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Abstract

We provide a semilocal as well as a local convergence analysis of
Newton’s method using the gamma condition [1], [10], [11]. Using
more precise majorizing sequences than before [4], [8]—[11] and under
at least as weak hypotheses, we provide in the semilocal case: finer
error bounds on the distances involved and an at least as precise in-
formation on the location of the solution; in the local case: a larger
radius of convergence.
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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F (x) = 0,(1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D
of a Banach space X with values in a Banach space Y .

The most popular method for generating a sequence {xn} (n ≥ 0)
approximating x∗ is Newton’s method given by

xn+1 = xn − F 0(xn)
−1F (xn) (n ≥ 0) (x0 ∈ D),(1.2)

where F 0(x) ∈ L(X,Y ) the space of bounded linear operators from X into
Y . A survey on local as well as semilocal convergence results for Newton’s
method (1.2) can be found in [2], [3]—[10], and the references there.

In the International Congress of Mathematicians held in 1986, Smale
[8] proposed to use the analytic property of operator F to replace the
domain condition in the Newton—Kantorovich theorem [3], [7], in order to
determine the convergence of Newton’s method by thoroughly making use
of the information of F at the initial point x0 ∈ D. This work is of great
theoretical interest.

Assuming F 0(x0)−1 ∈ L(Y,X), F is analytic at x0 ∈ D,

α = βγ(F, x0)(1.3)

where,
β = kF 0(x0)−1F (x0)k(1.4)

and

γ(F, x0) = sup
k≥2

°°°°°F 0(x0)−1F (k)(x0)k!

°°°°°
1

k−1

,(1.5)

then Smale’s main result can be described as follows:

Theorem 1.1 (Smale [8]). Suppose α
(2α2−4α+1)2 = q < 1, then Newton’s

method (1.2) starting at x0 is well defined, and

kxn+1 − xnk ≤ q2
n−1β (n ≥ 0).(1.6)

In light of this theorem, Smale pointed out that there exists a constant
α0 ∼= .130707 such that

kxn+1 − xnk ≤
Ã
1

2

!2n−1
β (n ≥ 0).(1.7)
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In 1989, by introducing the majorizing sequence method into the point
estimation, X. Wang and D. Han obtained the following semilocal conver-
gence result which is more precise than Theorem 1.1.

Theorem 1.2 [10]. If

α ≤ 3− 2
√
2,(1.8)

then sequence {xn} (n ≥ 0) generated by Newton’s method (1.2) is well
defined, remains in

U

Ã
x0,

Ã
1− 1√

2

!
1

γ(F, x0)

!!
(1.9)

for all n ≥ 0 and converges to a unique solution x∗ of equation F (x) = 0
in U(x0, s

∗) so that
kxn+1 − xnk ≤ sn+1 − sn(1.10)

and

kxn − x∗k ≤ s∗ − sn,(1.11)

where,

sn+1 = sn −
f(sn)

f 0(sn)
(n ≥ 0), s0 = 0(1.12)

s∗ = lim
n→∞

sn =
1 + α−

p
(1 + α)2 − 8α

4γ(F, x0)
(1.13)

and

f(t) = β − t+
γt2

1− γ(F, x0)t
, t <

1

γ(F, x0)
.(1.14)

The constant 3−2
√
2 in this theorem is optimum under that condition,

and the resulted conclusion is also the best one. Since 3−2
√
2 ∼= .171573 >

.130707, this result is evidently an improvement of that of Smale’s.
Clearly, the above two results are based on the assumption that the

sequence °°°°°F 0(x0)−1F (n)(x0)n!

°°°°° , (n ≥ 2)(1.15)

is bounded above by

sup
k≥2

°°°°°F 0(x0)−1F (n)(x0)n!

°°°°°
1

n−1

.(1.16)
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However this kind of assumption may not be reasonable particularly, for
some concrete and special operators appearing in connection with the Durand—
Kerner method, it is really so [9].

An attempt has been made by X. Wang [11] to avoid such an assump-
tion. In particular Wang proposed the gamma γ-condition:

Definition 1.3. Suppose γ > 0. We say F satisfies the γ-condition at
x0 ∈ X in U(x0, r) if F is twice Fréchet-differentiable, and F 0(x0)−1 exists
such that

kF 0(x0)−1F 00(x)k ≤
2γ

(1− γkx− x0k)3
for all x ∈ U(x0, r).(1.17)

Wang showed that the above γ-condition is weaker than the criterion
point estimate

γ(F, x0) ≤ γ,(1.18)

where γ(F, x0) is given by (1.5). Moreover he showed that the conclusions
of Theorem 1.2 hold with γ replacing γ(F, x0).

Here using more precise majorizing sequences and the same or even
weaker hypotheses we provide a semilocal convergence analysis with the
following advantages:

(a) finer error estimates on the distances kxn+1−xnk, kxn−x∗k (n ≥ 0)
and

(b) at least as precise information on the location of the solution x∗.

Finally we study the local convergence of Newton’s method not exam-
ined in [10].

2. Semilocal Convergence Analysis of Newton’s Method

We introduce the (γ0, γ) condition:

Definition 2.1. Suppose:

0 < γ0 ≤ γ.(2.1)

We say F satisfies the (γ0, γ) condition at x0 ∈ D in U(x0, r) ⊆ D if
operator F is Fréchet-differentiable, F 0(x0)−1 exists such that for r <

1
γ0

kF 0(x0)−1[F 0(xt)− F 0(y)]k ≤ 2γkxt − yk
(1− γkxt − x0k)3

,(2.2)
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and

kF 0(x0)−1[F 0(x)− F 0(x0)]k ≤
1

(1− γ0kx− x0k)2
− 1(2.3)

for all x, y ∈ U(x0, r), t ∈ [0, 1] and xt = y + t(x− y).

Remark 2.2. Note that even if γ0 = γ and F is a twice Fréchet-differentiable
operator (2.2) in Definition 2.1 is still weaker than (1.17) in Definition 1.3.
In view of (2.2) it follows that there exists γ1 ∈ (0, γ] such that

kF 0(x0)−1[F 0(xt)− F 0(x0)]k ≤
2γ1kxt − x0k

(1− γ1kxt − x0k)3
(2.2)0

It is convenient for us to introduce scalar sequences {tn}, {rn} for t0 =
r0 = 0, t1 = β by

tn+1 = tn −
(1− γ0tn)

2g(tn−1, tn)

1− 2(1− γ0tn)2
(n ≥ 1),(2.4)

and

rn+1 = rn −
(1− γ0rn)

2f(rn)

1− 2(1− γ0rn)2
(n ≥ 0),(2.5)

where,

g(v, w) =
γ[2− γ(v + w)](w − v)2

[(1− γv)(1− γw)]2
, for γ 6= v, γ 6= w.(2.6)

Then using the definitions of sequences {sn}, {tn}, {rn} and induction
on n ≥ 0, it can easily be seen that the following result for majorizing
sequences holds:

Lemma 2.3. If γ0 < γ, and

α = βγ ≤ 3− 2
√
2,(2.7)

then for all n ≥ 1 the following estimates hold:

0 ≤ tn < rn < sn,(2.8)

0 < tn+1 − tn < rn+1 − rn < sn+1 − sn,(2.9)

0 ≤ t∗ − tn ≤ r∗ − rn ≤ s∗ − sn,(2.10)

and

t∗ ≤ r∗ ≤ s∗.(2.11)
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Remark 2.4. Clearly if γ0 = γ, then

tn = rn = sn (n ≥ 0)(2.12)

holds.

We can show the main semilocal convergence theorem for Newton’s
method (1.2):

Theorem 2.5. Under the hypotheses of Lemma 2.3 if F satisfies the (γ0, γ)
condition at x0 ∈ D in U(x0, s

∗) ⊆ D then, sequence {xn} (n ≥ 0) gen-
erated by Newton’s method (1.2) is well defined, remains in U(x0, t

∗) for
all n ≥ 0 and converges to a unique solution x∗ ∈ U(x0, t

∗) of equation
F (x) = 0.

Moreover the following estimates hold true for all n ≥ 0

kxn+1 − xnk ≤ tn+1 − tn(2.13)

and
kxn − x∗k ≤ t∗ − tn.(2.14)

Furthermore, if there exists R > s∗ such that U(x0, R) ⊆ D, where

R =
1

γ1

∙
1− 1

2(1− γ1s∗)

¸
,(2.15)

then the solution x∗ is unique in U(x0, R).

Proof. We shall show

kxk+1 − xkk ≤ tk+1 − tk(2.16)

and
U(xk+1, t

∗ − tk+1) ⊆ U(xk, t
∗ − tk)(2.17)

hold for all k ≥ 0.
For every z ∈ U(x1, t

∗ − t1),

kz − x0k ≤ kz − x1k+ kx1 − x0k ≤ t∗ − t1 + t1 = t∗ − t0

implies z ∈ U(x0, t
∗ − t0). We also have

kx1 − x0k = kF 0(x0)−1F (x0)k = β = t1 − t0.

Therefore (2.16) and (2.17) hold for k = 0.
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Given (2.16) and (2.17) hold for n = 0, 1, . . . , k − 1, then

kxk − x0k ≤
kX
i=1

kxi − xi−1k ≤
kX
i=1

(ti − ti−1) = tk − t0 = tk(2.18)

and
kxk−1 + t(xk − xk−1)− x0k ≤ tk−1 + t(tk − tk−1), < t∗

t ∈ [0, 1].(2.19)

In view of (1.2) we obtain the approximation

F (xk) = F (xk)− F (xk−1)− F 0(xk−1)(xk − xk−1).(2.20)

By (1.12), (2.2), (2.4)—(2.7), (2.9), (2.16) and (2.18) we can have in
turn:

kF 0(x0)−1F (xk)k =

°°°°°F 0(x0)−1
Z 1

0
[F 0(xk−1 + t(xk − xk−1))

− F 0(xk−1)](xk − xk−1)

°°°°°
≤ 2γ

Z 1

0

tkxk − xk−1kdt
[1− γkxk−1 − x0 + t(xk − xk−1)k]3

≤ 2γ

Z 1

0

t(tk − tk−1)dt

[1− γ(tk−1 + t(tk − tk−1))]3

= g(tk−1, tk).(2.21)

It also follows from (2.3), (2.7), (2.16)—(2.18) that

kF 0(x0)−1[F 0(xk)− F 0(x0)]k

≤ 1

(1− γ0kxk − x0k)2
− 1 ≤ 1

(1− γ0tk)2
− 1

<
1

(1− γ0t∗)2
− 1 ≤ 1.(2.22)

It follows from (2.22) and the Banach Lemma on invertible operators
[3], [7] that F 0(xk)−1 exists and

kF 0(xk)−1F 0(x0)k ≤

⎡⎣1− Ã 1

(1− γ0kxk − x0k)2
− 1

!⎤⎦−1

≤

⎡⎣1− Ã 1

(1− γ0tk)2
− 1

!⎤⎦−1.(2.23)
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It follows by (1.2), (2.21) and (2.23) that

kxk+1 − xkk = kF 0(xk)−1F (xk)k ≤ kF 0(xk)−1F 0(x0)k · kF 0(x0)−1F (xk)k

≤ (1− γ0tk)
2

g(tk−1, tk) · [−1 + 2(1− γ0tk)2]
= tk+1 − tk.(2.24)

Thus for every z ∈ U(xk+1, t
∗ − tk+1) we have

kz − xkk ≤ kz − xk+1k+ kxk+1 − xkk ≤ t∗ − tk+1 + tk+1 − tk = t∗ − tk.

That is,
z ∈ U(xk, t

∗ − tk).(2.25)

Estimates (2.24) and (2.25) imply that (2.16) and (2.17) hold for n = k.
Therefore the induction for (2.16) and (2.17) is completed.

Lemma 2.3 implies that {tn} (n ≥ 0) is a Cauchy sequence. In view
of (2.16) and (2.17) {xn} becomes a Cauchy sequence too, and as such it
converges to some x∗ ∈ U(x0, t

∗) (since U(x0, t∗) is a closed set). Estimate
(2.14) follows from (2.13) by using standard majorization techniques [3],
[7]. By letting k →∞ in (2.21) we obtain F (x∗) = 0.

To show uniqueness in U(x0, t
∗), let y∗ ∈ U(x0, t

∗) be a solution of
equation F (x) = 0. We shall show for all k ≥ 0

kxk − y∗k ≤ t∗ − tk.(2.26)

For k = 0 (2.26) holds true by the initial conditions. Let us assume that
(2.26) holds true for n = 0, 1, . . . , k − 1.

As in (2.21) and (2.22) with xk, y
∗ replacing xk−1, xk respectively and

using the induction hypothesis and the approximation

xk+1 − y∗ = xk − F 0(xk)
−1F (xk)− y∗

= F 0(xk)
−1[F (x∗)− F (xk)− F 0(xk)(y

∗ − xk)](2.27)

= F 0(xk)
−1
Z 1

0
[F 0(xk + t(y∗ − xk))− F 0(xk)](y

∗ − xk)dt

we obtain in turn

kxk+1 − y∗k ≤ kF 0(xk)−1F 0(x0)k

·
°°°°°F 0(x0)−1

Z 1

0
[F 0(xk + t(y∗ − xk))− F 0(xk)]

°°°°°ky∗ − xkkdt

≤ (1− γ0kxk − x0k)2
2γ[−1 + 2(1− γ0kxk − x0k)2]

Z 1

0

tkxk − y∗kdt
[1− γ(kxk + t(y∗ − xk)k)]3
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≤ (1− γ0tk)
2

2γ[−1 + 2(1− γ0tk)2]

Z 1

0

t(t∗ − tk)dt

[1− γ(tk + t(t∗ − tk))]3

≤ t∗ − tk+1,(2.28)

which shows (2.26) for all k ≥ 0. By letting k → ∞ in (2.26) we obtain
lim
k→∞

xk = y∗. However we know lim
k→∞

xk = x∗. Hence, we conclude x∗ = y∗.

Finally to show uniqueness in U(x0, R), let y
∗ be a solution of equation

F (x) = 0 in U(x0, R). Define linear operator L by

L =

Z 1

0
F 0(x∗ + t(y∗ − x∗))dt.(2.29)

Using (2.2)0 and (2.15) we obtain in turn

kF 0(x0)−1[F 0(x0)− L]k

=

°°°°F 0(x0)−1 Z 1

0
[F 0(x∗ + t(y∗ − x∗))− F 0(x0)]dt

°°°°
≤
Z 1

0

2γ1kx∗ + t(y∗ − x∗)− x0kdt
[1− γ1kx∗ + t(y∗ − x∗)− x0k]3

≤
Z 1

0

2γ1[kx∗ − x0kt+ (1− t)ky∗ − x0kdt
[1− γ1(kx∗ − x0kt+ (1− t)ky∗ − x0k]3

<

Z 1

0

2γ1[tr + (1− t)R]dt

1− γ1(tr + (1− t)R)]3

≤ 1

(1− γr)(1− γR)
− 1 = 1,(2.30)

by the choice of R. In view of (2.30) and the Banach Lemma on invertible
operators we deduce operator L is invertible.

Finally using the identity

F (y∗)− F (x∗) = L(y∗ − x∗)(2.31)

we conclude that x∗ = y∗.
That completes the proof of the theorem.

Remark 2.6. Under the hypotheses of Theorem 2.5, we showed in Lemma
2.3 that {tn} is a finer majorizing sequence than {sn} used in [10]. One ex-
pects that sequence {tn} converges under hypotheses weaker than (2.7). In
[2] (see also [1]) we provided sufficient convergence conditions for more gen-
eral sequences than {tn}. That is why we refer the reader there and we do
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not pursue this problem further but instead we study the local convergence
of Newton’s method (1.2).

We now complete this section with a simple numerical example.

Example 2.7. Let X = Y = R, β = 1, γ0 = γ = α > 0, D =
h
0, 1γ

´
, and

define function f on D by

f(t) = 1− t+
γt2

1− γt
.

Let α = 1
2(3− 2

√
2) = .0857864, then we get

t∗ = s∗ = r∗ = 1.119.

3. Local Convergence of Newton’s Method

In this section we assume: there exist a solution x∗ of equation F (x) = 0
and positive constants δ0 < δ such that for all t ∈ [0, 1], x ∈ D the following
hold true:

F 0(x∗)−1 ∈ L(Y,X),(3.1)

kF 0(x∗)−1[F 0(x)− F 0(x∗)]k ≤ 1

(1− δ0kx− x∗k)2 − 1,(3.2)

kF 0(x∗)−1[F 0(yt)− F 0(x)]k ≤ 2δkyt − xk
(1− δkyt − x∗k)3 ,(3.3)

U

µ
x∗,

1

δ0

¶
⊆ D(3.4)

where, yt = x+ t(x∗ − x).
Clearly, there exists a ≥ 1 such that δ = aδ0. Define scalar function h

on [0, 1] for each fixed a by

h(s) = a2s4 − 2a(a+ 3)s3 + 2(6a+ 1)s2 − 4(1 + a)s+ 1.(3.5)

It follows by the intermediate value theorem, the first derivative test that
since h(0)h(1) = −(a − 1)2 ≤ 0 and h0(s) ≤ 0 on [0, 1], function h has a
unique zero s∗ = s∗(a) in (0, 1) for all a ≥ 1, and

h(s) ≥ 0 for all s ∈ [0, s∗].(3.6)

Note that in particular if a = 1, then

s∗ = s∗(1) = 3− 2
√
2,(3.7)
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since, h becomes

h(s) = (1− s)2[s− (3− 2
√
2)][s− (3 + 2

√
2)].(3.8)

We can show the following local convergence result for Newton’s method
(1.2):

Theorem 3.1. Under hypotheses (3.1)—(3.4), sequence {xn} generated by
Newton’s method (1.2) starting at x0 ∈ U(x∗, R) is well defined, remains
in U(x∗, R) for all n ≥ 0 and converges to x∗, where

R =
s∗

δ0
.(3.9)

Moreover the following errob bounds hold for all n ≥ 0:

kxn+1 − x∗k ≤ p(δ0, δ, R)kxn − x∗k2,(3.10)

where,

p(δ0, δ, R) =
(2 + δR)(1− δ0R)

2δ

[2(1− δ0R)2 − 1](1− δR)
.(3.11)

Proof. We first show that F 0(x)−1 ∈ L(Y,X) for all x ∈ U(x∗, R). In view
of (3.2) we get

kF 0(x∗)−1[F 0(x)− F 0(x∗)] ≤ 1

(1− δ0kx− x∗k)2 − 1

≤ 1

(1− δ0R)2
− 1 < 1,(3.12)

by the choice of R.

It follows from (3.12) and the Banach Lemma on invertible operators
that

kF 0(x)−1F 0(x∗)k ≤ 1

1−
h

1
(1−δ0kx−x∗k)2 − 1

i
≤ 1

1−
h

1
(1−δ0R)2 − 1

i = (1− δ0R)
2

2(1− δ0R)2 − 1
.(3.13)
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We shall show xn ∈ U(x∗, R) for all n ≥ 0. In view of the initial
condition x0 ∈ U(x∗, R). Let us assume xk ∈ U(x∗, R), k = 0, 1, . . . , n.
Using (1.2) we obtain the approximation

xk+1 − x∗ = xk − F 0(xk)
−1F (xk)− x∗

= F 0(xk)
−1[F (x∗)− F (xk)− F 0(xk)(x

∗ − xk)](3.14)

= −[F 0(xk)−1F 0(x∗)]
Z 1

0
[F 0(xk)t(x

∗ − xk))

−F 0(xk)](x∗ − xk)dt.

By the induction hypotheses, (3.3), (3.13) and (3.14) we obtain in turn

kxk+1 − x∗k ≤ (1− δ0R)
2

[2(1− δ0R)2 − 1]

Z 1

0

2δtkxk − x∗k2dt
[1− δ(1− t)kxk − x∗k]3

≤ (1− δ0R)
2

[2(1− δ0R)2 − 1]

∙
−1 + 1

(1− δkxk − x∗k)2
¸
kxk − x∗k

<
(1− δ0R)

2

[2(1− δ0R)2 − 1]

∙
−1 + 1

(1− δR)2

¸
kxk − x∗k2

≤ p(δ0, δ, R)kxk − x∗k2

< p(δ0, δ, R)Rkxk − x∗k < kxk − x∗k,(3.15)

since,

p(δ0, δ, R)R ≤ 1(3.16)

by (3.6) for s = δ0R.

Finally, from (3.15) it follows that (3.10) holds for all n ≥ 0, lim
k→∞

xk =

x∗ and xk+1 ∈ U(x∗, R).

That completes the proof of Theorem 3.1.

Remark 3.2. In the special case when δ0 = δ = γ(F, x∗), a = 1 [9] the
radius of convergence R0 was found to be

R0 =
1

2δ
(3− 2

√
2) ≤ R

2
.(3.17)

Therefore we have doubled the radius of convergence for Newton’s
method under the same computational cost, and under weaker hypothe-
ses than before [9].
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