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Abstract

We provide a local convergence analysis for a Newton—type method
to approximate a locally unique solution of an operator equation in Ba-
nach spaces. The local convergence of this method was studied in the
elegant work by Werner in [11], using information on the domain of
the operator. Here, we use information only at a point and a gamma—
type condition [4], [10]. It turns out that our radius of convergence is
larger, and more general than the corresponding one in [10]. More-
over the same can hold true when our radius is compared with the
ones given in [9] and [11]. A numerical example is also provided.
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1. Introduction

In this paper we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

F (x) = 0,(1.1)

where F is a twice—Fréchet—differentiable operator defined on a convex sub-
set D of a Banach space X with values in a Banach space Y .

We revisit the Newton—type method given by x0, y0 ∈ D by

xn+1 = xn − F 0(zn)−1 F (xn), zn =
xn + yn
2

, (n ≥ 0),
yn+1 = xn − F 0(zn)−1 F (xn+1),

(1.2)

to generate a sequence {xn}, (n ≥ 0) approximating xB [4], [11].

Let us illustrate how this method is conceived:

We start with the identity

F (x)− F (y) =

Z 1

0
F 0(y + t(x− y)) dt (x− y) for all x, y ∈ D.(1.3)

If xB is a solution of equation (1.1), then identity (1.3) gives

F (x) =

Z 1

0
F 0(x+ t(xB − x)) dt (xB − x) for all x ∈ D.(1.4)

The linear operator in (1.4) can be approximated in different ways [1],
[3], [4], [12].

If for exampleZ 1

0
F 0(x+ t(xB − x)) dt ' F 0(x) for all x ∈ D,(1.5)

then (1.4) suggests the famous Newton’s method [1]—[12]:

xn+1 = xn − F 0(xn)−1 F (xn) (n ≥ 0).(1.6)

Another choice is given by
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Z 1

0
F 0(x+ t(xB − x)) dt ' F 0

Ã
xB + x

2

!
for all x ∈ D,(1.7)

which leads to the implicit iteration:

xn+1 = xn − F 0
Ã
xn + xn+1

2

!−1
F (xn), (n ≥ 0).(1.8)

Unfortunately iterates in (1.8) can only be computed in very restrictive
cases, and numerically, the method (1.8) is not a pratical procedure.

That is why we consider yn given in (1.2) as a suitable replacement
for xn+1 (n ≥ 0). Hence, we arrive at method (1.2), which requires the
computation of two iterates xn and yn. The computation of the additional
iterate yn can be seen as a step to calculate the iterate xn+1 using Newton’s
method (1.8).

This shows that iterate xn+1, thus defined is corrected by computing
the iterate yn+1 using (1.8). Another advantage of method (1.2) is that the
particular case x0 = y0 corresponds to the classical Newton’s method (1.8).
Procedure (1.2) has a geometrical interpretation similar to the tangent—
Secant method in the scalar case, and was introduced by King [8] (see
procedure (I, II), p. 299), and extended into Banach space by Werner in
[11], where the R—order 1 +

√
2 local convergence was established.

Here, we provide a local convergence analysis of the Newton—type method
(1.2) using a γ—type condition (see (2.3) and (2.4)). Our radius of conver-
gence rA (see Theorem 2.2) is larger than the corresponding one denoted
by rW (see (2.28)) given in the elegant work by Wang and Zhao [10]. Note
also that a special choice of γ denoted by γB (see (2.29)) used in [10].
As it turns out the radius of convergence can be larger than the radii given
in [9], [11] where information on a domain is used (see (2.30) and (2.32))
instead of only information at a point used by us.
A numerical example is also provided.

2. Local convergence analysis of the midpoint method (1.2)

Let us define scalar function f on [0,
1

γ
) by

f(t) = b− t+
γ t2

1− γ t
,(2.1)
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where b ≥ 0, and γ > 0 are given.

It is known [9] that if

α = b γ ≤ 3− 2
√
2,(2.2)

then function f has two roots

tB =
1 + α−

q
(1 + α)2 − 8α
2 γ

, tBB =
1 + α+

q
(1 + α)2 − 8α
2 γ

satisfying

b ≤ tB ≤ (1 + 1√
2
) b ≤ (1− 1√

2
)
1

γ
≤ tBB ≤ 1

2 γ
.

We use throughout this paper the concept of γ—conditions:

Definition 2.1. An operator F : D ⊆ X −→ Y satisfies γ—conditions if
the following hold:

(i) There exists a zero xB ∈ D of operator F such that

F 0(xB)−1 ∈ L(Y,X);

(ii) Operator F is thrice—Fréchet—differentiable on D, and for all x ∈ D

k F 0(xB)−1 F 00(xB) k≤ 2 γ,(2.3)

and

k F 0(xB)−1 F 000(xB) k≤ 6 γ2

(1− γ k x− xB k)4 = f 000(k x− xB k).(2.4)

In view of (2.1), we have

f 0(t) =
1− 2 (1− γ t)2

(1− γ t)2
,

f 00(t) =
2 γ

(1− γ t)3
,
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and

f 000(t) =
6 γ2

(1− γ t)4
.

We need the following Lemma:

Lemma 2.2. Under the γ—conditions given by Definition 2.1, and for all

x ∈ U(xB, (1− 1√
2
)
1

γ
= r0) = {x ∈ X : k x−xB k< r0} ⊆ D, the following

estimates hold:

k F 0(xB)−1 F 00(x) k≤ f 00(k x− xB k),(2.5)

F 0(x)−1 ∈ L(Y,X),

and

k F 0(x)−1 F 0(xB) k≤ − 1

f 0(k x− xB k) .(2.6)

Proof. Using the γ—conditions, and the properties of function f , we
obtain in turn:
k F 0(xB)−1 F 00(x) k≤k F 0(xB)−1 F 00(xB) k + k F 0(xB)−1 (F 00(x)− F 00(xB)) k

=k F 0(xB)−1 F 00(xB) k +

k
Z 1

0
F 0(xB)−1 F 00(xB + t (x− xB)) (x− xB) dt k

≤ 2 γ +
Z 1

0
f 00(t k x− xB k) k x− xB k dt

= 2 γ + f 00(k x− xB k)− f 00(0) = f 00(k x− xB k).
Moreover, we have

k F 0(xB)−1 (F 0(x)− F 0(xB)) k=k F 0(xB)−1
Z 1

0
F 00(xB + t (x− xB)) (x− xB) dt k

≤
R 1
0 f

00(t k x− xB k) k x− xB k dt
= f 0(k x− xB k)− f 0(0) = f 0(k x− xB k) + 1 < 1.

It follows by the Banach Lemma on invertible operators [4], [12] that
F 0(x)−1 ∈ L(Y,X), and

k F 0(x)−1 F 0(xB) k≤ 1

1− k F 0(xB)−1 (F 0(x)− F 0(xB)) k
≤ − 1

f 0(k x− xB k) .
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That complete the proof of the Lemma. ♦

It is convenient for us to define sequences {an}, {bn}, {cn}, {dn} by

an =
γ

1− γ k xn − xB k , bn =
γ2

4 (1− γ k xn − xB k) ,

cn =
(1− γ k zn − xB k)2

2 (1− γ k zn − xB k)2 − 1 ,

dn =
γ

4 (1− γ

2
k xn − xB k) (1− γ

2
(k xn − xB k + k yn − xB k))

;

and functions a, b, c, d on [0, r0) by

a(r) =
r

1− r
, b(r) =

r2

4 (1− r)
,

c(r) =
(1− r)2

2 (1− r)2 − 1 ,

d(r) =
r

4 (1− r

2
) (1− r)

.

It is simple algebra to see that system of inequalities

c(r) [b(r) + 3 d(r)] ≤ 1(2.7)

is satisfied for all

r ∈ [0, 5−
√
13

6
).(2.8)

We shall also use the identities [4]:

F (xB)− F (x)− F 0(x) (xB − x) =

Z 1

0
F 00(x+ t(xB − x)) (1− t) (xB − x)2 dt,

(2.9)
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F (x)− F (y)− F 0(z) (x− y) =
1

4

Z 1

0

"
F 00(z +

t

2
(x− y))− F 00(z +

t

2
(y − x))

#
(1− t) (x− y)2 dt

=
1

4

Z 1

0
F 000(z +

t

2
(y − x) + s t (x− y))

s (1− t) (x− y)3 ds dt,
(2.10)

F 0(z)− F 0(
x+ xB

2
) =

Z 1

0
F 00
Ã
x+ xB

2
+ t (

y − xB

2
)

! Ã
y − xB

2

!
dt,

(2.11)

and

F 0(
xB +w

2
)−F 0(z) =

Z 1

0
F 00
Ã
z+

t

2
(xB+w−x−y)

!Ã
xB + w − x− y

2

!
dt,

(2.12)

for z =
x+ y

2
, and all x, y, w ∈ D.

We can show the local convergence theorem for the Newton—type method
(1.2):

Theorem 2.3. Under the γ—conditions given by Definition 2.1 for x ∈

U(xB, rB =
5−
√
13

6 γ
) ⊆ D, sequences {xn}, {yn} generated by the Newton—

type method (1.2) are well defined, remain in U(xB, rB) for all n ≥ 0, and
converge to the unique zero of equation F (x) = 0 in U(xB, rB) provided
that x0, y0 ∈ U(xB, rB).

Moreover the following estimates hold for all n ≥ 0:
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k xn+1 − xB k≤ cn

"
bn k xn − xB k2 +dn k yn − xB k

#
k xn − xB k,

(2.13)

and

k yn+1 − xB k≤

cn

"
bn+1 k xn+1−xB k2 +dn(k xn+1−xB k + k yn−xB k + k xn−xB k)

#
k xn+1−xB k .

(2.14)

Proof. By hypotheses x0, y0 ∈ U(xB, rB), and for x =
x0 + y0
2

in (2.6)

we get F 0(z0)−1 exists, and

k F 0(z0)−1 F 0(xB) k≤ −
1

g0(k z0 − xB k) .(2.15)

Let us assume that xk, yk ∈ U(xB, rB) for k = 0, 1, · · · , n. Then by (2.6)
F 0(zk)−1 exists, and

k F 0(zk)−1 F 0(xB) k≤ −
1

g0(k zk − xB k) .(2.16)

We shall show that xk+1, xk+1 ∈ U(xB, rB), and estimates (2.13), (2.14)
hold true.

Using (1.2) we obtain the identity

xk+1 − xB = xk − F 0(zk)−1 F (xk)− xB

= F 0(zk)−1 [F 0(zk) (xk − xB)− F (xk) + F (xB)]

= F 0(zk)−1 [F 0(
xk + xB

2
) (xk − xB)− F (xk) + F (xB)]+

F 0(zk)−1 [F 0(zk)− F 0(
xk + xB

2
)] (xk − xB).

(2.17)

In view of (2.4), (2.5), (2.7), (2.10), (2.11), (2.16) and (2.17) we obtain
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k xk+1 − xB k ≤ ck [bk k xk − xB k2 +dk k yk − xB k] k xk − xB k
≤ c(r) [b(r) + d(r)] k xk − xB k
< k xk − xB k< rB,

(2.18)

which shows (2.13) for n = k and xk+1 ∈ U(xB, rB).
By (1.2) we obtain the identity

yk+1 − xB = F 0(zk)−1
"
[F (xB)− F (xk+1)− F 0(

xB + xk+1
2

) (xB − xk+1)]+

[F 0(
xB + xk+1

2
)− F 0(

xk + yk
2

)] (x∗ − xk+1)

#
.

(2.19)
Using (2.4), (2.5), (2.7), (2.11), (2.12), (2.16) and (2.19) we get

k yk+1 − xB k ≤ ck

"
bk+1 k xk+1 − xB k2 +dk (k xk+1 − xB k + k yk − xB k +

k xk − xB k)
#
k xk+1 − xB k

≤ c(r) [b(r) + 3 d(r)] k xk+1 − xB k
< k xk+1 − xB k< rB,

(2.20)
which shows (2.14) for n = k and yk+1 ∈ U(xB, rB). Moreover by letting
k −→∞ in (2.17), and (2.19) we get lim

k−→∞
xk = lim

k−→∞
yk = xB.

Finally, to show uniqueness let yB ∈ U(xB, rB) be a solution of equation
(1.1).

Using the identity

F (xB)− F (yB) = L (xB − yB),(2.21)

where,

L =
Z 1

0
F 0(yB + t (xB − yB)) dt,(2.22)

and Lemma 2.2 for x replaced by yB + t (xB − yB) that L−1 exists. Hence,
by (2.20), we deduce xB = yB. That completes the proof of the theorem. ♦
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In order for us to determine the R—order of the Newton—type method
(1.2) we need the Lemma :

Lemma 2.4. [4], [11]
Let 0 < δ0, δ1 < 1, p > 1, q ≥ 0, c ≥ 0. If scalar sequence {δn} (n ≥ 0)

satisfies

0 < δn+1 ≤ c δpn δ
q
n−1 (n ≥ 1)(2.23)

then it converges to zero with R—order of convergence given by

R(p, q) =
p

2
+

s
p2

4
+ q.(2.24)

Let us define functions g1, g2 and g3 on [0,
1

γ
) by

g1(r) =
(1− r)2 r2

4 (2 (1− r)2 − 1) (1− r)
,

g2(r) =
r (1− r)2

4 (2 (1− r)2 − 1) (1− r

2
) (1− r)

,

and

g3(r) = g1(r) r +
3

4

r (1− r)

(1− r

2
) (2 (1− r)2 − 1)

.

Set

λ1 = g1(r
B), λ2 = g2(r

B), and λ3 = g3(r
B).(2.25)

In view of (2.7), (2.13), (2.14) and (2.23) we get

k xn+1 − xB k≤ λ1 k xn − xB k3 +λ2 k yn − xB k k xn − xB k,(2.26)

and

k yn+1 − xB k≤ λ3 k xn+1 − xB k k xn − xB k .(2.27)

It then follows from (2.24) and (2.25) that there exists c > 0 such that
(2.21) holds true for δn =k xn − xB k, p = 1 and q = 1. Hence, we arrived
at:
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Corollary 2.5. Under the hypotheses of Theorem 2.3, the Newton—type
method (1.2) is of R—order of convergence 1 +

√
2.

Remark 2.6. As noted in [1], [3], [4], [5], [7], [12] the local results obtained
here can be used for projection method such us Arnold’s, the generalized
minimum residual method (GMRES), the generalized conjugate residual
method (GCR), for combined Newton/finite projection methods, and in
connection with the mesh independence principle to develop the cheapest
and most efficient mesh refinement strategies.

Remark 2.7. The local results obtained can also be used to solve equa-
tion of the form F (x) = 0, where F 0 satisfies the autonomous differential
equation [4]:

F 0(x) = P (F (x)),(2.28)

where P : Y −→ X is a known continuous operator. Since F 0(xB) =
P (F (xB)) = P (0), we can apply our results without actually knowing the
solution of xB of equation (1.1).

Example 2.8. Let X = Y = IR, D = U(0, 1), and define function F on D
by

F (x) = ex − 1.(2.29)

Then, note that we can set P (x) = x+ 1 in (2.26).
We must have that conditions (2.3) and (2.4) hold for some γ ≥ 0. It can
easily be seen that we can set γ =

1

2
. Hence the radius of convergence is

rB = rA = 2(
5−
√
13

6
) = .464816242. The radius of convergence rW in [10]

is given by

rW =
1

2 γB
(3− 2

√
2)(2.30)

with

γB = sup
k≥2

k F 0(xB)−1F (k)(xB) k
1

k−1≤ 1
2
.(2.31)

Therefore, (2.27) gives

rW ≤
√
3− 2

√
2 = .171573.
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Moreover, Rheinboldt radius [9] rR is given by

rR =
2

3 l
,(2.32)

where l is the Lipschitz constant in condition:

k F 0(xB)−1 (F 0(x)− F 0(y)) k≤ l k x− y k for all x, y ∈ D.(2.33)

Using (2.27) and (2.30) we get: l = e. That is

rR = .245252961.

The radius rWW given by Werner in [11] is defined by

rWW =
2

Γ l1
,(2.34)

where

k F 0(xB)−1 k≤ Γ(2.35)

and

k F 0(x)− F 0(y) k≤ l1 k x− y k(2.36)

hold true for all x, y ∈ D.

Hence, since Γ = l1 = e, we get by (2.32)

rWW = .270670566.(2.37)

Hence, we deduce

rW < rR < rWW < rA.(2.38)

By comparing rA and rW we see that it is always true that

rW < rA.(2.39)

Moreover note that under (2.2) the existence of xB in U(x0,
1

γ
(1− 1√

2
))

is guaranteed. However, in practice the existence of xB may have been
established by another way that avoids condition (2.2). Finally note that
enlarging the radius of convergence is very important in computational
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mathematics since in this case we can obtain a wider range of initial guesses
x0.
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