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Abstract

Let Q : 2 → 2 be a symmetric and positive semi-definite lin-
ear operator and fj : R → R (j = 1, 2, ...) be real functions so
that, fj(0) = 0 and, for every x = (x1, x2, ....) ∈ 2, it holds that
f(x) := (f1(x1), f2(x2), ...) ∈ 2. Sufficient conditions for the exis-
tence of non-trivial solutions to the semilinear problem Qx = f(x)
are provided. Moreover, if G is a group of orthogonal linear automor-
phisms of 2 which commute with Q, then such sufficient conditions
ensure the existence of non-trivial solutions which are invariant un-
der G. As a consequence, sufficient conditions to ensure solutions
of nonlinear partial difference equations on finite degree graphs with
vertex set being either finite or infinitely countable are obtained. We
consider adaptations to graphs of both Matukuma type equations and
Helmholtz equations and study the existence of their solutions.
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1. A semilinear problem in 2

Let us consider a Hilbert space H, a positive semi-definite linear operator
Q : H→ H and a function f : H→ H so that f(0) = 0. Associated to the
above is the semilinear problem

Qx = f(x).(1.1)

In many problems of different areas, such as biology, computer science,
economy, ecology and difference equations, one searches for the existence
of non-trivial solutions of a problem of type (1.1).

In [6,10] sufficient conditions for the existence of non-trivial solutions of
(1.1) are provided ifH = Rn and f(x1, ..., xn) = (f1(x1), f2(x2), ..., fn(xn)),
where fj : R→ R are continuous functions so that fj(0) = 0. In particular,
the results in there were used to study the existence of solutions of partial
difference equations on finite graphs.

The aim of this note is to see that such conditions can be naturally
extended to the infinite countable case

H = 2 = {x = (x1, x2, ...) : xj ∈ R,
∞X
j=1

x2j <∞}, < x, y >=
∞X
j=1

xjyj ,

and f(x) := (f1(x1), f2(x2), ...) where fj : R→ R satisfy fj(0) = 0 and, for
every x = (x1, x2, ....) ∈ 2, it holds that f(x) := (f1(x1), f2(x2), ...) ∈ 2.
We apply this existence results to study the existence of solutions of partial
difference equations on graphs with an infinite countable set of vertices.

A function f : R → R, with f(0) = 0, is said locally increasing at
0 (respectively, locally decreasing at 0) if there is some > 0 so that f
restricted to (− , ) is increasing (respectively, decreasing).

Theorem 1. Let Q : 2 → 2 be a symmetric and positive semi-definite
linear operator and {0} 6= W < 2 be an invariant subspace under Q.
Assume there are continuous maps fj : R → R, for j = 1, 2, ..., so that
they all satisfy the following conditions

(1) fj(0) = 0;

(2) either,

(2.1) for all j, fj is locally decreasing at 0, or

(2.2) for all j, fj is locally increasing at 0 and, for small |t|, it holdsR t
0 fj(s) ds < t2;
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(3) limt→+∞
fj(t)
t = +∞, and

(4)
¯̄̄R xj
0 fj(t) dt

¯̄̄
≤ x2j , for every x = (x1, ....) ∈ 2,

then the semilinear problem (1.1) has non-trivial solutions in W . More-
over, if G is a group of orthogonal linear automorphisms of 2 so that each
transformation in G commutes with Q, then the semilinear problem (1.1)
has non-trivial solutions invariant under the action of G.

Remark 2. Condition (2.2) in Theorem 1 trivially holds if, for every j, fj
is locally increasing at 0 and, for small |t| 6= 0, it holds that f(t)/t < 2.

In the finite dimensional situation this is not required. As we may
identify Rn with the subspace of 2 defined by the condition xj = 0, for
j > n, then we have the following consequence that extends a result in [6].

Corollary 3. Let Q : Rn → Rn be a symmetric and positive semi-definite
linear operator and {0} 6= W < Rn be an invariant subspace under Q.
Assume there are continuous maps fj : R → R, for j = 1, 2, ...n, so that
they all satisfy conditions (1), (2) and (3) of Theorem 1, then the semilinear
problem (1.1) has non-trivial solutions in W . Moreover, if G is a group
of orthogonal linear automorphisms of Rn so that each transformation in
G commutes with Q, then the semilinear problem (1.1) has non-trivial
solutions which are invariant under the action of G.

The proof of Theorem 1 is provided in Section 3. In Section 2 we use the
above existence results to the case of partial difference equations in metric
graphs which are either finite or they have an infinite countable vertex set.
In Sections 4 and 5 we use the above to study two examples.

2. Application to partial difference equations on graphs

In this section we consider graphs G = (V,E) which are simple and of finite
degree (that is, each vertex has finite degree). In general one only need to
take care on connected graphs, but we do not impose such a restriction at
this point. To each vertex v ∈ V there is associated the set N(v) ⊂ V ,
called the neighborhood of v, so that w ∈ N(v) if {v, w} ∈ E; w is called a
neighbor of v. Now on, we only assume the vertex set V is finite or infinite
countable. Associated to the graph G are the real vector space C0(G)
consisting of the real functions defined on V and its subvector space L2(G)
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consisting of those µ ∈ C0(G) so that P∞
j=1 µ(vj)

2 < ∞. A derivation on
the graph G is a linear operator D : L2(G)→ L2(G). The set of derivations
is a real algebra ΞR(G). If G : V ×Rk+2 → R is any function, D1, ...,Dk ∈
ΞR(G) are any derivations, then we have associated a partial difference
equation on the graph given by

G(v, µ,D1µ, ...,Dkµ) = 0.(2.1)

A solution of (2.1) is a function µ ∈ L2(G) satisfying
G(v, µ(v),D1µ(v), ...,Dkµ(v)) = 0, for every vertex v ∈ V . We only con-
sider partial difference equations of the form

Dµ = F (v, µ)(2.2)

where F : V ×R→ R is some function.

Partial difference equations appear naturally by numerical discretiza-
tion of partial differential equations on grids (see, for instance, [5] for linear
elliptic difference equations on the plane). Due to applications in fields as
biology, computer science, economy, ecology, etc., nonlinear partial differ-
ence equations has recently attracted a lot of attention.

If we set V = {v1, v2, ....}, then there is a natural isomorphism of real
vector spaces φ : C0(G) → RN defined by φ(µ) = t[µ(v1) µ(v2) · · ·], with
restriction φ : L2(G)→ 2. In this way, the partial diference equation (2.2)
is equivalent to a semilinear problem (1.1). As a direct consequence of
Theorem 1 is the following existence result.

Corollary 4. Let G = (V,E) be an finite degree simple graph with vertex
set V either finite or countable infinite, say V = {v1, ....}. Let D ∈ ΞR(G)
be a symmetric positive semi-definite derivation, F : V ×R → R be con-
tinuous in the real variable and set fj(t) = F (vj , t), for each vj ∈ V . If, for
each j, fj : R→ R satisfies the conditions (1), (2), (3) and, for V infinite,
also condition (4) of Theorem 1, then the partial difference equation (2.2)
has non-trivial solutions. Moreover, if G is a group of symmetries of the
graph G, then there are non-trivial solutions which are symmetric respect
to G.

A discussion of the above result for the particular case of finite graphs
and the discrete Laplacian operator can be found in [10] and, for a more
general class of derivations, in [6].
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Corollary 5 (Dirichlet’s problem). Let G = (V,E) be an finite degree
simple graph with vertex set V either finite or countable infinite andW < V
so that W 6= ∅ and V −W 6= ∅. Let F : (V − W ) × R → R be some
continuous function in the real variable.

(1) If W is finite, then write V = {v−r+1, v−r+2, ....},
W = {v−r+1, ..., v0} ⊂ V . Consider real values a0, a−1..., a1−r ∈ R
and the column vector a = t[a1−r · · · a0].

(2) If W is infinite, then write V = {..., v−2, v−1, v0, v1, ....},
W = {..., v−2, v−1, v0} ⊂ V . Consider real values aj ∈ R, where
j ≤ 0, and the infinite column vector a = t[· · · a−1 a0].

Assume, with this enumeration of the vertex set V , that the (infinite
size) matrix representation of D is

J =

"
R tU
U S

#
where R is the matrix corresponding toW (of size r×r in (1) and of infinite
size in (2)). Set b = Ua and, fj(t) = F (vj , t). If each fj : R→ R satisfies
the conditions fj(0) = bj , for all j, and conditions (2), (3) and, if V is
infinite, also condition (4) of Theorem 1, then the Dirichlet problem(

Dµ = F (v, µ), v ∈ V −W
µ(vj) = aj , vj ∈W

has solutions.

Proof. In this case, we need to solve Sy = g(y), where g(y) = f(y)−Ua,
f(y) is the column vector whose j-th coordinate is fj(yj) and S is symmetric
and positive semi-definite. The existence is now consequence of Theorem 1
using g instead of f .

2

Let us consider a finite degree, simple, connected graph G = (V,E),
where we assume that the set V of vertices is either finite or countable
infinite. Let us fix some metric on the graph, that is, a positive function
d : E → (0,+∞). A classical derivation on G, ∆2 : L2(G) → L2(G), called
the Discrete Laplace operator, is given by

∆2µ(v) =
X

w∈N(v)

µ(v)− µ(w)

d({v, w})2 .
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As we are assuming N(v) to be finite for each v ∈ V , the sum in the
above definition is a finite sum. It is well known that ∆2 is a symmetric
and positive semi-definite operator (see for instance [2, 3, 4, 9]).

3. The proof of Theorem 1.

The proof of Theorem 1 is a simple application of the Mountain Pass The-
orem, due to A. Ambrosetti and P. Rabinowitz, which we recall below as
matter of completeness.

Mountain Pass Theorem 6 ([6]). Let U a Hilbert space andH : U → R
be a C1(U ;R) functional which is Lipschitz continuous on bounded sets of
U (that is, |H(x)−H(y)| ≤ KΩkx− yk for x, y ∈ Ω ⊂ U bounded). Let us
assume

(i) H(0) = 0;

(ii) there exists a, r > 0 such that H(x) ≥ a, for kxk = r;

(iii) there exists y ∈ U , kyk > r with H(y) < 0.

Let

A = {α : [0, 1]→ U : α(0) = 0, α(1) = y, α ∈ C0([0, 1], U)}

and
a = Infα∈A{Maxt∈[0,1]H(α(t))} ∈ R.

Then “a” is a critical value of H.

3.1. Proof of theorem 1.

Let us first consider the case W = 2. We consider the real map

HQ :
2 → R : x 7→ 1

2
txQx−

∞X
j=1

Z xj

0
fj(t) dt.(3.1)

The function HQ is a C
1( 2;R) whose gradient is

∇HQx = Qx− f(x).(3.2)

It follows that the (non-trivial) critical points of HQ are exactly the
solutions we are searching for. Condition (1) ensures HQ(0) = 0. As
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fj(0) = 0 and Q is positive semi-definite, condition (2) ensures the existence
of positive values a, r > 0 so that HQ(x) ≥ a > 0 for kxk = r. Condition
(3) asserts the existence of some y ∈ 2 with kyk > r and HQ(y) < 0. Let
R > 0 be fixed and let x, y ∈ B(0;R) ⊂ 2, that is, kxk2 = P∞

j=1 x
2
j <

R2, kyk2 =P∞
j=1 y

2
j < R2. Then, by condition (4),

|HQ(x)−HQ(y)| ≤
1

2

¯̄̄
txQx− tyQy

¯̄̄
+

¯̄̄̄
¯̄ ∞X
j=1

Z yj

xj

fj(t) dt

¯̄̄̄
¯̄ ≤ K(R)kx− yk,

for some constant K(R) > 0. All the above and Mountain Pass Theorem
(see below) ensure the existence of non-trivial critical points of HQ.

Let now consider a general W < 2 which is invariant under Q. Conju-
gating by a suitable orthogonal linear automorphism of 2, we may assume
W is given by the conditions xr = 0, for some indices r. As Q still being
symmetric and positive semi-definite under such a rotation and its restric-
tion to the subspace W still having the same properties, the existence is
provided by the above case.

If G is a group of orthogonal transformations of 2 so that each of its
elements commutes with Q and setW = Fix(G) = {x ∈ 2 : g(x) = x,∀g ∈
G}, then one obtains the existence of non-trivial solutions in Fix(G).

4. Example I: Matukuma type equations

In this section we consider, as a first example, Matukuma type equations
and adapt them to metric graphs. Then we use the results obtained previ-
ously in order to assert the existence of non-trivial solutions.

4.1. Classical Matukuma equations

In order to have a model to describe the dynamics of globular cluster of
star, T. Matukuma [8] proposed the following one (Matukuma equation)

∆µ+
1

1 + |x|2µ
p = 0, in R3,(4.1)

where p > 1, µp = |µ|p−1µ and µ > 0 is the gravitational potential so thatZ
R3

µp

4π(1 + |x|2)dx

represents the total mass. Many results have been obtained for radial so-
lutions µa(r), where r = |x| and a > 0 is so that µa(0) = a. Even, in [8]
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obtained that µ√3(r) =
p
3/(1 + r2). A more general kind of equations

that generalize Matukuma equation are the Matukuma type equations

∆µ+ f(x)µp = 0, in R3,(4.2)

where f(x) > 0 for every x ∈ R3. A discussion about positive solutions of
Makutuma type equation can be found in [11].

4.2. Matukuma type equations on graphs

Matukuma type equations can be adapted to connected, finite degree metric
graphs as follows. Let us consider a finite degree, simple, connected graph
G = (V,E), where we assume that the set V of vertices is either finite or
countable infinite. Let us fix some metric on the graph, that is, a positive
function d : E → (0,+∞). Equation (4.2) is adapted to this metric graph
as the partial difference equation

−∆2µ+ f(v)µp = 0, v ∈ V,(4.3)

where f : V → (0,+∞). More generally, if W ⊂ V is so that V −W 6= ∅,
then we may consider the Dirichlet problem(

−∆2µ+ f(v)µp = 0, v ∈ V −W,
µ(w) = 0, w ∈W,

(4.4)

where f : V → (0,+∞). If W 6= ∅, then Corollary 5 ensures the existence
of non-trivial solutions of equation 9. In the case that W = ∅, Corollary 1
ensures the existence of non-trivial solutions of equation (4.3); moreover, it
asserts the existence of non-trivial solutions which are invariant under the
group of symmetries of the metric graph (G, d). Next theorem asserts that
the non-trivial solutions of the equation (4.3) must be sign changing.

Theorem 6. Equation (4.3) has non-trivial solutions and all of them must
be a sign changing solution, in particular, there is no non-negative nor non-
positive non-trivial solution.

Proof. Set V = {v1, v2, ....},

wij =

(
d({vi, vj})−2, {v1, v2} ∈ E

0, {v1, v2} /∈ E
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and

bij =

(
0, i 6= jP+∞

r=1 wir, i = j

Note that the sums in the definition of bij are finite sums as we are
assuming the graph G to be of finite degree. Also set A = [wij ], B = [bij ]
and J2 = B −A. The discrete Laplace operator ∆2 is then defined in R

N

as the linear operator x 7→ J2x, for x ∈ RN. As the sum of each column of
J2 (a finite sum) is equal to 0. It follows that for every µ ∈ C0(G) it holds
that X

v∈V
∆2µ(v) = 0,

in particular, if µ is a solution of equation (4.3), thenX
v∈V

f(v)µ(v)p =
X
v∈V

f(v)|µ(v)|p−1µ(v) = 0.

2

5. Example II: Helmholtz equations

Many problems related to acoustic mechanics, electromagnetism, etc., re-
duce to study the Helmholtz equation [7]. We proceed to adapt such equa-
tion to finite degree graphs (with either finite or an infinite countable num-
ber of vertices) and we find conditions to ensure the existence and unique-
ness of solutions.

5.1. Classical Helmholtz equation

Let Ω ⊂ Rn be some domain and let h : Ω → R be a function (in general
with compact support). Helmholtz equation is given by

−∆µ = k2µ+ h(5.1)

where ∆ is the Laplace operator and µ : Ω→ R is some solution function
(with the required regularity properties).

If h = 0, then the existence of non-trivial solutions of is equivalent to
have k2 as an eigenvalue of −∆ (on the domain Ω). In this homogeneous
case, the equation can be solved by separation of variables.

One may also consider the corresponding Newmann problem
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(
−∆µ = k2µ+ h, Ω
∂nµ = f, ∂Ω

(5.2)

where ∂nµ denotes the normal derivative respect to the boundary ∂Ω ⊂ Rn.

5.2. Helmholtz equation on graphs

Let us assume that we are given a simple, finite degree and connected
graph G = (V,E), with V either finite or countable infinite, and a metric
d : E → (0,+∞). Let W ⊂ V , W 6= ∅, V −W 6= ∅, let σ : W → V −W
be some function and let real values bw (w ∈ W ), av (v ∈ V −W ) be no
necessarily different ones. Newmann’s problem (5.2) may be adapted to
the above metric graph as(

∆2µ(v) = k2µ(v) + av, v ∈ V −W
µ(w)− µ(σ(w)) = bw, w ∈W

(5.3)

5.2.1. Finite graphs

Let us set V = {v−n+1, ...., vm},W = {v−n+1, ..., v0} ⊂ V and set Ind(W ) =
{−n+ 1, ...,−1, 0} and Ind(V ) = {1, ...,m}. Set bj = bvj (j ≤ 0), ar = avr
(r = 1, ...,m), and consider the column vectors b = t [b−n+1 · · · b0] and
a = t [a1 · · · am].

5.2.2. Infinite graphs

(1) If W is finite, then write V = {v−n+1, v−n+2, ....},
W = {v−n+1, ..., v0} ⊂ V , and set Ind(W ) = {−n + 1, ...,−1, 0}.
Define bj = bvj ∈ R (j ≤ 0), ar = avr (r ≥ 1), and let us consider the
column vectors b = t[b−n+1 · · · b0] and a = t[a1 · · ·].

(2) If W is infinite, then write V = {..., v−2, v−1, v0, v1, ....},
W = {..., v−2, v−1, v0} ⊂ V , and set Ind(W ) = {...−2,−1, 0}. Define
bj = bvj ∈ R, where j ≤ 0, aj = avj , for j ≥ 1, and let us consider
the column vectors b = t[· · · b−1 b0] and a = t[a1 · · ·].

In the above two cases, we also set Ind(V ) = {1, 2, ....}.
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5.2.3. Existence of solutions

Let us write the matrix J2 (representing ∆2) as

J2 =

"
A tC
C D

#

where A and D are positive semi-definite symmetric matrices of sizes |W |
and |V −W |, respectively. The function σ may be though as a function

σ : Ind(W )→ Ind(V ).

Let us set Mσ = [mij ] (where i ∈ Ind(W ) and j ∈ Ind(V )) by

mij =

(
−1, σ(i) = j
0, σ(i) 6= j .

Set

µ(vj) =

(
xj , j ∈ Ind(W )
yj , j ∈ Ind(V ) .

With the above notation, equation (5.3) is equivalent to"
In Mσ

C D

# "
x
y

#
=

"
b

k2y + a

#
(5.4)

then (
x = b−Mσy

(D − CMσ − k2In)y = a− Cb .
(5.5)

It nows easily follows the next result.

Theorem 7. Newmann’s problem (5.3) has a unique solution if and only
if k2 is not an eigenvalue of D − CMσ. If k

2 is an eigenvalue of D − CM ,
then (5.3) may not have solution and, if it has at least one, then it must
have infinitely many solutions.

Example 8. Let us consider the complete graph K2. Set V = {v1, v2},
w = 1/d({v1, v2}) > 0. Assume W = {v1}, bv1 = b and av2 = a. In this
case,

J2 =

"
w −w
−w w

#
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Mσ = [−1]

D − CMσ = 0 .

If k 6= 0, the equation (5.3) has a unique solution, this being given by(
x = (bk2 − a− wb)/k2

y = −(a+ wb)/k2

If k = 0 and wb 6= −a, then (5.3) hs no solution. If k = 0 and wb = −a,
then (5.3) has infinitely many solutions
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[5] FriedrichsK. and Lewy, H. Über die partiellen Differenzengleichungen
der mathematischen Physik. (German)Math. Ann. 100 (1), pp. 32-74,
(1928).

[6] Hidalgo, R. A. Zeros of semilinear systems with applications to non-
linear partial difference equations on graphs. To appear in Journal of
Difference Equations and Applications.

[7] Howe, M. S. Acoustics of fluid-structure interactions. Cambridge, New
York. Cambridge University Press (1998).

[8] Matukuma, T. The Cosmos. Iwanami Shoten, Tokio, (1938).



Existence of solutions of Semilinear systems in 2 183

[9] Mohar, B. The laplacian spectrum of graphs. In Graph Theory, Com-
binatorics, and Applications 2. Ed. Y. Alavi, G. Chartrand, O. R.
Oellermann, A. J. Schwenk. Wiley, pp. 871-898, (1991).

[10] Neuberger, John M. Nonlinear Elliptic Partial Difference Equations on
Graphs. Experimental Mathematics 15, pp. 91-107, (2006).

[11] Yi, Li. On the positive solutions of the Matukuma equation. Duke
Math. J. 70 (3), pp. 575-589, (1993).

Rubén Hidalgo
Departamento de Matemáticas
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