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Abstract

We study the problem of lifting an Abelian group H of automor-
phisms of a closed Riemann surface S (containing anticonformals
ones) to a suitable Schottky uniformization of S (that is, when H
is of Schottky type). If H+ is the index two subgroup of orientation
preserving automorphisms of H and R = S/H+, then H induces an
anticonformal automorphism τ : R → R. If τ has fixed points, then
we observe that H is of Schottky type. If τ has no fixed points, then
we provide a sufficient condition for H to be of Schottky type. We
also give partial answers for the excluded cases.
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1. Introduction

Let us consider a closed Riemann surface S. An automorphism of S is either
a conformal or an anticonformal one. Let H be a group of automorphisms
of S. Retrosection theorem [2], [12] asserts that S can be uniformized by
a suitable Schottky group G, that is, a geometrically finite Kleinian group
without parabolic transformations and isomorphic (as abstract group) to a
free group of finite rank (equal to the genus of S). A Schottky uniformiza-
tion of S is a triple (Ω, G, P : Ω → S), where G is a Schottky group with
region of discontinuity Ω and P : Ω→ S is a regular holomorphic covering
with G as covering group. The Schottky lifting problem is to decide the
existence of some Schottky uniformization (Ω,G, P : Ω→ S) of S for which
every automorphism h ∈ H can be lifted, that is, there is an automorphismbh of Ω satisfying Pbh = hP . In case there is a Schottky uniformization
for which H lifts, we say that H is of Schottky type. Since the region of
discontinuity of a Schottky group is known to be a domain of class OAD,
such liftings are in fact restrictions of (extended) Möbius transformations
[1].

In [10] we have provided a necessary and sufficient condition for a group
H of automorphisms to be of Schottky type. To describe that condition we
need the following definition. A collection of pairwise disjoint simple loops
on S, say L1, ...., Lk ⊂ S, is called a Schottky system of loops of H if

(1) each connected component of S − ∪nj=1Lj is a genus zero bordered
surface; and

(2) the collection of loops {L1, ...., Lk} is invariant under the action of
the group H.

Theorem 1. A group H of automorphisms of a closed Riemann surface S
of genus g ≥ 2 is of Schottky type if and only if there is a Schottky system
of loops of H.

A simple consequence of theorem 1 is the following reducibility necessary
condition on a Schottky type group of automorphisms.

Corollary 1. If a group H of automorphisms of a closed Riemann surface
S is not reducible, then it cannot be of Schottky type.
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To check the existence of such a collection of loops is in general not so
easy to get. It is for that reason one would like to have some easy to verify
conditions ensuring us the existence of a Schottky system of loops.

In [5] we have considered the case when H only consists of conformal
automorphisms and a simple to check necessary condition, called condition
(A), in order for H to be of Schottky type was there obtained. In the
same paper we prove that condition (A) is also a sufficient condition for
the cyclic conformal case. Later, in a sequence of papers [6], [7] and [8], we
have shown that condition (A) is also sufficient for Abelian groups, dihedral
groups, the alternating groups A4, A5 and the symmetric group S4. In [8]
was also observed that condition (A) is not a sufficient condition in general;
for instance, the symmetric group S5 need some extra condition for it to
be of Schottky type.

In [3] we had considered the case when H is a cyclic group generated
by some anticonformal automorphism F : S → S, say of order 2q. On the
quotient orbifold R = S/H+ we have an anticonformal involution τ : R→
R induced by the automorphism F . If τ has fixed points (that is, τ is a
reflection), then H is of Schottky type [9]. If τ has no fixed points (an
imaginary reflection), then we have obtained a condition, called condition
(A-) (see below), which ensures H to be of Schottky type. Later, in [10] we
have provided a necessary and sufficient condition for H to be of Schottky
type in the case that τ is an imaginary reflection, completing the cyclic
case. The following resume the cyclic anticonformal situation. The notion
of a Klein-Schottky pairing can be found in [10] (as we do not need such a
condition in this note, we do not recall the details).

Theorem 2 ([3, 10]). Let S be a closed Riemann surface and ψ : S → S
be an anticonformal automorphism of order 2p.

(i) If p = 2, 3, then ψ is of Schottky type.

(ii) If S/ψ has non-empty border, then ψ is of Schottky type.

(iii) If no non-trivial power of ψ has fixed points, then ψ is of Schottky
type.

Moreover, if S/ψ has no boundary, then

(iv) ψ is of Schottky type if and only if ψ has a Klein-Schottky pairing.

(v) If p is a prime, then ψ is always of Schottky type.
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In this note we want to consider the case when H is Abelian group and
contains anticonformal automorphisms. As before, we denote by H+ its
index two normal subgroup generated by the conformal automorphisms of
H. We have an anticonformal involution τ : R → R, R = S/H+, induced
by any anticonformal automorphism in H. Clearly, we have that τ is a
reflection if and only if there is a reflection η ∈ H. In this way, we are in
a particular situation of [9] and we have that H is of Schottky type. We
reprove this for this particular case using a different topological argument
which can be used in the case when the involution τ has no fixed points.

Theorem 3. Let S be a closed Riemann surface and H be an Abelian
group of automorphisms of S containing a reflection. ThenH is of Schottky
type.

In the case thatH has no reflections, that is, τ is an imaginary reflection,
we need to consider some extra condition, called condition (A-). First, we
need to recall some generalities of a Schottky type group H.

Let q > 0 be any odd integer number. An extended Möbius transfor-
mation η which is conjugated to a transformation of the form

bη(z) = ekπi/q

z
,

where k ∈ {1, 3, ..., q − 2} is odd and relatively prime with q, is called an
imaginary elliptic transformation. In this way, η2 is an elliptic transforma-
tion of order q and ηq is an imaginary reflection. If k = 1, then we say that
η is a geometric imaginary elliptic transformation. In any case, if η is an
imaginary reflection of order 2q, then bC/η is a real projective plane with
exactly one branch value of order q. When q = 1, we are in the presence
of imaginary reflections and bC/η is a real projective plane without branch
values.

Let us assume we have a Schottky type group H of automorphisms of
a Riemann surface S of genus g ≥ 2. Let (Ω, G, P : Ω→ S) be a Schottky
uniformization of S for which H lifts. We have the following facts.

1.- As the region of discontinuity Ω of a Schottky group is known to be
a domain of type OAD [1], we have that for each h ∈ H, the lifted
automorphism bh should be either the restriction of (i) an extended
Möbius transformation if h is anticonformal or (ii) a Möbius trans-
formation if h is conformal. In particular, the group bG, generated by
all the lifted transformations bh, for all h ∈ H, contains G as a finite
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index normal subgroup. If bG+ denotes the subgroup of bG consisting
of only the Möbius transformations, then we have, as bG+ contains G
as a finite index normal subgroup, that bG+ turns out to be a geo-
metrically finite function group. Geometrically finite function groups
have been classified by B. Maskit [14].

2.- As bG is a finite extension of G and G contains no parabolic transfor-
mations, then neither bG does.

3.- If bh ∈ bG+ is an elliptic transformation, then we know from [4] that
either (i) both fixed points of bh belong to the region of discontinuity
Ω of G or (ii) there is a loxodromic transformation in G commuting
with bh.

4.- If bh ∈ bG+ is an elliptic transformation, Fix(bh) = {a, b} ⊂ Ω and there
is some bt ∈ bG so that bt(a) = b, then the non-existence of parabolics
in bG ensures that bt(b) = a. It follows that: (i) if bt ∈ bG+, then bt2 = I;
and (ii) if bt /∈ bG+, then bt is imaginary elliptic.

The above permits to construct a collection F formed of pairs {a, b}, so
that:

(1) a 6= b;

(2) a and b are fixed points of the same elements in H;

(3) the rotation number (which are normalized to belong to [−π, π)]) of
any conformal transformation in H, of order at least 3, that fixes a
(then b by (2)) is opposite to its rotation number at b;

(4) for each a that is fixed by a non-trivial element of H, there is a b,
also fixed by a non-trivial element of H, so that {a, b} ∈ F ;

(5) if {a, b} ∈ F are projected to the same point in S/H+, then there
is an element, say j, of order 2 in H+ that permutes a with b. If H
is Abelian, then it follows that the stabilizer of a in H+ is a cyclic
group of order 2 commuting with j.

(6) if {a, b} ∈ F are projected to different points in S/H+, but they
projected to the same point in S/H, then there is an anticonformal
element of H, say σ, permuting them. In this case, we have that σ2

belongs to the stabilizer of a in H+. In the case that H is Abelian,
the property on the rotation numbers in (3) asserts that the stabilizer
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of a in H+ has order two and that the reflection either has order two
or four.

If we restrict the above pairing so that there is no cases with situation
(5) or (6), we get a simple condition as follows.

Condition (A-). Let H be a group of group of automorphisms of a closed
Riemann surface S containing anticonformal automorphisms and contain-
ing no reflections. Let R = S/H+ and π : S → R be the holomorphic
(branched) covering induced by H+. We will say that H satisfies condition
(A-) if all fixed points of the non-trivial elements of H+ can be arranged
into pairwise disjoint pairs so that, if {a, b} is one such pair, then:
(A1) a 6= b, π(a) 6= π(b) and τ(π(a)) 6= π(b);

(A2) H+(a) = H+(b), where H+(p) = {f ∈ H+ : f(p) = p}; and
(A3) if |H+(a)| > 2 and f is generator of H+(a), then the rotation number

of f at a is opposite to the rotation number of f at b (we are using
the normalization that the rotation number belongs to (−π, π]).

Remark 1. We must remark that this condition (A-) is for groups con-
taining anticonformal automorphisms and condition (A) (of the previous
works) is for groups containing only conformal automorphisms.

Theorem 4. Let S be a closed Riemann surface and H be an Abelian
group of automorphisms of S containing no reflections. If H satisfies con-
dition (A-), then it is of Schottky type.

We may have that H does not satisfies condition (A-) and neither con-
tains reflections. We proceed to divide the fixed points of the non-trivial
elements of H+ into two disjoint sets, say Set1 and Set2, in order that the
points in Set1 can be paired to satisfy condition (A-) and the points in Set2
can not be put into pairs satisfying the above condition. In other words,
Set1 is maximal set of paired fixed points satisfying condition (A-). Of
course, Set2 = ∅ is already considered in the above result. We now assume
Set2 6= ∅. Observe that necessarily #Set1 and #Set2 are necessarily even
as they are invariant under H and we are assuming that on H there are no
reflections.
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Theorem 5. Let S be a closed Riemann surface and H an Abelian group
of automorphisms, containing anticonformal but no reflections. If the genus
of S/H+ is even and #Set2 = 2, then H is of Schottky type.

An example of non-Schottky type We proceed to show with one
example that theorem 6 may be false if #Set2 > 2 . This example appears
in [3], but the reason done in there to see that it is not of Schottky type
is not quite clear. We proceed next to give another argument to obtain
this. In [3] we have a closed Riemann surface S of genus 8 together an
anticonformal automorphism F : S → S, of order 30, so that S/F is the
real projective plane with exactly two branch values of orders 3 and 5,
respectively. Let us assume we have a Schottky group G, with region
of discontinuity Ω and a regular holomorphic covering P : Ω → S, with
covering group G, for which F lifts. Set eG be the group generated by G
and any lift of F . Then eG contains G as a normal subgroup of index 30 and,
in particular, it contains no pseudo-parabolic transformations. We denote
by eG+ the index two subgroup of eG consisting of its orientation preserving
transformations. We have that eG+then G has no parabolic transformations
and that G is a normal subgroup of index 15 in eG+. The quotient orbifold
Ω/ eG+ = S/F 2 is the Riemann sphere with 4 branch values, two of them
of order 3 and the other two with order 5. In particular, eG+ has elliptic
transformations of order 3 or 5 with fixed points in Ω. Let x ∈ Ω be the
fixed point of some elliptic transformation E ∈ eG+. Denote by y the other
fixed point of E. As consequences of [11] and the fact that eG+ has no
parabolic transformations, we have that x, y ∈ Ω. Since Ω/ eG has no two
branch values of same order, we must have that x and y are equivalent
under eG. In particular, there is some T ∈ eG− eG+ satisfying T (x) = y. We
must also have that T (y) = x. In fact, if T (y) 6= x, then we will have two
elliptic transformations E and TET−1 in eG+ with exactly one common
fixed point, a contradiction to discreteness of eG+. It follows then that
T 2 ∈ eG+ fixes x and y. All the above asserts that T 2 cannot be neither a
loxodromic or parabolic transformation. The only possibility for T 2 is to be
an elliptic transformation. It follows from discreteness of the group eG that
T 2 is elliptic of finite order and, in particular, T is a pseudo-elliptic of finite
order (anticonformal Möbius transformation of finite order). We have from
the above that ET = TE and that hE, T i uniformizes a real projective
plane with exactly one branch value. In fact, if we normalize to have x = 0
and y =∞, then T (z) = w/z, where w 6= 1 is some root of unity. We may
also assume E to be a geometric rotation, that is, E(z) = e2πi/nz, where
n ∈ {3, 5}.
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Now, set U = TE ∈ eG− eG+. Since (i) U2 ∈ eG+, (ii) eG+ only contains
elliptic transformations of order 3 and 5, and (iii) U2(z) = w2e4πi/nz ∈ eG+,
we must have w2n = 1. Since Ω/ eG is closed, we have hE, T i = hE, z 7→
−1/zi and, in particular, we may assume T (z) = −1/z. In this way, for each
elliptic transformation E ∈ eG+ there is an imaginary reflection T ∈ eG− eG+
such that TE = ET and that hE, T i uniformizes a real projective plane
with exactly one branch value (either of order 3 or 5). It follows that we
cannot produce a real projective plane with exactly two branch values witheG and, in particular, F cannot be a of Schottky type.

Theorem 6. Let S be a closed Riemann surface and H an Abelian group
of automorphisms, containing anticonformal but no reflections. Assume
that the genus of R = S/H+ is odd and #Set2 = 2. If we are able to
choose simple closed curves γ1 and γ2 on R, each one invariant under the
involution τ : R→ R so that one of them lifts to exactly |H+| simple loops,
then H is of Schottky type.

Remark 2. For instance, if H is a cyclic group of order 6, generated by
some anticonformal automorphism F : S → S so that F 3 is imaginary
reflection, then the existence of the simple loops of the above theorem holds.
But, there are cyclic groups of order 10 for which there are no simple loops
satisfying the above.

Assume that we are in the above case and we are not able to get γ1
and γ2 in order that at least one of them can be lifted to S into exactly
|H+| simple loops. In that case, we may require that another simple loop
does it. Since we may only consider the case when genus of R is one (after
cutting along suitable dividing loops), we only need to set this case.

Theorem 7. Let S be a closed Riemann surface andH an Abelian group of
automorphisms, containing anticonformal but no reflections. Assume that
the genus of R = S/H+ is 1 and #Set2 = 4. If we are able to choose non-
dividing simple closed curves γ1 and γ2 on R, each one invariant under the
involution τ : R→ R, and a simple closed curve δ, disjoint from the above
ones which separates the two branch values contained in the component of
R− γ1 ∪ γ2 where is δ contained, and so that it lifts to exactly |H+| simple
loops, then H is of Schottky type.
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Remark 3. Arguments similar to the example constructed above can be
suitable modified in order to have a closed Riemann surface S with an
anticonformal automorphism F : S → S so that S/F is the connected sum
of two real projective planes and exactly 3 different branch values, say of
orders 3, 5 and 7, and not of Schottky type. In particular, for #Set2 ≥ 6
theorem 7 in general fails.

2. Proof of Theorems 3 and 4

We first explain the main idea for finding the desired Schottky uniformiza-
tion in each case. Assume we are given a group H of automorphisms of
some closed Riemann surface S, which may or not be Abelian. As before
we set R = S/H+, π : S → R the holomorphic (branched) covering induced
by H+ and τ : R→ R the anticonformal involution induced by H on R. As
a consequence of theorem 1, we need to find a collection of Schottky loops
for the Abelian group H satisfying the respective hypothesis of theorems 3
or 4. We need to take care of the branch values of π : S → R.

Lemma 1. Let us assume we are in the hypothesis of either theorem 3 or
theorem 4. Then we may find a pairwise disjoint collection F of simple
loops on R, each loop γ ∈ F bounding a closed disc ∆γ ⊂ R containing
exactly two branch points of π, so that:

(i) F is invariant under the action of τ ;

(ii) each simple loop lifts to |H+| simple loops on S; and

(ii) if ∆ is one of the closed discs bounded by one of the loops, then
π−1(∆) consists on genus zero bordered surfaces.

Proof. For the case that τ is an imaginary reflection, this exactly what
condition (A-) asserts. When τ is a reflection, we have a simple closed loop
β formed by fixed points of τ . If p ∈ R is a branch value of π, then q = τ(p)
is also. Take a simple arc δ connecting them and so that it is invariant under
τ . A simple loop γ surrounding δ will serve for our purposes. 2

We will use the following fact (consequences of [13]) during the rest of
this section.
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Lemma 2. Let S and R closed Riemann surfaces and π : S → R be a
holomorphic (branched) covering of degree d. Let γ be a simple loop on
R, passing through no branch value of π : S → R so that π−1(γ) consists
of exactly d simple loops. Let R1 (respectively, S1) be a component of
R − γ (respectively, S − π−1(γ)) so that π(S1) = R1. Then we may find
closed Riemann surfaces R1, S1 and conformal embeddings I : S1 → S1,
J : R1 → R1, so that R1−J(R1) and S1−I(S1) are pairwise disjoint union
of round discs, and the holomorphic (branched) covering Q = π|S1 : S1 →
R1 extends to a holomorophic (branched) covering Q : S1 → R1 so that the
branch values of Q are the same as for Q.

Proof. The embedding property is just consequence of the results in [13].
Since the complement of the embeddings are round discs, we may extend
Q to Q by using Schwarz’s reflection principle. If δ is one of the circles on
S1 bounding one of the round discs, that is, Q(δ) = γ, the hypothesis that
π−1(γ) consists of exactly d components, we have thatQ is homeomorphism
from δ to γ, then asserting that there are no branch values inside each of
the rounded discs. 2

2.1. Reduction to the free fixed points situation

The lifting to S of the collection of simple loops obtained from lemma 4 will
give us a collection of pairwise disjoint simple loops, invariant under H. By
cutting S along these lifted loops, we obtain a collection of bordered surfaces
S1,...., Sr, permuted by the group H. Some of these surfaces are genus zero
surfaces and we do not need to take care of them. Choose any of these, say
S1, which is not of genus zero. ConsiderH1 = {h ∈ H : h(S1) = S1} and set
R1 = π(S1). We need to find a collection of pairwise disjoint simple loops
on S1, invariant under H1, so that they cut S1 into genus zero surfaces.
Since each loop of F lifts to exactly |H+| simple loops, we may use lemma
5 to assume that the action of H+

1 is free fixed points. In this way, we get
our first reduction: to assume the group H+ acts free fixed points.

We proceed now to work each of the two cases, that is, depending if τ
has or not fixed points, by separate.

2.2. Case τ : R→ R is a Reflection

In this case, our hypothesis is that H contains some reflection η : S → S
and πη = τπ. Let us assume the genus of R is equal to one, that is, R is
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a torus. Then S is also a torus and the lifting loops of one circle of fixed
points of τ will give us a collection of invariant loops that divides S into
genus zero surfaces as desired.

FIGURE 1

Let us assume that the genus of R is at least two. We may consider a
simple oriented loop α on R so that τ(α) is disjoint from α (see figure 1).
Take a simple arc δ connecting these two loops which is τ -invariant. We
orient δ in order that it starts at α and ends at τ(α). If α lifts to |H+| simple
loops (then also τ(α)), the lifting of {α, τ(α)} will give us an invariant set
of pairwise disjoint simple loops, invariant under H. By cutting R and S
along them, we get down in the genus of R. If α does not lift to exactly
|H+| simple loops, then the abelian property of H asserts that by choosing
any point π(p) ∈ α, the lifts of α starting at p ends at T (p), some T ∈ H+.
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Then the lifting of τ(α) at η(p) ends at η(T (p)) = T (η(p)). We may assume
that π(p) is the starting point of δ (then τ(π(p)) is the ending point of δ).
There is a simple loop γ homotopic to α ·δ ·τ(α)−1 ·δ−1 which is τ -invariant
(see figure 1). The lifting of γ at p ends at p, that is, γ lifts to exactly |H+|
pairwise disjoint simple loops, invariant under H. We proceed to cut R by
γ to go down in the genus of R and to use lemma 5 to obtain theorem 3 by
the above inductive steps.

2.3. Case τ : R→ R is an imaginary Reflection

If the genus of R is one, then S is again of genus one. In this case we may
take any simple loop on R which is τ -invariant and then its lifting will be
a pairwise disjoint collection of simple loops, invariant under H, dividing
S into genus zero surfaces. Let us assume the genus of R is greater than
one. We must take care of two subcases.

FIGURE 2

2.3.1. Genus of R is even

In this case, there is a dividing simple loop α on R which is τ -invariant
(see figure 2). This loop is a commutator and, since H+ is Abelian, it will
lift to exactly |H+| pairwise disjoint simple loops on S, invariant under
H. In this way, by cutting R along α we obtain two surfaces R1 and R2
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of lower genus so that τ(R1) = R2. Take a component S1 of π
−1(R1).

Since α lifts to exactly |H+| simple loops, we may use lemma 5 to obtain
closed surfaces S1, R1 and to extend the holomorphic covering as a regular
Abelian covering. Denote byH+

1 the stabilizer inH
+ of S1. The arguments

of [6] permits us to find a collection of pairwise disjoint simple loops on S1,
invariant under H+

1 , cutting it into genus zero surfaces. Translate these
loops under H to obtain a collection invariant under H as desired.

2.3.2. Genus of R is odd

In this case, there are two disjoint non-dividing simple loops α1 and α2 on
R, each one τ -invariant and both together dividing R (see figure 3). Let
R1 and R2 be We may draw a simple closed loop α on R1 free homotopic
to α1 ·α2 (with the suitable orientations). We also consider the loops τ(α)
on R2. The loop α divides R1 into two surfaces, one of them is R1,1 (which
does not contains the borders αj). Since α is a commutator, it lifts to
exactly |H+| simple loops. We may proceed as in the above subcase for
this surface (then also taking care of τ(R1,1)). The other surface is a three-
holed sphere bounded by the loops α, α1 and α2. Since α lifts to |H+|
simple loops, then it is clear that the lifting of this surface are genus zero
surfaces.

3. The Excluded Cases: theorems 5, 6 and 7

The excluded cases are given when H satisfies the following two properties:

(1) H does not contains reflections and

(2) H does not satisfies condition (A-).

On the quotient surface R it is possible to draw a simple closed curve
α so that τ(α) is disjoint from it and both together divide R into three
surfaces R1, R2 and τ(R1), where:

(i) R1 is a closed Riemann surface with one boundary, say α, and con-
taining no branch values of π;

(ii) R2 is invariant under τ , has exactly two boundaries, α and τ(α),
contains all the branch values of π and it has

(ii.1) genus zero if the genus of R is even;

(ii.2) genus one if the genus of R is odd.
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FIGURE 3

First reduction: Can assume R has genus 0 or 1.

For R1 we may proceed as in [6] to find a collection of pairwise disjoint
simple loops on π−1(R1), invariant under H+, and dividing π−1(R1) into
genus zero surfaces. On π−1(τ(R1)) we use the H-translates of the loops
in π−1(R1). As a consequence, by lemma 3, we only need to study the case
when R is either of genus 0 or 1.

Permuting Branch values in R.

Assume first that R has genus 0, we have may choose a simple loop γ
which is invariant under τ . If p1, p2 are branched values of π : S → R that
belong to the same component disc of R − γ, then τ(p1), τ(p2) belong to
the other component disc. We may change the simple loop γ by a new
one, say γ0, which is also τ -invariant and so that p1 and τ(p2) belong to
the same component disc of R − γ0. Similarly, for R of genus 1, we have
may choose two disjoint simple loop γ1, γ2, each one invariant under τ . If
p1, p2 are branched values of π : S → R that belong to the same component
annulus of R− (γ1 ∪ γ2), then τ(p1), τ(p2) belong to the other component
annulus. We may change the simple loop γ1 by a new one, say γ01, which



Abelian automorphisms groups of schottky type 201

is also -invariant and disjoint from 2, so that 1 and ( 2) belong to the
same component annulus of �� ( 0

1 �^ 2).

Reducing Branch values in .

Assume first that has genus 0 and we have chosen a simple loop invari-
ant under . If we have two branch values, say in the same component
disc of �� , a simple loop defining a disc inside containing and
and no other branch value so that the loop lifts to exactly | +| loops,

then the components of 1( ) are genus zero surfaces. Similarly, assume
has genus 1 and we have chosen two simple loops 1 and 2, each one

invariant under . If we have two branch values, say in the same com-
ponent annulus of �� ( 1 �^ 2), a simple loop defining a disc inside
containing and and no other branch value so that the loop lifts to

exactly | +| loops, then the components of 1( ) are genus zero surfaces.

It follows from the above that we may assume also that once we have
chosen for of genus 0 (or 1 2 for of genus 1), and is one of the
two components of after deleting these loops, then:

(3) there is no a simple loop surrounding exactly two branch points in
which lifts to exactly | +| loops.

Of Course, the above condition (2) asserts that on we must have
branch values. Let 2 ( �� 1)be the number of branch values in , say

1 are in one of the two components (then, ( 1),..., ( ) are in the
other component). Now we proceed to describe some partial answer in this
exclude cases.

3.1. Genus of is even

Case = 1: Proof of theorem 5 If has genus zero and = 1, then
Riemann-Hurwitz’s formula asserts that + is a cyclic group and has
genus zero and we have in this case proved theorem 5.

3.2. Genus of is odd

Case = 1: Proof of Theorem 6 The existence of the loops 1 and 2 on
, as in the hypothesis of theorem 6, permits us to use similar arguments

as in the previous case.
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