Proyecciones Vol. 23, N° 2, pp. 97-110, August 2004. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172004000200003 **REPRESENTATION THEOREMS OF LINEAR OPERATORS ON P-ADIC FUNCTION SPACES**

> JOSÉ AGUAYO * ELSA CHANDÍA JACQUELINE OJEDA Universidad de Concepción, Chile

Received January 2004. Accepted May 2004.

Abstract

Let X be a 0-dimensional Hausforff topological space, E, F nonarchimedean Banach spaces and $C_b(X, E)$ the space of all continuous E-valued functions on X provided with two strict topologies. In this paper we show that every F-valued linear operator which is strictly continuous can be represented by a certain $\mathcal{L}(E, F)$ -valued measure defined on the ring of all clopen subsets of X.

^{*}This work is partially supported by Fondecyt No. 1020288

1. Introduction and notations

By the classical Riesz Representation Theorem, a linear functional u on the space of continuous real functions on a compact Hausdorff space X, is continuous for the topology of uniform convergence if, and only if, there exists a bounded regular Borel measure m on X such that $u(f) = \int f dm$. The Riesz Representation Theorem has been extended to many other spaces (see [8]) and linear operators instead of linear functional (see [4]). The relation between vector measures, linear operators and strict topologies in the classical case have been studied by several authors (see [1] [4]). Analogous situation in the non-archimedean case is studied in [5].

This paper is devoted to extend the work given in [5] for another two strict topologies. Throughout this work, X will be a zero dimensional Hausdorff topological space, \mathbf{K} a complete non-archimedean valued field with nontrivial valuation and E, F non-archimedean Banach spaces.

We will denote by $C_b(X, E)$ the space of all E-valued bounded and continuous functions on X and by $C_{rc}(X, E)$ the subspace of $C_b(X, E)$ of those functions whose image of X are relatively compact. If $E = \mathbf{K}$, we will write $C_b(X)$ and $C_{rc}(X)$ respectively.

We will denote by $\beta_{\circ}X$ the Banaschewski compactification of X [7] and understand by \hat{f} the unique continuous extension of f to $\beta_{\circ}X$. For $A \subset X$, we will denote by $\overline{A}^{\beta_{\circ}X}$ the closure of A in $\beta_{\circ}X$ and by \mathcal{X}_A the **K**-valued characteristic function of A. For an E-valued function f on Xand $A \subset X$, we will denote

$$\|f\|_A = \sup_{x \in A} \|f(x)\|, \|f\|_X = \|f\|$$

Let $\mathcal{S}(X)$ be the collection of all clopen subsets of X. An $\mathcal{L}(E, F)$ -valued set function m on $\mathcal{S}(X)$ is said to be a measure if:

- 1. m is finitely additive
- 2. The set $m(\mathcal{S}(X))$ is bounded in $\mathcal{L}(E, F)$.

We will denote by $M(X, \mathcal{L}(E, F))$ the space of all these measures. For $m \in M(X, \mathcal{L}(E, F))$ and $A \in \mathcal{S}(X)$, we define

$$||m||(A) = \sup \{||m(B)e||_F : B \subset A, B \in \mathcal{S}(X), ||e||_E \le 1\}.$$

In order to introduce strict topologies, we will denote by Ω the collection of all compact subsets of $\beta_{\circ}X \setminus X$ and by Ω_u the collection of $Q \in \Omega$ such that Q admits a clopen partition $\{U_{\alpha}\}_{\alpha \in I}$ of X such that $\overline{U}_{\alpha}^{\beta_{\alpha}X} \cap Q = \emptyset$ for all $\alpha \in I$.

The strict topology $\beta(\beta_u)$ on $C_b(X, E)$ is the inductive limit of the locally convex topologies β_Q , where β_Q is generated by the family of seminorms $f \mapsto ||gf||$, where $g \in C_Q = \{g \in C_{rc}(X) : \hat{g}|_Q \equiv 0\}$ and $Q \in \Omega(\Omega_u)$ (see [5], [2,3]).

Next, we will define the integrability of an E-valued function f on X with respect to a $m \in M(X, \mathcal{L}(E, F))$. For $A \in \mathcal{S}(X)$, $A \neq \emptyset$, let \mathcal{D}_A denote the family of all $\alpha = \{A_1, \dots, A_n; x_1, \dots, x_n\}$, where $\{A_1, \dots, A_n\}$ is a clopen partition of A and $x_i \in A_i$. We will introduce the following relation: $\alpha_1 \geq \alpha_2$ iff the partition of A in α_1 is a refinement of the partition of A in α_2 . We will denote by Ω_A the collection of all these α . Ω_A will become to be a directed set. For f, m and $\alpha \in \Omega_A$, $\alpha = \{A_1, \dots, A_n; x_1, \dots, x_n\}$, we will define

$$\varpi(f,m) = \sum_{n=1}^{n} m(A_i) \left(f(x_i) \right).$$

Note that $\varpi(f,m) \in F$.

We will say that f is m-integrable over A if $\lim_{\alpha} \varpi(f, m)$ exists; in such a case, we will denote this limit by

$$\int_{A} f dm = \lim_{\alpha} \varpi \left(f, m \right)$$

If $A = \emptyset$, then we will define $\int_{\emptyset} f dm = 0$. For A = X, we will simply write $\int f dm$. It is easy to see that if f is m-integrable over X, then f is m-integrable over every $A \in \mathcal{S}(X)$.

We will present the following very well-known technical result.

Lemma 1. Let $\varepsilon > 0$ and $f \in C_{rc}(X, E)$. Then, there exist disjoint clopen sets $A_1, A_2, ..., A_n$ covering X and elements $e_1, e_2, ..., e_n$ of E such that

$$\left\| f - \sum_{i=1}^{n} \mathcal{X}_{A_i} e_i \right\| \le \varepsilon,$$

where $\mathcal{X}_{A_i} e_i(x) = e_i$, if $x \in A_i$ and the null element θ of E otherwise.

2. The space $\mathcal{L}(C_{rc}(X, E), F)$.

In this section we will study the relation between measure theory and F-valued continuous linear operators on $C_{rc}(X, E)$. We will denote by $\mathcal{L}(C_{rc}(X, E), F)$ the space of all these operators.

Theorem 2: If $f \in C_{rc}(X, E)$ and $m \in M(X, \mathcal{L}(E, F))$, then f is *m*-integrable over A, for each $A \in \mathcal{S}(X)$.

Proof. Without loss of generality, we can assume that A = X and $||m||(X) \leq 1$. Let $\mu \in \mathbf{K}$, with $0 < |\mu| \leq 1$, and $\varepsilon > 0$. We take $\nu \in \mathbf{K}$ such that $0 < |\nu| < |\mu| \varepsilon$, Since $f \in C_{rc}(X, E)$, there exists a finite clopen partition $\{A_1, A_2, ..., A_n\}$ of X and finite subset $\{e_1, e_2, ..., e_n\}$ of E such that

$$\|f(x) - e_i\|_E \le |\nu| \ , \, \forall x \in A_i$$

Choose $x_i \in A_i$ and consider $\alpha_\circ = \{A_1, A_2, ..., A_n; x_1, x_2, ..., x_n\}$. Take $\alpha = \{B_1, B_2, ..., B_k; y_1, y_2, ..., y_k\}$ such that $\alpha \ge \alpha_\circ$. Then, for $B_j \subset A_i$, we have

$$\begin{aligned} \|f(y_j) - f(x_i)\|_E &= \|f(y_j) - e_i + e_i - f(x_i)\|_E \\ &\leq \max \left\{ \|f(y_j) - e_i\|_E, \|e_i - f(x_i)\|_E \right\} \\ &\leq |\nu| \end{aligned}$$

Thus, if $\lambda = \nu^{-1}\mu$, then

$$\left\|\lambda \left[f(y_j) - f(x_i)\right]\right\|_E \le |\lambda| \left|\nu\right| \le |\mu| \le 1$$

and then

$$\|m(A)(\lambda [f(y_j) - f(x_i)])\| \le 1$$

which implies

$$||m(A)(f(y_j) - f(x_i))||_F \le |\nu| |\mu|^{-1} \le \varepsilon.$$

Therefore,

$$\begin{aligned} \left\| \omega_{\alpha} \left(f, m \right) - \omega_{\alpha_{\circ}} \left(f, m \right) \right\|_{F} &= \left\| \sum_{j=1}^{N} m \left(A_{j} \right) f \left(y_{i} \right) - \sum_{i=1}^{k} m \left(B_{i} \right) f \left(x_{i} \right) \right\|_{F} \\ &\leq \max_{1 \leq j \leq N} \left\| m \left(A_{j} \right) \left(f \left(y_{i} \right) - f \left(x_{i} \right) \right) \right\|_{F} \\ &\leq \varepsilon \end{aligned} \end{aligned}$$

Now, if $\alpha_1, \alpha_2 \geq \alpha_0$, then

 $\begin{aligned} \|\omega_{\alpha_1}(f,m) - \omega_{\alpha_2}(f,m)\|_F &= \|\omega_{\alpha_1}(f,m) - \omega_{\alpha_0}(f,m) + \omega_{\alpha_0}(f,m) - \omega_{\alpha_2}(f,m)\|_F \\ &\leq \max \left\{ \|\omega_{\alpha_1}(f,m) - \omega_{\alpha_0}(f,m)\|_F \right\}, \|\omega_{\alpha_0}(f,m) - \omega_{\alpha_2}(f,m)\|_F \right\} \leq \varepsilon. \end{aligned}$ This proves that the net $\{\omega_{\alpha}(f,m)\}$ is Cauchy in F and hence convergent, since F is complete.

Lemma 3 : Let $f : X \to E$ be a *m*-integrable function over $A \in \mathcal{S}(X)$.

1. If the valuation of **K** is dense or the valuation is discrete and $||E|| \subset |\mathbf{K}|$, then

$$\left\|\int_{A}fdm\right\| \leq \|f\|_{A} \,\|m\|\,(A).$$

2. If the valuation of **K** is discrete and if $\rho > 1$ is the generator of $|\mathbf{K}| \setminus \{0\}$, then

$$\left\|\int_{A} f dm\right\| \le \rho \left\|f\right\|_{A} \left\|m\right\| (A).$$

Proof. 1.) We can assume that $0 < ||f||_A < \infty$, since otherwise, the statement is trivial. Under the denseness conditions, for each $\varepsilon > 0$, there exists $\lambda \in \mathbf{K}$ such that

$$\|f\|_A \le \lambda < \|f\|_A + \varepsilon.$$

Since $\|\lambda^{-1}f(x)\| \leq 1, \forall x \in A$, we have

$$\begin{aligned} |\lambda|^{-1} \|\omega_{\alpha}(f,m)\| &= \left\| \begin{split} &\omega_{\alpha}(\lambda^{-1}f,m) \\ &= \left\| \sum_{i=1}^{n} m(A_{i})\lambda^{-1}f(x_{i}) \right\| \\ &\leq \|m\| (A) \end{aligned}$$

for each $\alpha \in \Omega_A$. It follows that

$$\left\|\int_{A} f dm\right\| \le \|f\|_{A} \, \|m\| \, (A).$$

2.) If we consider the norm $||e||^* = \inf \{|\lambda| : \lambda \in \mathbf{K}, |\lambda| \ge ||e||\}$ on E, then $||E||^* \subset |\mathbf{K}|$ and $||\cdot||^* \le \rho ||\cdot||$. Therefore, from 1.), we have

$$\left\| \int_{A} f dm \right\| \le \|f\|_{A}^{*} \|m\|^{*} (A) \le \rho \|f\|_{A} \|m\| (A).$$

Remark 4 : The previous lemma proves that if $m \in M(X, \mathcal{L}(E, F))$, then the linear operator $T_m : C_{rc}(X, E) \to F$ defined by $T_m(f) = \int f dm$ is a \mathcal{T}_u -continuous linear operator, where \mathcal{T}_u denotes the uniform convergence topology on $C_{rc}(X, E)$.

Theorem 5 : If $T : C_{rc}(X, E) \to F$ is a \mathcal{T}_u -continuous linear operator, then there exists $m \in M(X, \mathcal{L}(E, F))$ such that $T = T_m$.

Proof. For each $A \in \mathcal{S}(X)$, we define

$$m(A): E \to F$$

$$e \mapsto m(A)e = T(\mathcal{X}_A e)$$

Since T is bounded, with bound M > 0, we have

$$\begin{aligned} \|m(A)e\| &= \|T(\mathcal{X}_A e)\| \\ &\leq M \|\mathcal{X}_A e\| \\ &< M \|e\| \end{aligned}$$

that is, $m(A) \in \mathcal{L}(E, F)$. We claim that the set-function

$$m: \quad \mathcal{S}(X) \quad \to \mathcal{L}(E,F) \\ A \quad \mapsto m(A)$$

is a measure. In fact, trivially m is well-define and finitely additive. To prove that $\{m(A) : A \in \mathcal{S}(X)\}$ is equicontinuous, take $\varepsilon > 0$ and choose $\delta = \varepsilon/M$; hence,

$$(\forall A \in \mathcal{S}(X)) (\|e\| \le \delta \Rightarrow \|m(A)e\| \le M \|e\| \le M\delta = \varepsilon)$$

Finally, we claim that $T = T_m$. In fact, if $f = \sum_{i=1}^n \mathcal{X}_{A_i} e_i$, then it is immediately to prove $T_m(f) = T(f)$. On the other hand, by the facts that $\langle \{\mathcal{X}_A e : e \in E, A \in \mathcal{S}(X)\} \rangle$ is \mathcal{T}_u -dense in $C_{rc}(X, E)$ (see Lemma 1) and both T_m and T are \mathcal{T}_u -continuous, we get $T_m(f) = T(f), \forall f \in C_{rc}(X, E)$.

Corollary 6 : The mapping

$$\Psi: \quad M(X, \mathcal{L}(E; F)) \quad \to \mathcal{L}(C_{rc}(X, E), F)$$
$$m \qquad \longmapsto \Psi(m) = T_m$$

is an algebraic isomorphism.

3. τ and u-additive measures.

This section will devote to study certain class of members of $M(X, \mathcal{L}(E, F))$ and study the behavior of the associated F-valued continuous linear operators given in the previous section.

Definition 7 : Let $m \in M(X, \mathcal{L}(E, F))$. We will say that

1. m is τ -additive if for each decreasing net $\{A_{\alpha}\}_{\alpha \in I}$ in $\mathcal{S}(X)$ such that $A_{\alpha} \downarrow \emptyset$, we have

$$\|m\|(A_{\alpha}) \to 0.$$

2. *m* is *u*-additive if for each clopen partition $\{U_{\alpha}\}_{\alpha \in I}$ of X, we have

$$||m|| \left(X \setminus \bigcup_{j \in J} U_j \right) \to 0$$

where the limit has to be taken over the directed set of all finite subsets $J \subset I$.

Proposition 8 : $M_{\tau}(X, \mathcal{L}(E, F)) \subseteq M_u(X, \mathcal{L}(E, F))$

Proof. Let $m \in M_{\tau}(X, L(E, F))$ and $(U_{\alpha})_{\alpha \in I}$ be a clopen partition of X. For any finite subset J of I, we define the decreasing net $\{A_J\}_J$, where $A_J = X \setminus \bigcup_{j \in J} U_j$. Now, since $(U_{\alpha})_{\alpha \in I}$ is a clopen partition of X, we have that $A_j \downarrow \emptyset$; therefore, $||m|| (A_J) = ||m|| (X \setminus \bigcup_{j \in J} U_j) \to 0$. Therefore, $m \in M_u(X, \mathcal{L}(E, F))$.

In the previous section we proved that if $f \in C_{rc}(X, E)$ and $m \in M(X, \mathcal{L}(E, F))$, then f is m-integrable over any $A \in \mathcal{S}(X)$. The next theorem will extend this result.

Theorem 9 : If $f \in C_b(X, E)$ and $m \in M_u(X, \mathcal{L}(E, F))$, then f is *m*-integrable over A, for each $A \in \mathcal{S}(X)$.

Proof. Without loss of generality, we can assume that $||f|| \leq 1$, and $||m||(X) \leq 1$. For a given $\varepsilon > 0$, we define the following equivalence relation

$$x \sim y \Leftrightarrow ||f(x) - f(y)|| \le \varepsilon$$

Note that the corresponding equivalent classes $\{A_i\}_{i \in I}$ form a clopen partition of X. Let us choose $x_i \in A_i$ and define $g = \sum_{i \in I} \mathcal{X}_{A_i} f(x_i)$. Clearly, $g \in C_b(X, E)$. For a finite subsets J of I, we denote by $B_J = X \setminus \bigcup_{j \in J} \cup A_j$. Each B_J is clopen and $B_J \downarrow \emptyset$. Since m is u- additive, we have that there exists a finite subset J_{\circ} of I such that if J is another finite subset of I with $J_{\circ} \subseteq J$, then $||m|| (B_J) \leq \varepsilon$. For such a J, we define the following functions

$$g_J = \sum_{j \in J} \mathcal{X}_{A_j} f(x_j)$$

$$h_J = g - g_J = \sum_{i \notin J} \mathcal{X}_{A_i} f(x_i)$$

Let us consider the finite clopen partition $\{A_j : j \in J\} \cup \{B_J\}$ of X and take $\{D_1, ..., D_n\}$ a refinement of $\{A_j : j \in J\} \cup \{B_J\}_j$. If we choose $y_i \in D_i$, then $g_J(y_i) = f(x_j)$ and $h_J(y_i) = 0$, if $D_i \subseteq A_j$ for some $j \in J$, or $g_J(y_i) = 0$ and $h_J(y_i) = f(x_j)$, for some $j \notin J$, if $D_i \subset B_J$. Therefore, if we denote by $\alpha = \{D_1, D_2, ..., D_n; y_1, ..., y_n\}$ and $\alpha_o = \{A_1, ..., A_m, B_J; x_1, ..., x_m, x_J\}$, then

$$\begin{aligned} \|\varpi_{\alpha}(h,m)\| &= \left\| \sum_{D_{K} \subseteq A_{j}} m\left(D_{k}\right)\left(h_{J}\left(y_{k}\right)\right) + \sum_{D_{k} \subset B_{J}} m\left(D_{k}\right)\left(f\left(x_{i}\right)\right) \right\| \\ &= \left\| \sum_{D_{k} \subset B_{J}} m\left(D_{k}\right)\left(f\left(x_{i}\right)\right)\right\| \\ &\leq \max\left\{ \|m\left(D_{k}\right)\left(f\left(x_{i}\right)\right)\| : D_{k} \subseteq B_{J} \right\} \\ &\leq \|m\|\left(B_{J}\right) \leq \varepsilon. \end{aligned}$$

On the other hand,

$$\varpi_{\alpha}(g_J, m) = \sum_{\substack{D_k \subset A_j \\ j \in J}} m(D_k)(f(x_j))$$

Therefore,

$$\begin{aligned} \left\| \varpi_{\alpha}(g,m) - \sum_{j \in J} m(A_j)(f(x_j)) \right\| \\ = \left\| \sum_{k=1}^n m(D_k)(g(y_k)) - \sum_{k=1}^n m(D_k)(g_J(y_k)) \right\| \\ = \left\| \varpi_{\alpha}(g - g_J, m) \right\| \\ = \left\| \varpi_{\alpha}(h_J, m) \right\| \le \varepsilon. \end{aligned}$$

Also, since $||f(y_k) - f(x_i)|| \le \varepsilon$,

$$\begin{aligned} \|\varpi_{\alpha}(f-g,m)\| &= \left\|\sum_{k=1}^{n} m(D_{k})(f(y_{k})-f(x_{i}))\right\| \\ &\leq \max\left\{\|m(D_{k})(f(y_{k})-f(x_{i}))\|; k=1,...,n\right\} \\ &\leq \max\left\{\|m(D_{k})\|\|f(y_{k})-f(x_{i})\|; k=1,...,n\right\} \\ &\leq \varepsilon \max\left\{\|m(D_{k})\|; k=1,...,n\right\} \end{aligned}$$

Thus,
$$\left\| \varpi_{\alpha}(f,m) - \sum_{j \in J} m(A_j)(f(x_j)) \right\|$$

= $\left\| \varpi_{\alpha}(f,m) - \varpi_{\alpha}(g,m) + \varpi_{\alpha}(g,m) - \sum_{j \in J} m(A_j)(f(x_j)) \right\|$
= $\max \left\{ \left\| \varpi_{\alpha}(f,m) - \varpi_{\alpha}(g,m) \right\|, \left\| \varpi_{\alpha}(g,m) - \sum_{j \in J} m(A_j)(f(x_j)) \right\| \right\}$
 $\leq \varepsilon$

Now, if $\{G_1, G_2, ..., G_s\}$ is another refinement of $\{A_j : j \in J\} \cup B_J$ and $\beta = \{G_1, G_2, ..., G_s; z_1, \cdots z_s\}$, then

$$\begin{aligned} \|\varpi_{\alpha}(f,m) - \varpi_{\beta}(f,m)\| \\ &= \|\varpi_{\alpha}(f,m) - \sum m(A_{j})(f(x_{j})) + \sum m(A_{j})(f(x_{j})) - \varpi_{\beta}(f,m)\| \\ &= \max \left\{ \|\varpi_{\alpha}(f,m) - \sum m(A_{j})(f(x_{j}))\|, \|\sum m(A_{j})(f(x_{j})) - \varpi_{\beta}(f,m)\| \right\} \\ &\leq \varepsilon \end{aligned}$$

Therefore, $\{\omega_{\alpha}(f, m)\}\$ is a Cauchy net in F, which is convergent since F is Banach. This proves that f is m-integrable over A.

Remark 10 : From Prop. 8, if m is τ -additive measure and $f \in C_b(X, E)$, then f is m-integrable over A. In [6], it has been proved that $M_t(X, \mathcal{L}(E, F))$ and the space of all F-valued and β_{\circ} -continuous linear operators on $C_b(X, E)$ are algebraically isomorphic. The next theorems will show similar results for $M_{\tau}(X, \mathcal{L}(E, F))$ and $M_u(X, \mathcal{L}(E, F))$.

Theorem 11 : If $T \in \mathcal{L}(C_b(X, E), F)$, then the following statements are equivalent:

- 1. T is β -continuous.
- 2. The associated measure m is τ -additive.

Proof. 1.) \Rightarrow 2.) Let $\{A_{\alpha}\}_{\alpha \in I}$ be a net of clopen subsets of X such that $A_{\alpha} \downarrow \emptyset$. By the continuity of T,

$$\mathcal{W} = \{ f \in C_b(X, E) : \|T(f)\| \le 1 \}$$

is a β -neighborhood of 0, and by the definition of β , \mathcal{W} is a β_K -neighborhood of 0, for all $K \in \Omega$. Now, since $\overline{A_{\alpha}}^{\beta_0 X} \downarrow Q \in \Omega$, there exists $h \in C_Q(X)$ such that

$$\mathcal{U} = \{ f \in C_b(X, E) : \|f\|_h \le 1 \} \subset \mathcal{W}$$

For a given $\varepsilon > 0$, we choose $\mu \in \mathbf{K}$, with $0 < |\mu| < \varepsilon$ and define

$$G = \left\{ x \in \beta_o X : \left| \hat{h}(x) \right| \le |\mu| \right\}$$

Note that $Q \subset G$; hence, there exists $\alpha_{\circ} \in I$ such that $\overline{A_{\alpha_{\circ}}}^{\beta_{\circ}X} \subset G$. Now, if $\alpha \geq \alpha_{\circ}$ and $||e|| \leq 1$, then for any $A \subset A_{\alpha}$, $A \in \mathcal{S}(X)$,

$$\begin{aligned} \left\|\mu^{-1} \mathcal{X}_A e\right\|_h &= \sup_{x \in A} |h(x)| \, |\mu|^{-1} \, \|e\| \\ &\leq |\mu|^{-1} \sup_{x \in A} |h(x)| \\ &\leq |\mu|^{-1} \, |\mu| = 1, \\ \text{that is, } \mu^{-1} \mathcal{X}_A e \in \mathcal{U}, \text{ and then } \left\|T(\mu^{-1} \mathcal{X}_A e)\right\| \leq 1 \text{ or equivalently} \end{aligned}$$

$$||m(A)e|| \le |\mu| \le \varepsilon.$$

Therefore, since e and A are arbitrary, we have $||m||(A) \leq \varepsilon$.

therefore $m \in M_{\tau}(X, \mathcal{L}(E, F))$.

 $(2.) \Rightarrow 1.)$ We will prove that

$$\mathcal{W} = \{ f \in C_b(X, E) : \|Tf\| \le 1 \}$$

is a β -neighborhood of 0. Let us take d > 0 and choose $\lambda, \gamma \in \mathbf{K}$ such that $|\lambda| \ge d$ and $|\gamma| ||m|| (X) \le 1$. Let $Q \in \Omega$; hence, there exists a net $\{B_{\alpha}\}_{\alpha \in I}$

in $\beta_{\circ}X$ with $B_{\alpha} \downarrow Q$. Now, if $A_{\alpha} = B_{\alpha} \cap X$, then $\{A_{\alpha}\}_{\alpha \in I}$ is net of clopen subsets of X with $A_{\alpha} \downarrow \emptyset$. Thus, there exists α_{\circ} such that

$$\alpha \ge \alpha_{\circ} \Rightarrow \|m\| (A_{\alpha}) \le |\lambda|^{-1} .$$

The clopen subset $D = X \setminus A_{\alpha_0}$ of X satisfies $\overline{D}^{\beta_o X} \cap Q = \emptyset$. We claim that the β_Q -neighborhood of 0

$$\mathcal{U} = \{ f \in C_b(X, E) : \|f\| \le d \land \|f\|_D \le |\gamma| \}$$

is contained in \mathcal{W} . In fact, if $f \in \mathcal{U}$, then

$$\begin{aligned} \|T(f)\| &= \|\int f dm\| \\ &= \left\| \int_D f dm + \int_{A_{\alpha_0}} f dm \right\|. \end{aligned}$$

Now,

$$\left\| \int_{A_{\alpha_{\circ}}} f dm \right\| \leq \|f\| \|m\| (A_{\alpha_{\circ}})$$

$$\leq |\lambda| |\lambda|^{-1} = 1$$

and

$$\begin{split} \|\int_{D} f dm\| &\leq \|f\|_{D} \|m\| (D) \\ &\leq |\gamma| \|m\| (D) \\ &\leq |\gamma| \|m\| (X) \\ &\leq |\gamma| |\gamma|^{-1} = 1 \end{split},$$

therefore $f \in \mathcal{W}$.

Theorem 12 : If $m \in M_{\tau}(X, L(E, F))$, then the linear operator

$$\begin{array}{rcl} T_m: & C_b(X,E) & \to F \\ & f & \mapsto T_m(f) = \int f dm \end{array}$$

is β -continuous.

Proof. The same arguments used in the previous theorem proves this statement and then we omit the proof.

Theorem 13 : $M_{\tau}(X, \mathcal{L}(E, F))$ and the space of all F-valued and β -continuous linear operators on $C_b(X, E)$ are algebraically isomorphic.

Proof. In order to prove this theorem, we need to prove that the linear map

$$\Psi: \quad M_{\tau}(X, \mathcal{L}(E, F)) \quad \to \mathcal{L}_{\beta}(C_b(X, E), F))$$
$$m \qquad \mapsto \Psi(m) = T_m$$

is an algebraic isomorphism, where $\mathcal{L}_{\beta}(C_b(X, E), F))$ denotes the space of all β -continuous linear operators.

It is easy to see that the map Ψ is linear and one to one. To prove that Ψ is onto, take $T: C_b(X, E) \to F$ and prove that $T = T_m$ for the associated measures m.

By Th. 11, $m \in M_{\tau}(X, \mathcal{L}(E, F))$ and $T = T_m$ on $C_b(X, E)$ follows from the β -denseness of $C_{rc}(X, E)$ in $C_b(X, E)$ and the β -continuity of both Tand T_m .

Theorem 14 : If $m \in M_u(X, \mathcal{L}(E, F))$, then T_m is β_u -continuous. **Proof.** Let $\mathcal{W} = \{f \in C_b(X, E) : ||T_m(f)|| \leq 1\}$ and $Q \in \Omega_u$. There exists a clopen partition $\{A_i\}_{i \in I}$ of X such that $Q \cap \overline{A_i}^{\beta_0 X} = \emptyset$, $\forall i \in I$.

For any finite subset J of I, we define $B_J = X \setminus \bigcup_{i \in J} A_i$. Since $m \in M$

 $M_u(X, \mathcal{L}(E, F))$, there exists a finite subset J_\circ of I such that for a given $\delta > 0$, we have

$$\|m\|\left(B_J\right) \le \delta^{-1},$$

for any finite subset J of I with $J_{\circ} \subset J$. If $B = i \in J_{\circ} \cup A_i$, then B is clopen in X and $\overline{B}^{\beta_{\circ} X} \cap Q = \emptyset$.

We claim that $\mathcal{U} = \{f \in C_b(X, E) : \|f\| \le \delta, \|f\|_B \le 1\} \subset \mathcal{W}$. In fact, if $f \in C_b(X, E)$, then

$$\left\| \int_{B} f \, dm \right\| \le \|f\|_{B} \, \|m\| \, (B) \le \|f\|_{B} \, \|m\| \, (X) \le 1.$$

On the other hand,

$$\left\| \int_{X \setminus B} f \, dm \right\| \le \|f\| \, \|m\| \, (B_J) \le \delta \delta^{-1} = 1$$

Thus,

$$||T_m(f)|| \le \max\left\{\left|\int_B f dm\right|, \left|\int_{X\setminus B} f dm\right|\right\} \le 1$$

Therefore, since $Q \in \Omega_u$ is arbitrary, the continuity of T_m follows. **Theorem 15 :** $M_u(X, L(E, F))$ and the space of all F-valued and β_u continuous linear operators on $C_b(X, E)$ are algebraically isomorphic. **Proof.** As before, we only have to prove that if T is a F-valued and β_u -continuous linear operators on $C_b(X, E)$, then $T = T_m$. Let T be given and m be the associated measure, that is, $T(f) = \int f \, dm$, $f \in C_{rc}(X, E)$. We need to prove first that m is u-additive. Let $\{A_i\}_{i \in I}$ be a clopen partition of X and $Q = \beta_{\circ} X \setminus \bigcup_{i \in I} \overline{A_i}^{\beta_{\circ} X}$. Clearly, $Q \in \Omega_u$ and then T is β_Q -continuous. Thus, there exists $h \in C_Q$ such that

$$\mathcal{V}_{1} = \{ f \in C_{b}(X, E) : \|f\|_{h} \leq 1 \} \subset \mathcal{W} = \{ f \in C_{b}(X, E) : \|T(f)\| \leq 1 \}.$$

Take $\varepsilon > 0$ and choose $\lambda \in \mathbf{K}$ with $0 < |\lambda| \le \varepsilon$. The set

$$A = \left\{ x \in \beta_{\circ} X : \left| \widehat{h} \left(x \right) \right| \le \left| \lambda \right| \right\}$$

is clopen in $\beta_{\circ}X$, $Q \subset \beta_{\circ}$ and $X \setminus A \subset \bigcup_{i \in I} \overline{A_i}^{\beta_{\circ}X}$. Now, by the compactness of $\beta_{\circ}X \setminus A$, there exists a finite subset J_{\circ} of I such that $\beta_{\circ}X \setminus A \subset \bigcup_{i \in J_{\circ}} \cup \overline{A_i}^{\beta_{\circ}X}$.

Takes a finite subset $J \subset I$ with $J_{\circ} \subset J$, and take any clopen B of X contained in $X \setminus \bigcup_{i \in J} A_i$. If $e \in E$ with $||e|| \leq 1$, then it is easy to see that

 $\lambda^{-1}\mathcal{X}_{B}e \in \mathcal{V}_{1}$. Therefore, $||m(B)e|| \leq \varepsilon$ and then $||m|| \left(X \setminus \bigcup_{i \in J} A_{i} \leq \varepsilon$. This proves $m \in M_{u}(X, \mathcal{L}(E, F))$.

Finally, $T = T_m$ on $C_b(X, E)$ follows from the β_u -denseness of $C_{rc}(X, E)$ in $C_b(X, E)$ and the β_u -continuity of both T and T_m . \Box

References

- J. Aguayo and J. Sanchez, Weakly compact operators and the strict topologies, Bulletin of the Australian Mathematical Society, Vol. 39, pp. 353-359, (1989).
- [2] J. Aguayo, N. De Grande-De Kimpe, S. Navarro, Strict locally convex topologies on BC(X, K), Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., pp. 1 – 9, (1997).
- [3] J. Aguayo, N. De Grande-De Kimpe, S. Navarro, Strict topologies and duals in spaces of functions, Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., pp. 1 – 10, (1999).

- [4] J. Diestel and J. Uhl, Vector Measures, Mathematical Surveys and Monographs, Number 15, A.M.S., (1977).
- [5] A. Katsaras; Strict topologies in non-archimedean Function Spaces. Internat. J. Math. & Math. Sci., Vol 1, pp. 23-33, (1984).
- [6] A. Katsaras, Integral Representation of Continuous Linear Operators on p-adic Function Spaces, Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., Vol 222, pp. 161-175, (2001).
- [7] A.C.M. Van Rooij; Non-archimedean functional analysis Marcel Dekker, (1978).
- [8] R.F.Wheeler, A survey of Baire measure y strict topologies, Expo. Math., 2, pp. 97-190, (1983).

José Aguayo

Departamento de Matemática Facultad de Ciencias Físicas y Matemática Universidad de Concepción, Casilla 160-C, Concepción Chile e-mail : jaguayo@udec.cl

Elsa Chandía

Departamento de Matemática Facultad de Ciencias Físicas y Matemática Universidad de Concepción, Casilla 160-C, Concepción Chile e-mail : echandia@udec.cl and

Jacqueline Ojeda

Departamento de Matemática Facultad de Ciencias Físicas y Matemática Universidad de Concepción, Casilla 160-C, Concepción Chile e-mail : jojeda@udec.cl