K a complete non-archimedean valued field
with nontrivial valuation and E, F non-archimedean Banach spaces.

We will denote by Cb(X,E) the space of all E−valued bounded and
continuous functions on X and by Crc(X,E) the subspace of Cb(X,E) of
those functions whose image of X are relatively compact. If E = K, we
will write Cb(X) and Crc(X) respectively.

We will denote by β◦X the Banaschewski compactification of X [7]
and understand by bf the unique continuous extension of f to β◦X. For

A ⊂ X, we will denote by A
β◦X the closure of A in β◦X and by XA the

K-valued characteristic function of A. For an E−valued function f on X
and A ⊂ X, we will denote

kfkA =sup
x∈A

kf(x)k , kfkX = kfk

Let S(X) be the collection of all clopen subsets of X. An L(E,F )−
valued set function m on S(X) is said to be a measure if:

1. m is finitely additive

2. The set m (S(X)) is bounded in L(E,F ).

We will denote by M(X,L(E,F )) the space of all these measures. For
m ∈M(X,L(E,F )) and A ∈ S(X), we define

kmk (A) = sup {km(B)ekF : B ⊂ A,B ∈ S(X), kekE ≤ 1} .

In order to introduce strict topologies, we will denote by Ω the collection
of all compact subsets of β◦X \X and by Ωu the collection of Q ∈ Ω such
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that Q admits a clopen partition {Uα}α∈I of X such that U
β◦X
α ∩ Q = ∅

for all α ∈ I.
The strict topology β (βu) on Cb(X,E) is the inductive limit of the

locally convex topologies βQ, where βQ is generated by the family of semi-

norms f 7→ kgfk , where g ∈ CQ =
n
g ∈ Crc(X) : bg|Q ≡ 0o and Q ∈ Ω (Ωu)

(see [5] , [2, 3]).
Next, we will define the integrability of an E−valued function f on X

with respect to a m ∈ M(X,L(E,F )). For A ∈ S(X), A 6= ∅, let DA

denote the family of all α = {A1, · · · , An;x1, · · · , xn} , where {A1, · · · , An}
is a clopen partition of A and xi ∈ Ai. We will introduce the following
relation: α1 ≥ α2 iff the partition of A in α1 is a refinement of the partition
ofA in α2.We will denote by ΩA the collection of all these α. ΩA will become
to be a directed set. For f, m and α ∈ ΩA, α = {A1, · · · , An;x1, · · · , xn} ,
we will define

(f,m) =
nX

n=1

m(Ai) (f(xi)) .

Note that (f,m) ∈ F.
We will say that f is m−integrable over A if limα (f,m) exists; in

such a case, we will denote this limit byZ
A
fdm = lim

α
(f,m) .

If A = ∅, then we will define
R
∅ fdm = 0. For A = X, we will simply

write
R
fdm. It is easy to see that if f is m−integrable over X, then f is

m−integrable over every A ∈ S(X).
We will present the following very well-known technical result.

Lemma 1. Let ε > 0 and f ∈ Crc(X,E). Then, there exist disjoint clopen
sets A1, A2, ..., An covering X and elements e1, e2, ..., en of E such that°°°°°f −

nX
i=1

XAiei

°°°°° ≤ ε,

where XAiei (x) = ei, if x ∈ Ai and the null element θ of E otherwise.

2. The space L(Crc(X,E), F ).

In this section we will study the relation between measure theory and
F−valued continuous linear operators on Crc(X,E). We will denote by
L(Crc(X,E), F ) the space of all these operators.
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Theorem 2 : If f ∈ Crc(X,E) and m ∈ M(X,L(E,F )), then f is m-
integrable over A, for each A ∈ S(X).

Proof. Without loss of generality, we can assume that A = X and
kmk (X) ≤ 1. Let µ ∈ K, with 0 < |µ| ≤ 1, and ε > 0. We take ν ∈ K
such that 0 < |ν| < |µ| ε, Since f ∈ Crc(X,E), there exists a finite clopen
partition {A1, A2, ..., An} of X and finite subset {e1, e2, ..., en} of E such
that

kf(x)− eikE ≤ |ν| , ∀x ∈ Ai

Choose xi ∈ Ai and consider α◦ = {A1, A2, ..., An;x1, x2, ..., xn} . Take
α = {B1, B2, ..., Bk; y1, y2, ..., yk} such that α ≥ α◦. Then, for Bj ⊂ Ai, we
have

kf(yj)− f(xi)kE = kf(yj)− ei + ei − f(xi)kE
≤ max

©
kf(yj)− eikE , kei − f(xi)kE

ª
≤ |ν|

Thus, if λ = ν−1µ, then

kλ [f(yj)− f(xi)]kE ≤ |λ| |ν| ≤ |µ| ≤ 1

and then
km(A)(λ [f(yj)− f(xi)])k ≤ 1

which implies

km(A)(f(yj)− f(xi))kF ≤ |ν| |µ|
−1 ≤ ε.

Therefore,

kωα (f,m)− ωα◦ (f,m)kF =
°°°°° NP
j=1

m (Aj) f (yi)−
kP
i=1

m (Bi) f (xi)

°°°°°
F

≤ max
1≤j≤N

km (Aj) (f (yi)− f (xi))kF
≤ ε

Now, if α1, α2 ≥ α◦, then
kωα1(f,m)− ωα2(f,m)kF = kωα1(f,m)− ωα◦(f,m) + ωα◦(f,m)− ωα2(f,m)kF
≤ max {kωα1(f,m)− ωα0(f,m)kF , kωα0(f,m)− ωα2(f,m)kF} ≤ ε.
This proves that the net {ωα(f,m)} is Cauchy in F and hence convergent,
since F is complete.

Lemma 3 : Let f : X → E be a m-integrable function over A ∈ S(X).
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1. If the valuation of K is dense or the valuation is discrete and
kEk ⊂ |K| , then °°°°Z

A
fdm

°°°° ≤ kfkA kmk (A).
2. If the valuation of K is discrete and if ρ > 1 is the generator of
|K| \ {0} , then °°°°Z

A
fdm

°°°° ≤ ρ kfkA kmk (A).

Proof. 1.) We can assume that 0 < kfkA < ∞, since otherwise, the
statement is trivial. Under the denseness conditions, for each ε > 0, there
exists λ ∈K such that

kfkA ≤ λ < kfkA + ε.

Since
°°λ−1f(x)°° ≤ 1, ∀ x ∈ A, we have

|λ|−1 kωα(f,m)k =
°°ωα(λ−1f,m)°°

=

°°°° nP
i=1

m(Ai)λ
−1f(xi)

°°°°
≤ kmk (A)

for each α ∈ ΩA. It follows that°°°°Z
A
fdm

°°°° ≤ kfkA kmk (A).
2.) If we consider the norm kek∗ = inf {|λ| : λ ∈ K, |λ| ≥ kek} on E, then
kEk∗ ⊂ |K| and k·k∗ ≤ ρ k·k. Therefore, from 1.), we have°°°°Z

A
fdm

°°°° ≤ kfk∗A kmk∗ (A) ≤ ρ kfkA kmk (A).

Remark 4 : The previous lemma proves that if m ∈M(X,L(E,F )), then
the linear operator Tm : Crc(X,E) → F defined by Tm(f) =

R
fdm is a

Tu−continuous linear operator, where Tu denotes the uniform convergence
topology on Crc(X,E).

Theorem 5 : If T : Crc(X,E) → F is a Tu−continuous linear operator,
then there exists m ∈M(X,L(E,F )) such that T = Tm.
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Proof. For each A ∈ S(X), we define

m(A) : E → F
e 7→ m(A)e = T (XAe)

.

Since T is bounded, with bound M > 0, we have

km(A)ek = kT (XAe)k
≤M kXAek
≤M kek

,

that is, m(A) ∈ L(E,F ). We claim that the set-function

m : S(X) → L(E,F )
A 7→ m(A)

is a measure. In fact, trivially m is well-define and finitely additive. To
prove that {m(A) : A ∈ S(X)} is equicontinuous, take ε > 0 and choose
δ = ε/M ; hence,

(∀A ∈ S(X)) (kek ≤ δ ⇒ km(A)ek ≤M kek ≤Mδ = ε) .

Finally, we claim that T = Tm. In fact, if f =
nP
i=1
XAiei, then it is im-

mediately to prove Tm(f) = T (f). On the other hand, by the facts that
h{XAe : e ∈ E,A ∈ S(X)}i is Tu−dense in Crc(X,E) (see Lemma 1) and
both Tm and T are Tu−continuous, we get Tm(f) = T (f),∀ f ∈ Crc(X,E).

Corollary 6 : The mapping

Ψ : M(X,L(E;F )) → L(Crc(X,E), F )
m 7−→ Ψ(m) = Tm

is an algebraic isomorphism.

3. τ and u-additive measures.

This section will devote to study certain class of members ofM(X,L(E,F ))
and study the behavior of the associated F−valued continuous linear op-
erators given in the previous section.

Definition 7 : Let m ∈M(X,L(E,F )). We will say that
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1. m is τ -additive if for each decreasing net {Aα}α∈I in S(X) such that
Aα ↓ ∅, we have

kmk (Aα)→ 0.

2. m is u-additive if for each clopen partition {Uα}α∈I of X, we have

kmk

X \
[
j∈J

Uj

→ 0

where the limit has to be taken over the directed set of all finite
subsets J ⊂ I.

Proposition 8 : Mτ (X,L(E,F )) ⊆Mu(X,L(E,F ))

Proof. Let m ∈Mτ (X,L(E,F )) and (Uα)α∈I be a clopen partition of X.
For any finite subset J of I, we define the decreasing net {AJ}J , where
AJ = X \ S

j∈J
Uj . Now, since (Uα)α∈I is a clopen partition of X, we have

that Aj ↓ ∅; therefore, kmk (AJ) = kmk (X \ S
j∈J

Uj) → 0. Therefore,

m ∈Mu(X,L(E,F )).

In the previous section we proved that if f ∈ Crc(X,E) and m ∈
M(X,L(E,F )), then f is m−integrable over any A ∈ S(X). The next
theorem will extend this result.

Theorem 9 : If f ∈ Cb(X,E) and m ∈ Mu(X,L(E,F )), then f is m-
integrable over A, for each A ∈ S(X).

Proof. Without loss of generality, we can assume that kfk ≤ 1, and
kmk (X) ≤ 1. For a given ε > 0, we define the following equivalence relation

x ∼ y ⇔ kf(x)− f(y)k ≤ ε

Note that the corresponding equivalent classes {Ai}i∈I form a clopen
partition of X. Let us choose xi ∈ Ai and define g =

P
i∈I

XAif(xi). Clearly,

g ∈ Cb(X,E). For a finite subsets J of I, we denote by BJ = X \ S
j∈J
∪Aj .
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Each BJ is clopen and BJ ↓ ∅. Since m is u− additive, we have that there
exists a finite subset J◦ of I such that if J is another finite subset of I with
J◦ ⊆ J, then kmk (BJ) ≤ ε. For such a J , we define the following functions

gJ =
X
j∈J

XAjf(xj)

hJ = g − gJ =
X
i/∈J
XAif(xi)

Let us consider the finite clopen partition {Aj : j ∈ J}∪{BJ} of X and
take {D1, , ...Dn} a refinement of {Aj : j ∈ J}∪{BJ}j . If we choose yi ∈ Di,
then gJ(yi) = f(xj) and hJ(yi) = 0, ifDi ⊆ Aj for some j ∈ J, or gJ(yi) = 0
and hJ(yi) = f(xj), for some j /∈ J, if Di ⊂ BJ . Therefore, if we denote
by α = {D1,D2, ...Dn; y1, · · · , yn} and α◦ = {A1, ...Am, BJ ;x1, · · ·xm, xJ} ,
then

k α(h,m)k =
°°°°° P
DK⊆Aj

m (Dk) (hJ (yk)) +
P

Dk⊂BJ

m (Dk) (f (xi))

°°°°°
=

°°°°° P
Dk⊂BJ

m (Dk) (f (xi))

°°°°°
≤ max {km (Dk) (f (xi))k : Dk ⊆ BJ}

≤ kmk (BJ) ≤ ε.

On the other hand,

α(gJ ,m) =
P

Dk⊂Aj

m(Dk)(f(xj))

=
P
j∈J

m(Aj)(f(xj))

Therefore, °°°°° α(g,m)−
P
j∈J

m(Aj)(f(xj))

°°°°°
=

°°°° nP
k=1

m(Dk)(g(yk))−
nP

k=1
m(Dk)(gJ(yk))

°°°°
= k α(g − gJ ,m)k
= k α(hJ ,m)k ≤ ε.



Representation theorems of linear operators 105

Also, since kf(yk)− f(xi)k ≤ ε,

k α(f − g,m)k =

°°°° nP
k=1

m(Dk)(f(yk)− f(xi))

°°°°
≤ max {km(Dk)(f(yk)− f(xi))k ; k = 1, ..., n}
≤ max {km(Dk)k kf(yk)− f(xi)k ; k = 1, ..., n}
≤ εmax {km(Dk)k ; k = 1, ..., n}

Thus,

°°°°° α(f,m)−
P
j∈J

m(Aj)(f(xj))

°°°°°
=

°°°°° α(f,m)− α(g,m) + α(g,m)−
P
j∈J

m(Aj)(f(xj))

°°°°°
= max

(
k α(f,m)− α(g,m)k ,

°°°°° α(g,m)−
P
j∈J

m(Aj)(f(xj))

°°°°°
)

≤ ε

Now, if {G1, G2, ..., Gs} is another refinement of {Aj : j ∈ J} ∪BJ and
β = {G1,G2, ...,Gs; z1, · · · zs} , then

k α(f,m)− β(f,m)k

=k α(f,m)−
P

m(Aj)(f(xj)) +
P

m(Aj)(f(xj))− β(f,m)k

=max {k α(f,m)−
P

m(Aj)(f(xj))k , k
P

m(Aj)(f(xj))− β(f,m)k}

≤ ε

Therefore, {ωα(f,m)} is a Cauchy net in F , which is convergent since
F is Banach. This proves that f is m -integrable over A.

Remark 10 : From Prop. 8, if m is τ−additive measure and f ∈
Cb(X,E), then f is m-integrable over A. In [6] , it has been proved that
Mt(X,L(E,F )) and the space of all F−valued and β◦-continuous linear
operators on Cb(X,E) are algebraically isomorphic. The next theorems
will show similar results for Mτ (X,L(E,F )) and Mu(X,L(E,F )).

Theorem 11 : If T ∈ L(Cb(X,E), F ), then the following statements are
equivalent:
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1. T is β-continuous.

2. The associated measure m is τ−additive.

Proof. 1.)⇒ 2.) Let {Aα}α∈I be a net of clopen subsets of X such that
Aα ↓ ∅. By the continuity of T ,

W = {f ∈ Cb(X,E) : kT (f)k ≤ 1}

is a β-neighborhood of 0, and by the definition of β,W is a βK-neighborhood

of 0, for all K ∈ Ω. Now, since Aα
β◦X ↓ Q ∈ Ω, there exists h ∈ CQ(X)

such that

U = {f ∈ Cb(X,E) : kfkh ≤ 1} ⊂W.

For a given ε > 0, we choose µ ∈K, with 0 < |µ| < ε and define

G =
n
x ∈ βoX :

¯̄̄bh(x)¯̄̄ ≤ |µ|o .
Note that Q ⊂ G; hence, there exists α◦ ∈ I such that Aα◦

β◦X ⊂ G.
Now, if α ≥ α◦ and kek ≤ 1, then for any A ⊂ Aα, A ∈ S(X),°°µ−1XAe°°h =sup

x∈A
|h(x)| |µ|−1 kek

≤ |µ|−1 sup
x∈A

|h(x)|

≤ |µ|−1 |µ| = 1,
that is, µ−1XAe ∈ U , and then

°°T (µ−1XAe)°° ≤ 1 or equivalently
km(A)ek ≤ |µ| ≤ ε.

Therefore, since e and A are arbitrary, we have kmk (A) ≤ ε.

therefore m ∈Mτ (X,L(E,F )).

2.)⇒ 1.) We will prove that

W = {f ∈ Cb(X,E) : kTfk ≤ 1}

is a β-neighborhood of 0. Let us take d > 0 and choose λ, γ ∈ K such that
|λ| ≥ d and |γ| kmk (X) ≤ 1. Let Q ∈ Ω; hence, there exists a net {Bα}α∈I
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in β◦X with Bα ↓ Q. Now, if Aα = Bα∩ X, then {Aα}α∈I is net of clopen
subsets of X with Aα ↓ ∅. Thus, there exists α◦ such that

α ≥ α◦ ⇒ kmk (Aα) ≤ |λ|−1 .

The clopen subset D = X \Aα◦ of X satisfies D
βoX ∩Q = ∅. We claim

that the βQ-neighborhood of 0

U = {f ∈ Cb(X,E) : kfk ≤ d ∧ kfkD ≤ |γ|}

is contained in W. In fact, if f ∈ U , then

kT (f)k = k
R
fdmk

=
°°°RD fdm+

R
Aα◦

fdm
°°° .

Now, °°°RAα◦
fdm

°°° ≤ kfk kmk (Aα◦)

≤ |λ| |λ|−1 = 1
and

k
R
D fdmk ≤ kfkD kmk (D)

≤ |γ| kmk (D)
≤ |γ| kmk (X)
≤ |γ| |γ|−1 = 1

,

therefore f ∈W.

Theorem 12 : If m ∈Mτ (X,L(E,F )), then the linear operator

Tm : Cb(X,E) → F
f 7→ Tm(f) =

R
fdm

is β-continuous.

Proof. The same arguments used in the previous theorem proves this
statement and then we omit the proof.

Theorem 13 :Mτ (X,L(E,F )) and the space of all F−valued and β-
continuous linear operators on Cb(X,E) are algebraically isomorphic.
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Proof. In order to prove this theorem, we need to prove that the linear
map

Ψ : Mτ (X,L(E,F )) → Lβ(Cb(X,E), F ))
m 7→ Ψ(m) = Tm

is an algebraic isomorphism, where Lβ(Cb(X,E), F )) denotes the space of
all β-continuous linear operators.
It is easy to see that the map Ψ is linear and one to one. To prove that Ψ
is onto, take T : Cb(X,E) → F and prove that T = Tm for the associated
measures m.
By Th. 11, m ∈ Mτ (X,L(E,F )) and T = Tm on Cb(X,E) follows from
the β−denseness of Crc(X,E) in Cb(X,E) and the β−continuity of both T
and Tm.

Theorem 14 : If m ∈Mu (X,L (E,F )) , then Tm is βu-continuous.
Proof. Let W = {f ∈ Cb(X,E) : kTm(f)k ≤ 1} and Q ∈ Ωu. There
exists a clopen partition {Ai}i∈I of X such that Q ∩Ai

β◦X = ∅ , ∀i ∈ I.
For any finite subset J of I, we define BJ = X \ S

i∈J
Ai. Since m ∈

Mu (X,L (E,F )) , there exists a finite subset J◦ of I such that for a given
δ > 0, we have

kmk (BJ) ≤ δ−1,

for any finite subset J of I with J◦ ⊂ J. If B = i ∈ J◦∪Ai, then B is clopen

in X and B
β◦X ∩Q = ∅.

We claim that U = {f ∈ Cb(X,E) : kfk ≤ δ, kfkB ≤ 1} ⊂ W. In fact,
if f ∈ Cb(X,E), then°°°°Z

B
f dm

°°°° ≤ kfkB kmk (B) ≤ kfkB kmk (X) ≤ 1.
On the other hand,°°°°°

Z
X\B

f dm

°°°°° ≤ kfk kmk (BJ) ≤ δδ−1 = 1

Thus,

kTm (f)k ≤ max
(¯̄̄̄Z

B
f dm

¯̄̄̄
,

¯̄̄̄
¯
Z
X\B

f dm

¯̄̄̄
¯
)
≤ 1

Therefore, since Q ∈ Ωu is arbitrary, the continuity of Tm follows.

Theorem 15 : Mu(X,L(E,F )) and the space of all F−valued and βu-
continuous linear operators on Cb(X,E) are algebraically isomorphic.
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Proof. As before, we only have to prove that if T is a F−valued and
βu-continuous linear operators on Cb(X,E), then T = Tm.

Let T be given and m be the associated measure, that is, T (f) =

Z
f dm,

f ∈ Crc (X,E). We need to prove first that m is u-additive.

Let {Ai}i∈I be a clopen partition of X and Q = β◦X \ S
i∈I

Ai
βoX . Clearly,

Q ∈ Ωu and then T is βQ-continuous. Thus, there exists h ∈ CQ such that

V1 = {f ∈ Cb (X,E) : kfkh ≤ 1} ⊂W = {f ∈ Cb (X,E) : kT (f)k ≤ 1} .

Take ε > 0 and choose λ ∈ K with 0 < |λ| ≤ ε. The set

A =
n
x ∈ β◦X :

¯̄̄bh (x)¯̄̄ ≤ |λ|o
is clopen in β◦X, Q ⊂ β◦ andX\A ⊂

S
i∈I

Ai
β◦X . Now, by the compactness of

βoX\A, there exists a finite subset J◦ of I such that β◦X\A ⊂
S
i∈J◦
∪Ai

β◦X .

Takes a finite subset J ⊂ I with J◦ ⊂ J, and take any clopen B of X
contained in X \ S

i∈J
Ai. If e ∈ E with kek ≤ 1, then it is easy to see that

λ−1XBe ∈ V1. Therefore, km (B) ek ≤ ε and then kmk
Ã
X \ S

i∈J
Ai ≤ ε.

This proves m ∈Mu (X,L (E,F )).
Finally, T = Tm on Cb(X,E) follows from the βu−denseness of Crc(X,E)

in Cb(X,E) and the βu−continuity of both T and Tm. 2
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Facultad de Ciencias F́isicas y Matemática
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