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Abstract

The aim of this paper is to study L-fuzzy closure operator in L-
fuzzy topological spaces. We introduce two kinds of L-fuzzy closure op-
erators from different point view and prove that both L-TFCS–the
category of topological L-fuzzy closure spaces–and L-PTFCS–the
category of topological pointwise L-fuzzy closure spaces–are isomor-
phic to L-FCTOP.
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1. Introduction

Since Chang [2] introduced fuzzy set theory to topology, many re-
searchers have tried successfully to generalize the theory of general topol-
ogy to the fuzzy setting with crisp methods. However, in a completely
different direction, Höhle [5] created the notion of a topology being viewed
as an L-subset of a powerset. Then Kubiak [7] and Šostak [12] indepen-
dently extended Höhle’s notion to L-subsets of LX . In [15], we established
fuzzy remote neighborhood systems in L-fuzzy co-topology and prove that
TFRNS is isomorphic to L-FCTOP.

It is well-known that clsoure operator (or clsoure system) plays an im-
portant role in topology and it is a very good way to characterize topology.
Many authors [3, 7, 13] have studied closure operators in L-fuzzy topologyi-
cal spaces. But it is an pity that their closure operators are actually defined
by the level L-topology of the L-fuzzy topology, not by L-fuzzy topology
itself. In other words, their closure operators are still the closure operators
in L-topologies. The aim of this paper is to study L-fuzzy closure opera-
tors in L-fuzzy topological spaces in different ways from [3, 7, 13]. We give
two kinds of L-fuzzy closure operators and prove that both L-TFCS–the
category of topological L-fuzzy closure spaces–and L-PTFCS–the cat-
egory of topological pointwise L-fuzzy closure spaces–are isomorphic to
L-FCTOP.

2. Preliminaries

An element a in a complete lattice L is said to be coprime if a ≤ b ∨ c
implies that a ≤ b or a ≤ c. The set of nonzero ∨-irreducible elements(or
coprimes) of L is denoted by c(L). We say a is wedge below b, in symbols,
a < b or b > a, if for every arbitrary subset D ⊆ L,

W
D ≥ b implies a ≤ d

for some d ∈ D. A complete lattice is said to be completely distributive
if every element in L is the supremum of all the elements wedge below it.
For more details about completely distributive lattice, please refer to [4].

By the definition of complete distributivity it is easy to see that a
complete lattice L is completely distributive if and only if the operatorW
: Low(L)→ L taking every lower set to its supremum has a left adjoint

β, and in the case, β(a) = {b| b < a} for all a ∈ L. Hence the wedge
below relation has the interpolation property in a completely distributive
lattice, this is to say, a< b implies there is some c ∈ L such that a< c< b.
{a ∈ L| a < b} is called the greatest minimal family of b, in symbol β(b).
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Moreover, for b ∈ L, define α(b) = {a ∈ L| a0 < b0} which is called the
greatest maximal family of b.

Throughout this paper L is a completely distributive lattice and M is
a completely distributive lattice with an order reversing involution 0. LX

is the set of all L-fuzzy sets on X. The set of nonzero ∨-irreducible ele-
ments (or coprime) in LX is denoted by c(LX). Let xλ|A denote the set
{B ∈ LX |xλ 6≤ B ≥ A} for xλ ∈ c(LX) and A ∈ LX . For undefined notions
about categories, please refer to [1], [6] and [11].

Definition 2.1[7,12]. An L-fuzzy co-topology is a mapping η : LX → M
such that

(FCT1) η(1X) = η(0X) = 1;

(FCT2) η(A ∨B) ≥ η(A) ∧ η(B) for all A,B ∈ LX ;

(FCT3) η(
V
j∈J

Aj) ≥
V
j∈J

η(Aj) for every family {Aj |j ∈ J} ⊆ LX .

The pair (LX , η) is called an L-fuzzy co-topological space (L-FCTop, for
short). A mapping F : (LX , η) → (LY , η1) is said to be continuous
with respect to η and η1 if η(F

←
L (B)) ≥ η1(B) for all B ∈ LY , where

F←L (B)(x) = B(F (x)) (following the notation in [14]). The category of
L-FCTops is denoted by L-FCTOP.

Definition 2.2[15]. A fuzzy remote neighborhood system is a set R =
{Rxλ |xλ ∈ c(LX)} of mappings Rxλ : L

X →M such that

(FRN1) Rxλ(1X) = 0, Rxλ(0X) = 1;

(FRN2) Rxλ(A) > 0⇒ xλ 6≤ A;

(FRN3) Rxλ(A ∨B) = Rxλ(A) ∧Rxλ(B).
R will be called a topological fuzzy remote neighborhood system if it also
satisfies the following equation:

(FRN4) Rxλ(A) =
W
B∈xλ|A

V
yµ 6≤B Ryµ(B),

and (LX ,R) is called a topological fuzzy remote neighborhood space (TFRNS,
for short). A fuzzy continuous mapping between topological fuzzy remote
neighborhood spaces (LX ,R) and (LY ,S) is a mapping F : LX → LY such
that SF→L (xλ)(B) ≤ Rxλ(F

←
L (B)) for all xλ ∈ c(LX) and B ∈ LY . The cat-

egory of TFRNSs and fuzzy continuous mappings is denoted by TFRNS.

Lemma 2.3[15]. Let η : LX → M be an L-fuzzy co-topology. Then we
have
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(1) Rη = {Rη
xλ
|xλ ∈ c(LX)} is a topological fuzzy remote neighborhood

system, where Rη
xλ
is defined by

Rη
xλ
(A) =

( W
B∈xλ|A η(B), xλ 6≤ A,

0, xλ ≤ A.

for xλ ∈ c(LX) and A ∈ LX .
(2) If η and ζ are two L-fuzzy co-topologies which determine the same

topological fuzzy remote neighborhood system, then η = ζ.

Lemma 2.4[15]. Let R = {Rxλ |xλ ∈ c(LX)} be a fuzzy remote neighbor-
hood system and η : LX → M be defined by η(u) =

V
xλ 6≤ARxλ(A) for all

A ∈ LX . Then η is an L-fuzzy co-topology. Furthermore, if R and S are
two topological fuzzy remote neighborhood systems which determine the
same L-fuzzy co-topology, then R = S.

Lemma 2.5[15]. TFRNS is isomorphic to L-FCTOP.

3. L-fuzzy closure operator

In this section, we study L-fuzzy closure operator in a different direction
from [3, 7, 13].

Lemma 3.1. Let (LX , η) be an L-fuzzy co-topological space and define
Cη
A : L

X →M by

Cη
A(B) =

(
0, A 6≤ B,

η(B) ∧VA≤D 6≥B η(D)0, A ≤ B.

Then {Cη
A}A∈LX satisfying the following properties.

(1) Cη
0X
(0X) = 1;

(2) Cη
A(B) > 0⇒ A ≤ B;

(3) Cη
A(B) ∧ C

η
D(E) ≤ Cη

A∨D(B ∨E);
(4)

V
t∈T C

η
At
(Bt) ≤ CηV

t∈T Bt
(
V
t∈T Bt);

(5) Cη
A(B) ∧ C

η
B(E) ≤ Cη

A(E);
(6) Cη

A(B) =
V
A≤D≤B Cη

D(B);
(7) Cη

A(A) = η(A);
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(8) Cη
A(B) =

(
0, A 6≤ B,

Cη
B(B) ∧

V
A≤D 6≥B(C

η
D(D))

0, A ≤ B.

Proof. We prove (3).

Cη
A(B) ∧ C

η
D(E) = η(B) ∧

^
A≤F 6≥B

η(F )0 ∧ η(E) ∧
^

D≤G6≥E
η(G)0

≤ η(B ∨E) ∧
^

A≤F 6≥B
η(F )0 ∧

^
D≤G6≥E

η(G)0

≤ η(B ∨E) ∧
^

A∨D≤H 6≥B∨E
η(H)0

= Cη
A∨D(B ∨E).

Remark 3.2. (1) The value Cη
A(B) can be interpreted as the degree to

which B is the closure of A. When M = {0, 1}, that is to say η is an
L-co-topology, and define Ā = B when Cη

A(B) = 1, then the operator
− : LX → LX is just the closure operator induced by η.

(2) The readers can easily show that Cη
A can be written as follows:

Cη
A(B) =

(
0, A 6≤ B,V

xλ 6≤B Rη
xλ
(B) ∧Vxλ≤B(R

η
xλ
(A))0, A ≤ B.

Definition 3.3. An L-fuzzy closure operator is a set C = {CA|A ∈ LX} of
mappings CA : L

X →M such that:
(FC1) C0X (0X) = 1;
(FC2) CA(B) ∧ CD(E) ≤ CA∨D(B ∨E);
(FC3)

V
t∈T CAt(Bt) ≤ CV

t∈T Bt
(
V
t∈T Bt).

C is called a topological L-fuzzy closure operator if it also satisfies the
following condition

(FC4) CA(B) =

(
0, A 6≤ B,

CB(B) ∧
V
A≤D 6≥B(CD(D))

0, A ≤ B.

The pair (LX , C) is called topological L-fuzzy closure space. A fuzzy
continuous mapping between L-fuzzy closure spaces (LX , C1) and (LY , C2)
is a mapping F : X → Y such that C1F←L (B)(F

←
L (B)) ≥ C2B(B) for all

B ∈ LY . The category of topological L-fuzzy closure spaces and continu-
ous mappings is denoted by L-TFCS.
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Lemma 3.4. Let C = {CA|A ∈ LX} be an L-fuzzy closure operator. Then
ηC : LX →M defined by ηC(A) = CA(A) is an L-fuzzy co-topology.

Lemma 3.5. (1) Let η be an L-fuzzy co-topology. Then η = ηC
η
.

(2) If C is topologocal L-fuzzy closure operator, then C = CηC .

Lemma 3.6. (1) F : (LX , C1)→ (LY , C2) is continuous, then F : (LX , ηC
1
)→

(LY , ηC
2
) is continuous.

(2) F : (LX , η1) → (LY , η2) is continuous, then F : (LX , Cη1) →
(LY , Cη2) is continuous.

Theorem 3.7. L-TFCS is isomorphic to L-FCTOP.

Question 3.8. We know that B is the closure of A if and only if B is
the smallest closed set containing A. In fact, the L-fuzzy closure operator
studied in Lemma 3.1 is just defined according to this kind of definition.
We can also define the closure of A from other ways, such as from the
direction of adherent point of A,

Cη∗
A (B) =

^
xλ 6≤B

Rη
xλ
(A) ∧

^
xλ≤B

(Rη
xλ
(A))0.

From Remark 3.2 (2), we know that there is some difference in this form
and that in Lemma 3.1. We wonder whether Cη∗

A (B) is equal to C
η
A(B) or

not.

4. Pointwise L-fuzzy closure operator

In this section, we give one definition of Pointwise L-fuzzy closure oper-
ator and study the relationship between this kind of closure operator and
fuzzy remote neighborhood system.

Lemma 4.1. Let η : LX → M be an L-fuzzy co-topology and define
Cη
xλ
: LX →M by Cη

xλ
(A) =

V
B∈xλ|A η(B)0. Then Cη = {Cη

xλ
|xλ ∈ c(LX)}

satifies:
(1) Cη

xλ
(1X) = 1, C

η
xλ
(0X) = 0;
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(2) Cη
xλ
(A) < 1⇒ xλ 6≤ A;

(3) Cη
xλ
(A ∨B) = Cη

xλ
(A) ∨ Cη

xλ
(B);

(4) Cη
xλ
(A) =

V
B∈xλ|A

W
yµ 6≤B Cη

yµ(B).

Proof. From the definition of Cη
xλ
, we know that Cη

xλ
(A) = Rη

xλ
(A)0. By

(FRN1)—(FRN4), we have (1)—(4).

Remark 4.2. The value Cη
xλ
(A) can be interpreted as the degree to which

xλ is an adherent point of A.

Definition 4.3. A pointwise L-fuzzy closure operator is a set C = {Cxλ |xλ ∈
c(LX)} of mappings Cxλ : L

X →M such that

(FPC1) Cxλ(1X) = 1, Cxλ(0X) = 0;

(FPC2) Cxλ(A) < 1⇒ e 6≤ A;

(FPC3) Cxλ(A ∨B) = Cxλ(A) ∨ Cxλ(B).
and (LX , C) is called an pointwise L-fuzzy closure space (L-PFCS, for
short). C will be called a topological L-fuzzy closure operator if it also
satisfies the following equation:

(FPC4) Cxλ(A) =
V
B∈xλ|A

W
yµ 6≤B Cyµ(B),

and (LX , C) is called a topological pointwise L-fuzzy closure space (L-
PTFCS, for short). A fuzzy continuous mapping between topological L-
fuzzy closure spaces (LX , C1) and (LY , C2) is a mapping F : X → Y such
that C1xλ(A) ≤ C2F→L (xλ)

(F→L (A)) for all xλ ∈ c(LX) and A ∈ LX . The

category of L-PTFCS and continuous mappings is denoted by L-PTFCS.

Remark 4.4. When L = {0, 1}, the definition of pointwise L-fuzzy closure
operator is just the definition of fuzzifying closure operator in [11].

It is easy to verify the next two theorems:

Theorem 4.5. (1) Let (LX , C) be a topological pointwise L-fuzzy closure
space and define RCxλ : L

X → M by RCxλ(A) = Cxλ(A)0. Then RC =
{RCxλ |xλ ∈ c(LX)} is a topological fuzzy remote neighborhood system.

(2) Let (LX ,R) be a topological fuzzy remote neighborhood space and
define CRxλ : L

X →M by CRxλ(A) = Rxλ(A)
0. Then CR = {CRxλ |xλ ∈ c(LX)}
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is a topological pointwise L-fuzzy closure space.

Theorem 4.6. (1) If F : (LX , C1) → (LY , C2) is continuous, then F :
(LX ,RC1)→ (LY ,RC2) is continuous.

(2) If F : (LX ,R1) → (LY ,R2) is continuous, then F : (LX , CR1
) →

(LY , CR2
) is continuous.

From Theorem 4.5 and Theorem 4.6, we have one main theorem in this
paper.

Theorem 4.7. L-PTFCS is isomorphic to TFRNS. Hence, L-PTFCS
is isomorphic to L-FCTOP.

Theorem 4.8. Let C = {Cxλ |xλ ∈M(LX)} be a pointwise L-fuzzy closure
operator. Then the following statements are equivalent:

(1) Cxλ(A) =
V
B∈xλ|A

W
yµ 6≤B Cyµ(B);

(2) Cxλ(A) =
V
B∈xλ|A(Cxλ(B) ∨

W
yµ 6≤B Cyµ(B)).

(3) Cxλ(A) =
V
B∈xλ|A(Cxλ(A) ∨

W
yµ 6≤B Cyµ(B)).

(4) Cxλ(A) =
V
B∈xλ|A(Cxλ(B) ∨

W
yµ 6≤B Cyµ(A)).

Proof. (1) ⇔ (2) ⇔ (3) is trivial. We only prove (1) ⇔ (4). (1)⇒(4) is
trivial. Now suppose (4) holds, i.e,

Cxλ(A) =
^

B∈xλ|A
(Cxλ(B) ∨

_
yµ 6≤B

Ca(A)).

Let
t ∈ α(Cxλ(A)) = α(

^
B∈xλ|A

(Cxλ(B) ∨
_

yµ 6≤B
Ca(A)))

=
[

B∈xλ|A
α(Cxλ(B) ∨

_
yµ 6≤B

Cyµ(A)).

Then there exists some B ∈ xλ|A such that

(1) t ∈ α(Cxλ(B)); (2) ∀yµ 6≤ B, t ∈ α(Cyµ(A)).

It is clear that the meet of fuzzy sets containing A and fulfilling (1)
and (2) is still of such kind. So we can define Bt to be the minimal fuzzy
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set containing A and fulfilling (1) and (2) , i.e., t ∈ α(Cxλ(Bt)) and t ∈
α(Cyµ(A)) for all yµ 6≤ Bt. Thus, ∀yµ 6≤ Bt , it follows from t ∈ α(Cyµ(A))
that there exists Wyµ ∈ yµ|A such that

(3) t ∈ α(Cyµ(Wyµ)), (4) ∀zγ 6≤Wyµ , t ∈ α(Czγ (A)).

It is easy to check that Bt ∧ Wyµ satisfies (1) and (2). Hence, by the
minimality of Bt, it follows that Bt ≤ Bt ∧ Wyµ . Therefore Bt ≤ Wyµ .
Then we can get that ∀yµ 6≤ Bt, Cyµ(Bt) ≤ Cyµ(Wyµ).
Then t ∈ α(Cyµ(Bt)) Thus, t ≥

W
yµ 6≤Bt

Cyµ(Bt)). Therefore,V
B∈xλ|A

W
yµ 6≤B Cyµ(B) ≤ t. From the arbitrariness of t, we have Cxλ(A) ≥V

B∈xλ|A
W
yµ 6≤B Cyµ(B). Since Cxλ(A) ≤

V
B∈xλ|A

W
yµ 6≤B Cyµ(B) is obvious,

we have Cxλ(A) =
V
B∈xλ|A

W
yµ 6≤B Cyµ(B), as desired.

It is well-known that derived operator and closure operator have close
relationship in L-topology. In the following discussion, we study the rela-
tionship between pointwise L-fuzzy derived operator and pointwise L-fuzzy
closure operator.

Lemma 4.9[7]. Let A ∈ LX , xλ ∈ c(LX) and define A− xλ ∈ LX by

A− xλ(y) =

(
A(y), x 6= y,W

λ6≤γ,xγ≤A γ, x = y.

Then
(1)

W
t∈T (At − xλ) =

W
t∈T At − xλ;

(2) xλ 6≤ A ⇒ A− xλ = A.

Definition 4.10. A topological pointwise L-fuzzy derived operator is a set
D = {Dxλ |xλ ∈ c(LX)} of mappings Dxλ : L

X →M such that
(FD1) Dxλ(0X) = 0;
(FD2) Dxλ(A) < 1⇒ xλ 6≤ A− xλ;
(FD3) Dxλ(A ∨B) = Dxλ(A) ∨Dxλ(B);
(FD4) Dxλ(A) =

V
B∈xλ|A−xλ

W
yµ 6≤BDyµ(B).

(LX ,D) is called a topological pointwise L-fuzzy derived space (L-TFDS,
for short).

It is easy to verify the following two theorems.
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Theorem 4.11. (1) Let (LX , C) be a topological pointwise L-fuzzy closure
space and define DC

xλ
: LX → M by DC

xλ
(A) = Cxλ(A − xλ). Then DC =

{RCxλ |xλ ∈ c(LX)} is a topological pointwise L-fuzzy derived operator.
(2) Let (LX ,D) be a topological pointwise L-fuzzy derived operator and

define CDxλ : L
X →M by

CDxλ(A) =

(
1, xλ ≤ A,

Dxλ(A), xλ 6≤ A.

Then CD = {CD
λ
|xλ ∈ c(LX)} is a topological pointwise L-fuzzy closure

operator.

Theorem 4.12. (1) Let C be a topological pointwise L-fuzzy closure op-
erator. Then C = CDC .

(2) Let D be a topological pointwise L-fuzzy closure operator. Then

D ≥ DCD .
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