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Abstract

In this paper we establish two abstract versions of the classical
Orlicz-Pettis Theorem for multiplier convergent series. We show that
these abstract results yield known versions of the Orlicz-Pettis Theo-
rem for locally convex spaces as well as versions for operator valued
series. We also give applications to vector valued measures and spaces
of continuous functions.
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An Orlicz-Pettis theorem is a result which asserts that a series in a
topological vector space which converges in some weak topology actually is
convergent in some stronger topology. The original Orlicz-Pettis Theorem
asserts that a series in a normed linear space which is subseries convergent in
the weak topology is subseries convergent in the norm topology of the space
([O],[P]). In this note we present two Orlicz-Pettis results for multiplier
convergent series in an abstract setting and then give applications to topics
in vector valued measures, spaces of continuous functions and spaces of
continuous linear operators. The abstract formulation allows the derivation
of many known Orlicz-Pettis results from a single formulation. Let λ be
a scalar sequence space which contains the space c00 of sequences which
are eventually 0. The β-dual of λ is defined to be λβ = {s = {sj} :P∞

j=1 tjsj = t · s converges for every t = {tj} ∈ λ} and the pair λ, λβ
form a dual pair under the bilinear pairing (t, s) → P∞

j=1 tjsj = t · s. A
series

P
j yj in a topological vector space Y is λ multiplier convergent if

the series
P∞

j=1 tjyj converges in Y for every t = {tj} ∈ λ; the elements of
λ are called multipliers. For example, if m0 is the space of all sequences
with finite range, then a series

P
j yj is m0 multiplier convergent in Y iff

the series is subseries convergent in Y . Thus, the Orlicz-Pettis Theorem
can be viewed as result concerning multiplier convergent series, and we will
establish a number of Orlicz-Pettis results for multiplier convergent series

In order to establish Orlicz-Pettis results for multiplier convergent series
it is necessary to impose conditions on the multiplier space λ and we will
now describe the condition which will be employed. An interval in N is a
set of the form [m,n] = {j ∈ N : m ≤ j ≤ n}, where m ≤ n and a sequence
of intervals {Ij} is increasing if max Ij < minIj+1. If I ⊂ N ,then χI will
denote the characteristic function of I and if t = {tj} is any sequence, then
χIt will denote the coordinatewise product of χI and t. The space λ has
the signed weak gliding hump property (signed-WGHP) if whenever t ∈ λ
and {Ij} is an increasing sequence of intervals, there exist a sequence of
signs {sj = ±1} and a subsequence {nj} such that the coordinatewise sum
of the series

P∞
j=1 sjχInj t ∈ λ ([St1],[St2],[Sw1]). If the signs above can all

be chosen equal to 1 for every t ∈ λ, the space λ has the weak gliding hump
property (WGHP) ([N]). For example, any monotone space such as c00, c0
or lp(1 < p ≤ ∞) has WGHP while bs, the space of bounded series, has
signed -WGHP but not WGHP ([St1],[St2],[Sw1]). See [BSS] for further
examples.

We present several versions and applications of the Orlicz-Pettis Theo-
rem in an abstract setting. We consider an abstract triple E,F,X where
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E,F are vector spaces such that there is a bilinear mapping from · : E×F →
X, (x, y)→ x·y, x ∈ E, y ∈ F , whereX is a locally convex space. Of course,
an example of this situation is when E,F are two vector spaces in duality
and X is the scalar field; we give other examples in the applications which
follow. Let w(E,F ) [w(F,E)] be the weakest topology on E [F ] such that
the linear maps x→ x · y [y → x · y] from E into X [F into X] are continu-
ous for all y ∈ F [x ∈ E]. If E,F is a pair of vector spaces in duality, then
w(E,F ) is just the weak topology σ(E,F ). A subset K ⊂ F is said to be
conditionally w(F,E) sequentially compact if for every sequence {yj} ⊂ K,
there is a subsequence {ynj} such that limj x · ynj exists for every x ∈ E.

We give our first version of an Orlicz-Pettis theorem in this setting.

Theorem 1. Let λ have signed-WGHP. If the series
P

j xj is λ multi-
plier convergent in E with respect to w(E,F ), then for each t ∈ λ and
each conditionally w(F,E) sequentially compact subset K ⊂ F , the seriesP∞

j=1 tjxj · y converge uniformly for y ∈ K.

Proof: If the conclusion fails to hold, there exists a neighborhood of 0,
W , in X , yk ∈ K and an increasing sequence of intervals {Ik} such that

(#)
X
l∈Ik

tlxl · yk /∈W

for every k. We may assume, by passing to a subsequence if necessary, that
limk x · yk exists for every x ∈ E. Consider the matrix

M = [mij ] = [
X
l∈Ij

tlxl · yi].

We claim that M is a signed K-matrix ([Sw1]2.2.4). First, the columns
of M converge. Next, given an increasing sequence of positive integers
there exist a subsequence {nj} and a sequence of signs {sj} such that
u =

P∞
j=1 sjχInj t ∈ λ. Then

{
∞X
j=1

sjminj}i = {
∞X
j=1

sj
X
l∈Inj

tlxl · yi}i = {
∞X
l=1

ulxl · yi}i

converges. Hence, M is a signed K-matrix so the diagonal of M con-
verges to 0 by the signed version of the Antosik-Mikusinski Matrix Theorem
([Sw1]2.2.4). But, this contradicts (#).

Using the result above we establish a further version of the Orlicz-Pettis
Theorem in this setting.
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Theorem 2. Let λ have signed-WGHP. If the series
P

j xj is λ multiplier
convergent in E with respect to w(E,F ), then for each w(F,E) compact
(countably compact) subset K ⊂ F and each t ∈ λ, the series

P∞
j=1 tjxj · y

are convergent uniformly for y ∈ K.

Proof: Let p be a continuous semi-norm onX. We need to show that the
series

P
j tjxj · y converge uniformly for y ∈ K with respect to p. This will

follow if we can show that this property holds in the quotient space X/p.
Hence, we may assume that p is actually a norm. Define an equivalence
relation∼ on F by y ∼ z iff xj ·y = xj ·z for all j. IfE0 = {

P∞
j=1 sjxj : s ∈ λ,

where
P∞

j=1 sjxj is the w(E,F ) sum of the series}, then x · y = x · z for
every x ∈ E0 when y ∼ z. Let y− be the equivalence class of y ∈ F and set
F− = {f− : f ∈ F}. Define a metric d on F− by

d(y−, z−) =
∞X
j=1

p(xj · (y − z))/2j(1 + p(xj · (y − z)));

note that d is a metric since p is a norm. Define a bilinear mapping

· : E0 × F− → (X, p)

by x · y− = x · y so we may consider the triple E0, F−, (X, p) as above. The
quotient map F → F− is w(F,E)−w(F−, E0) continuous and the inclusion
(F−, w(F−, E0)) ⊂ (F−, d) is continuous so K− is compact (countably
compact) with respect to w(F−, E0) and d and ,therefore, w(F−, E0) =
d on K− and K− is w(F−, E0) sequentially compact. Since the seriesP

j xj is λ multiplier convergent with respect to w(E,F ), the series
P

j xj
is λ multiplier convergent with respect to w(E0, F

−) in the abstract triple
E0,F

−, (X, p). Since K− is sequentially compact in w(F−, E0),by Theorem
1 the series

P∞
j=1 tjxj · y− =

P∞
j=1 tjxj · y converge uniformly for y− ∈ K−

with respect to p.

We consider the special case of Theorems 1 and 2 when E,F are two
vector spaces in duality. Let λ(E,F ) [γ(E,F )] be the polar topology on E
of uniform convergence on σ(F,E) compact [conditionally σ(F,E) sequen-
tially compact ] subsets of F and let τ(E,F ) be the Mackey topology on
E. The topology λ(E,F ) is obviously stronger than the Mackey topology
and can be strictly stronger ([K]9.5.3); the topologies λ(E,F ) and γ(E,F )
are not comparable. From Theorems 1 and 2 we have

Corollary 3. Let λ have signed-WGHP and let E,F be in duality. If the
series

P
j xj is λ multiplier convergent in E with respect to σ(E,F ), then
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P
j xj is λ multiplier convergent with respect to both λ(E,F ) and γ(E,F ).

In particular,
P

j xj is λ multiplier convergent with respect to τ(E,F ).

This result was established in [SS]; see also [WL]. We consider a special
case of Corollary 3. Let ej be the sequence with 1 in the jth coordinate and
0 in the other coordinates. If ν is locally convex topology on λ, then (λ, ν)
is an AK-space if the series

P∞
j=1 tje

j converges to t = {tj} with respect to
ν for every t ∈ λ.

Corollary 4. Let λ have signed-WGHP. The spaces (λ, λ(λ, λβ)) and
(λ, γ(λ, λβ)) are AK-spaces.

Proof: The series
P

j e
j is λ multiplier convergent in σ(λ, λβ) so by

Corollary 3 the series is λ multiplier convergent in λ(λ, λβ) and γ(λ, λβ).
This establishes the result.

This result was established in [SS] and then used to establish Corollary
3.

We now give several applications of the results above.

Example 5. Let Σ be a σ-algebra of subsets of a set S and let ca(Σ,X) be
the space of all X valued countably additive set functions from Σ into X.
Let S(Σ) =span{χσ : σ ∈ Σ} be the space of Σ simple scalar valued func-
tions. If E = S(Σ) and F = ca(Σ,X), then f · μ =

R
S fdμ ,f ∈ E,μ ∈ F,

defines a bilinear map from E × F into X (note that we are only inte-
grating simple functions so no elaborate integration theory is involved). If
{Ej} ⊂ Σ is pairwise disjoint, then the series

P
j χEj is w(S(Σ), ca(Σ,X))

subseries convergent. By Theorem 1 above, the series
P∞

j=1 μ(Ej) converge
uniformly for μ belonging to any conditionally w(ca(Σ,X),S(Σ)) sequen-
tially compact subset of ca(Σ,X). In particular, we have as a special case
the Nikodym Convergence Theorem.

Theorem 6. Let {μj} ⊂ ca(Σ,X) be such that limj μj(E) = μ(E) exists
for every E ∈ Σ. Then {μj} is uniformly countably additive and μ ∈
ca(Σ,X).

Proof: By the observation above, since {μj} is conditionally
w(ca(Σ,X),S(Σ)) sequentially compact, {μj} is uniformly countably addi-
tive. That μ ∈ ca(Σ,X) then follows.

From Theorem 2 we can also derive a result of Graves and Ruess ([GR])
Lemma 6).
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Theorem 7. If K ⊂ ca(Σ,X) is w(ca(Σ,X),S(Σ)) compact, then K is
uniformly countably additive.

We can also obtain the Nikodym Boundedness Theorem for countably
additive set functions from Theorem 2. Let ca(Σ) be the space of scalar
valued countably additive set functions on Σ.

Theorem 8. (Nikodym) Let A ⊂ ca(Σ) be pointwise bounded on Σ. Then
A is uniformly bounded on Σ.

Proof: IfA is not uniformly bounded on Σ, there exist a pairwise disjoint
sequence {Ej} ⊂ Σ and {νj} ⊂ A such that |νj(Ej)| > j ([Sw1]4.7.1).
Consider the abstract triple E = S(Σ), F = ca(Σ) and the bilinear map
(f, μ) → f · μ =

R
S fdμ from E × F → R. Now

P
j χEj is w(S(Σ), ca(Σ))

subseries convergent and {1j νj} is w(ca(Σ),S(Σ)) convergent to 0 so by
Theorem 2 the series

P∞
j=1

1
kνk(Ej) converge uniformly for k ∈ N. In

particular, 1j νj(Ej)→ 0 giving a contradiction.

The version of the Nikodym Boundedness Theorem for vector valued
measures with values in a locally convex space follows directly from the
scalar version above and the Uniform Boundedness Principle.

Next we derive a version of a result of Thomas ([Th]).

Example 9. Let S be a sequentially compact Hausdorff space. Let E =
SC(S,X) be the space of sequentially continuous functions from S into X
and let F = span{δt : t ∈ S}, where δt is the Dirac measure concentrated
at t. Then f · t = f(t) defines a mapping from E × S into X which can
be extended to a bilinear map from E × F into X. Note that S is con-
ditionally w(span{δt : t ∈ S}, SC(S,X)) sequentially compact since S is
sequentially compact [ here we are identifying t with δt ]. Thus, from The-
orem 1 above if λ has signed-WGHP and

P
j fj is λ multiplier convergent

in SC(S,X)with respect the topology of pointwise convergence on S, then
for each t ∈ λ the series

P
j tjfj converges uniformly on S. Similarly, if S

is compact (countably compact), then S is w(span{δt : t ∈ S}, C(S,X))
compact (countably compact) so from Theorem 2 if λ has signed-WGHP
and the series

P
j fj is λ multiplier convergent in C(S,X) with respect to

the topology of pointwise convergence on S, then for each t ∈ λ the seriesP
j tjfj converges uniformly on S. The subseries version of this result is

due to Thomas ([Th]).
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We can also use Theorems 1 and 2 above to derive a version of the
Orlicz-Pettis Theorem for continuous linear operators. Let Z be a locally
convex space and L(Z,X) the space of all continuous linear operators from
Z into X. If A ⊂ Z is a family of bounded subsets of Z, we denote the
topology of uniform convergence on the elements of A by LA(Z,X). If A
consists of the singleton subsets of Z, the topology LA(Z,X) is just the
topology of pointwise convergence on Z and will be denoted by Ls(Z,X);
if A consists of the family of all bounded subsets of Z, then the topology
LA(Z,X) will be denoted by Lb(Z,X). Similar notation will be employed
for any subspace of L(Z,X).

Example 10. Let Z be a locally convex space. Set E = L(Z,X) and
F = Z and define a bilinear mapping · : E×F → X defined by · : (T, z)→
T · z = Tz. Then w(E,F ) is just the topology of pointwise convergence
on Z or Ls(Z,X). If K ⊂ Z is sequentially compact (compact), then K is
conditionally w(Z,L(Z,X)) sequentially compact (w(Z,L(Z,X)) compact)
so if K (C)denotes the set of all sequentially compact (compact) subsets of
Z, from Theorem 1(Theorem 2) above , we have

Theorem 11. Let λ have signed-WGHP. If
P

j Tj is λ multiplier con-
vergent in Ls(Z,X), then

P
j Tj is λ multiplier convergent in LK(Z,X)

(LC(Z,X)).

An operator T ∈ L(Z,X) is completely continuous if T carries weakly
convergent sequences into convergent sequences; denote all such operators
by CC(Z,X). Note that if T is completely continuous, then T carries weak
Cauchy sequences into Cauchy sequences. Now consider the abstract triple
E = CC(Z,X), F = Z and the bilinear map · : E × F → X defined
by · : (T, z) → T · z = Tz. If a subset K ⊂ Z is conditionally weakly
sequentially compact, then K is conditionally w(CC(Z,X), Z) sequentially
compact. If CW denotes the set of all conditionally weakly sequentially
compact subsets of Z, then from Theorem 1 we have

Theorem 12. Let λ have signed-WGHP. If the series
P

j Tj is λ multi-
plier convergent in CCs(Z,X), then

P
j Tj is λ multiplier convergent in

CCCW (Z,X).

An operator T ∈ L(Z,X) is weakly compact if T carries bounded sets to
relatively weakly compact sets; denote all such operators byW (Z,X). The
space Z has the Dunford-Pettis property if every weakly compact operator



162 Li Ronglu and Charles Swartz

from Z into any locally convex space X carries weak Cauchy sequences into
convergent sequences ([E]). Consider the abstract triple E = W (Z,X),
F = Z and the bilinear map · : E × F → X defined by · : (T, z) →
T · z = Tz. If K ⊂ Z is conditionally weakly sequentially compact and Z
has the Dunford-Pettis property, then K is conditionally w(W (Z,X), Z)
sequentially compact. If CW denotes the set of all conditionally weakly
compact subsets of Z, then from Theorem 1 we have

Theorem 13. Let λ have signed-WGHP and assume that Z has the Dunford-
Pettis property. If the series

P
j Tj is λ multiplier convergent in Ws(Z,X),

then
P

j Tj is λ multiplier convergent in WCW (Z,X).

A space Z is almost reflexive if every bounded sequence contains a weak
Cauchy subsequence ([LW]). For example, Banach spaces with separable
duals, quasi-reflexive Banach spaces and c0(S) are almost reflexive ([LW]).
If Z is almost reflexive and has the Dunford-Pettis property, then every
bounded set is conditionally w(W (Z,X), Z) sequentially compact so from
Theorem 1, we have

Theorem 14. Let λ have signed-WGHP and assume that Z is almost
reflexive with the Dunford-Pettis property. If the series

P
j Tj is λmultiplier

convergent inWs(Z,X), then
P

j Tj is λ multiplier convergent inWb(Z,X).

As another application of Theorem 2, we derive an Orlicz-Pettis result
of Stiles for a locally convex TVS with a Schauder basis ([Sti]). Stiles’
version of the Orlicz-Pettis Theorem is for subseries convergent series with
values in an F-space with a Schauder basis and his proof uses the metric
properties of the space. We will establish a version of Stiles’ result for
multiplier convergent series which requires no metrizability assumptions.

Let X be a LCTVS with a Schauder basis {bj} and associated coordi-
nate functionals {fj}. That is, every x ∈ X has a unique series represen-
tation x =

P∞
j=1 tjbj and fj : X → R is defined by hfj , xi = tj . We do

not assume that the coordinate functionals are continuous although this is
the case when X is an F-space ([Sw2] 10.1.13). Define Pi : X → X by
Pix =

Pi
j=1 hfj , xi bj . Let E = X, F = span{Pi : i ∈ N} and let the

bilinear mapping from E×F into X be the extension to F of the mapping
x · Pi = Pix. Let G = span{fi : i ∈ N}.

Theorem 15. Let λ have signed-WGHP. If
P

j xj is λ multiplier conver-
gent with respect to σ(X,G), then

P
j xj is λ multiplier convergent with

respect to the original topology of X.
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Proof: Since a sequence in X is σ(X,G) convergent iff the sequence is
w(E,F ) convergent, the series

P
j xj is λmultiplier convergent with respect

to w(E,F ). Now {Pi : i ∈ N} is relatively w(F,E) sequentially compact
since Pix → x for every x ∈ X. By Theorem 2, for every t ∈ λ the seriesP∞

j=1 tjPixj converge uniformly for i ∈ N. Let U be a closed neighborhood
of 0 in X. There exists N such that

P∞
j=m tjPixj = Pi(

P∞
j=m tjxj) ∈ U for

m ≥ N, i ∈ N. Let i→∞ giving
P∞

j=m tjxj ∈ U for m ≥ N .
Note that we did not use the continuity of the coordinate functionals in

the proof so the topology of X may not even be comparable to σ(X,G).
We next consider a more general situation than that encountered in

Stiles’ result. Assume that there exists a sequence of linear operators Pi :
X → X such that for each x ∈ X, x =

P∞
i=1 Pix [convergence in X]. When

each Pi is continuous, {Pi} is called a Schauder decomposition . If X has a
Schauder basis {bi} with coordinate functionals {fi}, then Pix = hfi, xi bi
is an example of this situation. Let E = X,F = span{Pi : i ∈ N} and
let the bilinear mapping from E × F into X be the extension of the map
(x,Pi)→ x · Pi = Pix.

Theorem 16. Let λ have signed-WGHP and assume that each Pi is w(E,F )−
X continuous. If the series

P
j xj is λ multiplier convergent with respect to

w(E,F ), then the series
P

j xj is λ multiplier convergent in X with respect
to the original topology.

Proof: Define Sn : X → X by Sn =
Pn

i=1 Pi. Then {Sn : n ∈ N}
is w(F,E) sequentially compact so by Theorem 2 for each t ∈ λ the seriesP∞

j=1 tjSnxj converge uniformly for n ∈ N. Let U be a closed neighborhood
of 0 in X. There exists N such that

P∞
j=m tjSnxj = Sn(

P∞
j=m tjxj) ∈ U

for m ≥ N,n ∈N. Letting n→∞ gives
P∞

j=m tjxj ∈ U for m ≥ N .
We give an example where the theorem above is applicable.

Example 17. Let Y be a LCTVS and let X be a vector space of Y
valued sequences containing the space of sequences which are eventually
0. Then X is an AK-space if the coordinate functionals fj : X → Y ,
fj({xj}) = xj are continuous for every j and each x = {xj} has a repre-
sentation x =

P∞
j=1 e

j ⊗ xj [ here e
j ⊗ x denotes the sequence with x in

the jth coordinate and 0 in the other coordinates]. The space X has the
property (I) if the injections x → ej ⊗ x are continuous from Y into X.
If Pj : X → X is defined by Pj({xj}) = ej ⊗ xj , then {Pj} is a Schauder
decomposition for X. If X has property (I), then the topology of coordi-
natewise convergence is equal to w(E,F ) so the result above applies and



164 Li Ronglu and Charles Swartz

if λ has signed-WGHP, then any series which is λ multiplier convergent in
the topology of coordinatewise convergence converges in the topology of X.

For examples where the result above applies let Y be a normed space.
If 1≤ p <∞, then lp(Y ) and c0(Y ) are AK-spaces satisfying the conditions
in the example above.

We use Theorem 1 to derive Stuart’s Theorem on the completeness of
β-duals. First, we have the following uniform convergence result.

Theorem 18. Let λ have signed-WGHP. Assume that
P

j xij is λ multi-
plier convergent for every i ∈ N and that limi

P∞
j=1 tjxij exists for every

t ∈ λ with xj = limi xij for every j. Then for every t ∈ λ the seriesP∞
j=1 tjxij converge uniformly for i ∈ N, the series

P
j xj is λ multiplier

convergent and limi
P∞

j=1 tjxij =
P∞

j=1 tjxj .

Proof: For every i ∈ N define a linear map fi : λ → X by fi(t) =P∞
j=1 tjxij and set F = span{fi : i ∈ N}. Consider the abstract triple

E = λ, F and X and let the bilinear mapping from E × F into X be the
extension of the map (t, fi) → t · fi = fi(t). We first claim that the seriesP

j e
j is λ multiplier convergent with respect to w(E,F ). For if t ∈ λ,

∞X
j=1

tje
j · fi =

∞X
j=1

tjfi(e
j) =

∞X
j=1

tjxij

converges for every i. Now {fi} is conditionally w(F,E) sequentially com-
pact since {t · fi} = {P∞

j=1 tjxij} converges for every t ∈ λ. Theorem 1
implies that the series

P∞
j=1 tjfi(e

j) =
P∞

j=1 tjxij converge uniformly for
i ∈ N.

Let x = limi
P∞

j=1 tjxij . We claim that x =
P∞

j=1 tjxj . Let U be
a neighborhood of 0 in X and pick a neighborhood ,V , of 0 such that
V + V + V ⊂ U . There exists N such that

P∞
j=m tjxij ∈ V for m ≥ N and

all i ∈ N. Fix m ≥ N and pick i = i(m) such that x−P∞
j=1 tjxij ∈ V andPm

j=1 tj(xij − xj) ∈ V . Then

x−
mX
j=1

tjxj = x−
∞X
j=1

tjxij+
mX
j=1

tj(xij−xj)+
∞X

j=m+1

tjxij ∈ V +V +V ⊂ U

and the result follows.
Stuart’s result follows immediately from Theorem 18. Recall the β-dual

of λ with respect to X is λβX = {x = {xj} :
P∞

j=1 tjxj = t ·x converges for
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every t = {tj} ∈ λ}. Then E = λ, F = λβX and X form an abstract triple
with the bilinear map (t, x)→ t · x. Stuart’s result asserts that w(λβX , λ)
is sequentially complete if X is sequentially complete ([St1],[St2],[Sw1]).
If {xk = {xkj}} is w(λβX , λ) Cauchy, then for each k the sequence {xkj }j
is Cauchy in X and,therefore, convergent in X. Thus, the conditions of
Theorem 18 are satisfied and Stuart’s result follows.

Theorem 18 can be viewed as a weak form of the Hahn-Schur Theorem
([Sw1]). If stronger gliding hump assumptions are placed on the multiplier
space λ, stronger versions of the Hahn-Schur Theorem can be obtained (see
[Sw2]).

We can also derive a version of Kalton’s Theorem on subseries conver-
gence in the space of compact operators ([Sw1] 10.5.6). Let X and Y be
normed spaces and let K(X,Y ) be the space of all compact operators from
X into Y ( an operator T ∈ L(X,Y ) is compact if T carries bounded sets
into relatively compact sets ). The space X has the DF property if every
weak* subseries convergent series in X 0 is k·k subseries convergent ([DF];
Diestel and Faires have shown that for B-spaces this is equivalent to X 0

containing no subspace isomorphic to l∞).

Theorem 19. Let X and Y be normed spaces and let X have the DF
property. If the series

P
j Tj is subseries convergent in the weak operator

topology of K(X,Y ), then the series is subseries convergent in the norm
topology of K(X,Y ).

Proof: Each Tj has separable range so we may assume that Y is sepa-
rable by replacing Y with ∪∞j=1TjX. By Lemma 10.1.8 of [Sw1] it suffices
to show that kTjk→ 0 or, equivalently,

°°°T 0j°°°→ 0. Pick y0j ∈ Y 0,
°°°y0j°°° = 1,

such that
°°°T 0j°°° ≤ °°°T 0jy0j°°° + 1/j. By the separability of Y there exists a

subsequence {y0nj} which is weak* convergent to some y0 ∈ Y 0; for conve-
nience assume that the sequence {y0j} is weak* convergent to y0. Consider
the abstract triple E = {T 0 : T ∈ K(X,Y )}, F = Y 0 and (X 0, k·k) with the
bilinear map E × F → (X 0, k·k) defined by (T 0, y0) → T 0 · y0 = T 0y0. For
each z0 ∈ Y 0, the series

P
j T

0
jz
0 is weak* subseries convergent in X 0 and

is, therefore, subseries convergent in (X 0, k·k) by the DF property. Hence,
the series

P
j T

0
j is w(E,F ) subseries convergent. The sequence {y0j} is rel-

atively w(F,E) sequentially compact since k·k − limT 0y0j = T 0y0 for every
T ∈ K(X,Y ) ([DS]VI.5.6). By Theorem 2 the series

P∞
j=1 T

0
jy
0
i converge

uniformly for i ∈ N. In particular,
°°°T 0jy0j°°° → 0 so

°°°T 0j°°° = kTjk → 0 as

desired.
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Finally, we note that the conclusions of Theorems 1 and 2 can be
strengthened if the multiplier space λ satisfies a stronger gliding hump
condition. A subset Λ ⊂ λ , where λ is a K-space, has the signed strong
gliding hump property (signed-SGHP) if whenever {tk} is a bounded se-
quence in Λ and {Ik} is an increasing sequence of intervals, there exist a
sequence of signs {sk} and a subsequence {nk} such that the coordinate
sum

P∞
k=1 skχInk t

nk ∈ Λ; if all of the signs can be chosen equal to 1,
then Λ has the strong gliding hump property (SGHP). For example, l∞

has SGHP while bs has signed-SGHP but not SGHP ([Sw2]); the subset
{χσ : σ ⊂ N} ⊂ m0 has SGHP while the space m0 does not.

Theorem 20. Let Λ ⊂ λ have signed-SGHP. If
P

j xj is λ multiplier con-
vergent with respect to w(E,F ), then for each conditionally w(F,E) se-
quentially compact ( w(F,E) compact, w(F,E) countably compact ) subset
K ⊂ F and each bounded subset B ⊂ Λ, the series P∞

j=1 tjxj · y converge
uniformly for y ∈ K, t ∈ B.

Proof: If the conclusion fails to hold, there exist a neighborhood, W , in
X ,yk ∈ K, tk ∈ B and an increasing sequence of intervals {Ik} such that

(#)
X
l∈Ik

tkl xl · yk /∈W

for every k. We may assume, by passing to a subsequence if necessary, that
limk x · yk exists for every x ∈ E. Consider the matrix

M = [mij ] = [
X
l∈Ij

tjlxl · yi].

We claim thatM is a signed K matrix as in Theorem 1 ([Sw1]2.2.4). First,
the columns of M converge. Next given an increasing sequence of positive
integers, there exist a sequence of signs {sj} and a subsequence {nj} such
that u =

P∞
k=1 skχInk t

nk ∈ Λ. Then

{
∞X
j=1

sjminj}i = {
∞X
j=1

sj
X
l∈Inj

t
nj
l xl · yi}i = {

∞X
l=1

ulxl · yi}i

converges. Hence, M is a signed K matrix so the diagonal of M con-
verges to 0 by the signed version of the Antosik-Mikusinski Matrix Theorem
([Sw1]2.2.4). But, this contradicts (#).

The proof of the statements in parentheses follow as in the proof of
Theorem 2.
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If the multiplier space Λ ⊂ λ has signed-SGHP, then the conclusion of
Corollary 3 can be improved.

Corollary 21. Let Λ ⊂ λ have signed-SGHP and let E,F be in duality.
If the series

P
j xj is λ multiplier convergent with respect to σ(E,F ), then

the series
P∞

j=1 tjxj converge uniformly for t belonging to bounded subsets
of Λ with respect to both λ(E,F ) and γ(E,F ).

Corollary 21 covers the case of subseries convergent series (Λ = {χσ :
σ ⊂ N} ⊂ m0 = λ) and bounded multiplier convergent series (Λ the unit
ball of l∞).

Using Theorem 20 we can also obtain an improved conclusion in Theo-
rem 6. In particular, if {Ej} is a pairwise disjoint sequence from Σ, then
the series

P∞
j=1 χE(j)μi(Ej) converge uniformly for i ∈ N, E ∈ Σ. That is,

the series
P∞

j=1 μi(Ej) are uniformly unordered convergent for i ∈N.
Similarly, we can obtain an improvement to the statements in Example

9 if the multiplier space λ has signed-SGHP. If λ has signed-SGHP and the
series

P
j fj is λ multiplier convergent in SC(S,X) (C(S,X)) with respect

to the topology of pointwise convergence on S, then the series
P∞

j=1 tjfj(s)
converge uniformly for s ∈ S and t belonging to bounded subsets of λ
(Theorem 20).

We can also obtain a strengthened version of Stuart’s completeness
result given in Theorem 18.

Theorem 22. Let λ have signed-SGHP. Assume that
P

j xij is λmultiplier
convergent for each i ∈ N and that limi

P∞
j=1 tjxij exists for each t ∈ λ with

xj = limi xij for every j. Then the series
P∞

j=1 tjxij converge uniformly
for t belonging to bounded subsets of Λ, the series

P
j xj is λ multiplier

convergent and limi
P∞

j=1 tjxij =
P∞

j=1 tjxj uniformly for t belonging to
bounded subsets of λ.

The proof of Theorem 18 carries forward using Theorem 20 in place
of Theorem 1. Theorem 22 can be viewed as a version of the Hahn-Schur
Theorem for multiplier convergent series (see [Sw2]).
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