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Abstract
In this note we consider a class of groups of conformal auto-

morphisms of closed Riemann surfaces containing those which
can be lifted to some Schottky uniformization. These groups
are those which satisfy a necessary condition for the Schottky
lifting property. We find that all these groups have upper bound
12(g − 1), where g ≥ 2 is the genus of the surface. We also
describe a sequence of infinite genera g1 < g2 < · · · for which
these upper bound is attained. Also lower bounds are found, for
instance, (i) 4(g+1) for even genus and 8(g−1) for odd genus.
Also, for cyclic groups in such a family sharp upper bounds are
given.

Subjclass : [2000] Primary 30F10, 30F40
Keywords : Schottky groups, Riemann surfaces, conformal
automorphisms

∗Partially supported by projects UTFSM 12.01.22, Fondecyt 1000715 and
Fondecyt 1010093.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172001000200002

http://dx.doi.org/10.4067/S0716-09172001000200002


140 Rubén Hidalgo

Introduction

Retrosection theorem asserts that for each closed Riemann surface S,
there are a Schottky group G, with region of discontinuity Ω, and a
Galois covering P : Ω → S with G as covering group. We say that
(Ω, G, P : Ω → S) is a Schottky uniformization of S.

Assume that we are also given a group H of conformal automor-
phisms of S. We may ask for the existence of a Schottky uniformiza-
tion of S for which the group H lifts. If such an uniformization exists,
then we say that H is of Schottky type.

Is a trivial fact that each group H of conformal automorphisms
of the Riemann sphere is of Schottky type. In genus one, we have
that the automorphisms of order three, four and six, having fixed
points, cannot be lifted to any Schottky uniformization of genus one.
Moreover, if H does not contains any of these transformations, then
it is of Schottky type [8].

In the case of genus greater or equal to two, the group H is neces-
sarily finite (the order is bounded by 84(g− 1), the Hurwitz’s bound).
In [8] we have found a necessary condition, called condition (A), to be
satisfied by H in order for it to be of Schottky type.

In general, condition (A) is not sufficient for H to be of Schottky
type. In [10] there is an example of a group isomorphic to S5 acting on
a surface of genus 56 satisfying condition (A) but not of Schottky type.
In section 2 we show another example in genus four of a group of con-
formal automorphisms isomorphic to S5 which also satisfies condition
(A) but not of Schottky type.

On the other hand, condition (A) turns out to be sufficient for
abelian groups, dihedral groups, the alternating groups A4, A5 and
the symmetric group S4 (see [7], [9] and [10]).

Groups satisfying automatically condition (A) are given by (i)
embeddable groups, that is, the groups that can be embedded into
three-dimensional Euclidean space as restrictions of rotations [18]; (ii)
conformal groups acting free fixed points; (iii) dihedral groups; and
(iv) finite groups of orientation-preserving homeomorphisms of the
boundary of a handlebody which can be extended to the handlebody
(Nielsen’s realization problem [11] asserts that the Schottky type prop-
erty is equivalent to the this extendability property (see also [15] and
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[19]).

A group H of conformal automorphisms of a closed Riemann sur-
face S is called triangular if S/H is the Riemann sphere with exactly
three branch values. In section 2 (see proposition 1) we note that trian-
gular groups (in genus greater or equal to two) cannot be of Schottky
type. It is easy to see that cyclic triangular groups cannot satisfy con-
dition (A). The example of section 2 is a triangular group, isomorphic
the symmetric group in five letters, acting in genus four which satisfies
condition (A) but not of Schottky type.

A group H of conformal automorphisms which is not triangular
(in genus g ≥ 2) has order at most 12(g − 1) as consequence of the
Riemann-Hurwitz’s formula [4]. In particular, this holds for a group
of conformal automorphisms of Schottky type. We conjecture that a
group satisfying condition (A) of order 12(g− 1) must be of Schottky
type. A first evidence of this is given in some way by theorem 6.

In these notes we compute some bounds for non-triangular groups
of conformal automorphisms of closed Riemann surfaces of genus g ≥
2, satisfying condition (A). The bounds obtained in this paper are
the same as the ones obtained in [19], [16] and [15], for the class of
conformal groups of Schottky type. It appears that groups satisfying
condition (A) which are not of Schottky type are, in some sense, few
in comparison to the ones which are of Schottky type.

The above permits us to conjecture that condition (A) is, in mostly
of the cases, a sufficient condition for the group to be of Schottky type.
A natural question is to determine which special properties have those
groups for which condition (A) holds but are not of Schottky type. A
discussion about this will appear elsewhere.

If the group is not triangular, satisfies condition (A) and its order
is bigger or equal than 4(g − 1), then we have that its order has the

form
4n

(n− 2)
(g − 1), for some n ≥ 3 (see corollary 6). For n = 3 we

have the maximum order 12(g − 1).

For abelian groups, satisfying condition (A) (equivalently, of Schot-
tky type), we obtain that the order is at most 2(g + 1) if g 6= 5 and
16 for g = 5.

In section 5 we use similar arguments as in [12] to obtain an infinite
sequence of positive integers g1 = 2, g2 = 3, g3 = 5, g4 = 17, ...., for
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which there is a group of automorphisms of Schottky type of order
12(gi − 1) acting on a Riemann surface of genus gi.

In section 6, we construct explicit pairs (S, H), where S is a closed
Riemann surface of genus g ≥ 2 and H is a group of conformal auto-
morphisms of S, of Schottky type and order:

(i) 4(g + 1), every g ≥ 2;

(ii) 8(g − 1), if g is odd;

(iii) 2(g + 1) if g is even (resp., 2g if g is odd) and H a cyclic group;

(iv) 16 if g = 5 and H abelian group.

As a consequence of this, the minimal bound for groups satisfying
condition (A) is given by 4(g + 1) (resp. 8(g − 1)) for g even (resp.
odd).

In order to connect this with the works of McCullough, Miller and
Zimmermann, we have written section 7. There we consider finite
groups of orientation-preserving homeomorphisms of a handlebody of
genus g. They correspond exactly to the finite groups of conformal
automorphisms of some Riemann surface that can be lifted to some
Schottky uniformization (see [19] and [11]). As a consequence of the
results obtained in this note, we obtain again the bounds of [15], [16]
and [19].

1. Preliminaries and Condition (A)

A group H of conformal automorphisms of a Riemann surface S is
called triangular if the quotient surface S/H has signature (0, 3; v, w, k),
that is, it is a sphere with three singular points.

A purely loxodromic Kleinian group isomorphic to a free group of
finite rank k is called a Schottky group of genus k. We reefer to the
papers [3], [13] and [14] for generalities on Schottky groups.

A Schottky uniformization of S is a triple (Ω, G, π : Ω → S), where
G is a Schottky group with region of discontinuity Ω and π : Ω → S
is a regular holomorphic covering with G as covering group.
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A Kleinian group K containing a Schottky group G as a subgroup
of finite index is called a Kleinian finite extension of G. If G is also
normal in K we call K a Kleinian finite normal extension of G. In the
above cases, the groups K and G have the same region of discontinuity
(see [13]).

Kleinian finite normal extensions of Schottky groups appear in the
following way. Let S be a closed Riemann surface of genus g and let
H be a group of conformal automorphisms (of finite order if g ≤ 1).
Assume there is a Schottky uniformization (Ω, G, π : Ω → S) of S,
for which the group H lifts as a group of conformal automorphisms of
Ω(G) (we say that H is of Schottky type).

Let us consider the group K generated by the lifting of H. Clearly,
the group K contains G as a normal subgroup of finite index. Since ev-
ery conformal automorphisms of the region of discontinuity of a Schot-
tky group is a Möbius transformation [1], the group K is a Kleinian
finite normal extension of the Schottky group G. From the above ar-
gument, we see that all Kleinian finite normal extensions of Schottky
groups arise in this way. The following gives information about the
elliptic transformations of K.

Theorem 1. Let K be a Kleinian finite normal extension of a Schot-
tky group G, and Ω the region of discontinuity of them. If h ∈ K is
an elliptic transformation, then either both fixed points of h belong to
Ω or there exists a loxodromic element g ∈ G commuting with h.

The proof can be found in [8]. Before to write condition (A), let
us recall how it appears. Let us consider a closed Riemann surface S
of genus g ≥ 2 and a group H of conformal automorphisms of S of
Schottky type. Let (Ω, G, π : Ω → S) be a Schottky uniformization of
the surface S such that every element of H can be lifted to a conformal
automorphism of Ω. Denote by K the group generated by the liftings
of the elements of H to Ω by π : Ω → S. The group K is a Kleinian
finite normal extension of G with index equal to the order of H.

For a point p ∈ S, we define the stabilizer of p in H as the sub-
group H(p) of H consisting of those elements that fix the point p.
Generically, H(p) consists only of the identity element.

For h ∈ H(p), of order greater than 2; let (U, z) any chart of S
such that p belongs to U and z(p) = 0. In this chart h looks locally
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as the map z → e2iθ, where θ is well defined modulo 2π. We choose
α(h, p) to be the representative of the above θ in the open interval
(−π, π). This definition is independent of the choice of chart. We call
this number the rotation number of h at p. Now, as a consequence of
Theorem 1 we obtain the following property, called condition (A), to
be satisfy by the group H.

Condition (A)

The set of fixed points of the non-trivial elements of H can be put
into pairs satisfying the following properties.

(A1) If {p, q} is such a pair, then p 6= q, H(p) = H(q) and α(h, p) =
−α(h, q), for h ∈ H(p) = H(q) of order greater than two.

(A2) If {p, q} and {r, t} are two such pairs, then either {p, q}∩{r, t} =
∅ or {p, q} = {r, t}.

(A3) If {p, q} is a pair and t ∈ H is so that t(p) = q, then t has order
two.

(A4) If p is fixed point of some non-trivial element of H, then there
is another fixed point q so that {p, q} is one of the above pairs.

Condition (A*)

This is the same as condition (A), but replacing (A3) by (A3*) for
each pair {p, q} there is no transformation t ∈ H so that t(p) = q.

Remarks.

(1) If the order of H is odd, then condition (A) is equivalent to
condition (A*).

(2) If the group H is cyclic, then part (A3) cannot happen. In partic-
ular, H cannot be a cyclic triangular group satisfying condition
(A).

(3) If H is abelian and there is a pair {p, q} permuted by some
involution, then H(p) = H(q) is the group in two elements.
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(4) It is not difficult to assume the property that if {p, q} is a pair,
then for every h ∈ H we have that {h(p), h(q)} is also one of our
pairs.

(5) If the group H acts freely or it is isomorphic to a dihedral group,
then it satisfies trivially condition (A).

(6) If H is a group of conformal automorphisms satisfying condition
(A), then every subgroup K < H also satisfies it.

From now on, we assume the pairing to satisfy part (3) of the above
remark. We say that two pairs {p, q} and {r, t} are equivalent under
H if there is an element h ∈ H such that {h(p), h(q)} = {r, t}.

2. Triangular Groups and Schottky Type Prop-
erty

In this section, we observe that a triangular group cannot be of Schot-
tky type. More precisely,

Proposition 1. Let S be a closed Riemann surface of genus g ≥ 2,
and H be a triangular group of conformal automorphisms of S. Then
there is no Schottky uniformization of S for which the group H lifts.

Proof. Let us assume there is a Schottky uniformization (Ω, G, π :
Ω → S) of S for which the group H lifts. Consider the group K,
generated by G and the lifts of H. As observed before, the group K is
geometrically finite Kleinian group with Ω as region of discontinuity,
and without parabolic elements. As a consequence (see the work of
Keen, Maskit and Series in [5]), we have that K is a totally parabolic
Kleinian group and, in particular, the connected components of Ω are
round discs. Since the region of discontinuity of a Schottky group is
connected, we have that Ω is just a round disc, a contradiction. 2

A natural question, after the above result, is the following: Is there
some triangular group (for genus greater or equal to two) satisfying
condition (A)? It is clear that they cannot satisfy condition (A*).

In genus four there is an example of a closed Riemann surface with
a group H of automorphisms, isomorphic to S5, which is triangular and
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satisfies condition (A). Such an example [6] is given by the algebraic
curve in CP3 defined by

z1z4 + z2z3 = 0 z2
1z3 + z1z

2
2 + z2

3z4 + z2z
2
4 = 0,

where the group has generators

A =




1 0 0 0
0 w 0 0
0 0 w2 0
0 0 0 w3




and

B =




w2 + w3 −w3 w −1− w3

−w2 1 + w2 + w3 1 + w w
w4 1 + w4 1 + w2 + w3 −w3

−1− w2 w4 −w2 w2 + w3




where w is a quintic primitive square root of unity.
The surface S/H is the Riemann sphere branched at three points

with branching 2, 4 and 5, respectively. The subgroups of H, acting
with fixed points, are given by:

(i) Cyclic groups K of order 4, acting with two fixed points, so
that S/K is a genus one surface branched at two points (with
branching 4) and K satisfies condition (A);

(ii) Cyclic groups K of order 5 acting with four fixed points, with
S/K a genus zero branched at four points with branching 5 and
K satisfying condition (A); and

(iii) Cyclic groups of order 6 K so that the only tranformation with
fixed points is given by the element of order two. The quotient
S/K is a genus one surface branched at two points with branch-
ing 2 and, in paticular satisfying condition (A);

It follows from the above that the triangular group H satisfy con-
dition (A). For cyclic triangular groups, part (2) of the remark at the
end of section 1 asserts that they cannot satisfy condition (A).
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Corollary 1. Let S be a closed Riemann surface of genus g ≥ 2 and
f : S → S be a conformal automorphism of order N . If N > 2(g + 1)
then the cyclic group generated by the automorphism f cannot satisfy
the condition (A) and, in particular, cannot be lifted to any Schottky
covering of S.

Proof. It is known (see [17]) that if N > 2(g+1), then the quotient
Riemann surface S/ < f > has signature (0, 3; v, w, k). As remarked
before, a cyclic group satisfying condition (A) cannot be triangular.
2

Compare Corollary 1 to Theorems 3 and 4. If g = 3, then Corol-
lary 1 asserts that cyclic groups of order greater than 8 cannot be
lifted to Schottky coverings. In this genus there is exactly one class
of non-hyperelliptic Riemann surfaces admitting an automorphism of
order 7 and, for this automorphism, the quotient surface is the sphere
with three branch points of order 7. Proposition 1 implies that this
automorphism of order seven cannot be lifted to any Schottky cover-
ing.

3. The Canonical Homomorphism of Condition (A)

Let S and H be a closed Riemann surface of genus g ≥ 2 and a
group of conformal automorphisms satisfying condition (A), respec-
tively. Consider the natural holomorphic branched regular covering
Π : S → S/H induced by the action of H on S. The branch locus
B of this covering corresponds to the projection of the fixed points of
non-trivial elements of H.

Let {pi, qi}, {rj, tj}, i = 1, ..., k1, j = 1, ..., k2, be a maximal set of
non-equivalent pairs under H such that, the orbit under H of pi does
not contain qi and the orbit under H of rj contains tj. Let us denote
by vi the order of the group H(pi) and by wj the order of H(rj).

The surface S/H has signature (see [4]) of the form

(γ, 2k1 + k2; v1, v1, ..., vk1 , vk1 , w1, ..., wk2).

Remark. If the group H is cyclic, then k2 = 0. If H is abelian and
k2 6= 0, then wj = 2.
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If N denotes the order of the group H, then the Riemann-Hurwitz’s
formula [4] implies the equality

2(g − 1) = N(2(γ − 1) + 2Σk1
i=1(1− 1/vi) + Σk2

j=1(1− 1/wj)).

If we denote by J = 2(γ − 1) + 2Σk1
i=1(1− 1/vi) + Σk2

j=1(1− 1/wj)),
then J > 0 (since g > 1) and N is maximal for J minimal.

Let us denote by X the Riemann surface S/H − B and by S ′ the
Riemann surface S minus the fixed points of the non-trivial elements
of H. Consider the unbranched regular covering Π : S ′ → X obtained
by restriction of Π : S → S/H. Let x be any point in X and consider
oriented simple loops, based at x, say αn, βn, δi, ηi and θj, n = 1, ..., γ,
i = 1, ..., k1 and j = 1, ..., k2, satisfying the following properties (see
figure 1).

(1) The loop θj is free homotopic to a simple loop around the punc-
ture determined by Π(rj), and it is oriented such that the punc-
ture is at the left side.

(2) The loop δi is free homotopic to a simple loop around the punc-
ture determined by Π(pi), and it is oriented such that the punc-
ture is at the left side.

(3) The loop ηi is free homotopic to a simple loop around the punc-
ture determined by Π(qi), and it is oriented such that the punc-
ture is at the left side.

(4) The loops αn and βn form a canonical basis for the surface S,
and oriented such that the intersection number of αi and βi (in
this order) is +1.

The above set of loops is a basis for the fundamental group of X
with the following presentation

Π1(X, x) =< αn, βn, δi, ηi, θj; Π
γ
n=1[αn, βn]Πk1

i=1δiΠ
k1
i=1ηiΠ

k2
j=1θj = 1 >,

where [a, b] is the commutator of a and b, that is, aba−1b−1. This
is a free group if and only if k1 + k2 > 0.

We have a canonical surjective homomorphism Φ : Π1(X, x) → H,
induced by the action of H on S. In the kernel of this homomorphism
we have the elements δiηi, δvi

i and θ
wj

j .
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4. Bounds for Conformal Groups with Condition
(A)

In this section we consider a closed Riemann surfaces S of genus g ≥ 2
and a group H of conformal automorphisms of S satisfying condi-
tion (A). Moreover, we assume that S/H has no signature of type
(0, 3; p, q, r), that is, H is not triangular. By Riemann-Hurwitz’s for-
mula, it is direct to see that the order of H is at most 12(g − 1). If
H is abelian, then its order is at most 2(g + 1). If H is cyclic, then
its order is at most 2g (resp. 2(g + 1)) if g is odd (resp. even). If the
order of H is odd, then it is at most 3(g − 1). If H does not contain
non-abelian Dihedral subgroups, then its order is at most 6(g − 1).
The same situation occurs for the subclass of groups that have the
lifting property [15].

Theorem 2. Let S be a closed Riemann surface of genus g ≥ 2.
Let H be a non-triangular group of conformal automorphisms of S
satisfying condition (A). If the order of H is greater than 8(g − 1),
then its order is 12(g − 1). Moreover, if H satisfies condition (A*),
then the order of H is at most 6(g − 1).
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Corollary 2. Let K be a Kleinian finite normal extension of a Schot-
tky group G of genus g ≥ 2. Then the index of G in K is at most
12(g − 1). Moreover, if the index is greater than 8(g − 1), then it is
exactly 12(g − 1).

A consequence of Theorem 2 together example 6.3 of section 6 is
the following (see also [16]).

Corollary 3. The maximal index for a Kleinian finite normal exten-
sion of a Schottky group of genus g ≥ 2, for g odd, is either 8(g − 1)
or 12(g − 1).

Remark. In [15] has been shown that: if g = 2p + 1, p > 23 a
prime, then the maximal index of a Kleinian finite normal extension
of a Schottky group of genus g is 8(g − 1).

Proof. (Theorem 2.) Let us assume that H satisfy condition (A)
and it is not triangular. By Riemann-Hurwitz’s formula, to find the
maximal values of the order of H, we need to find the minimal values
of J = 2γ − 2 + 2Σk1

i=1(1− 1/vi) + Σk2
j=1(1− 1/wj)).

(A) Case γ ≥ 2. In this case J ≥ 2 and N ≤ g − 1.

(B) Case γ = 1. In this case, J = 2Σk1
i=1(1−1/vi)+Σk2

j=1(1−1/wj)).
Since J > 0, then k1 + k2 ≥ 1.

(B.1) If k1 + k2 = 1, then J = 2(1− 1/v1) ≥ 1 or J = 1− 1/w1 ≥ 1/2.
In the first case N ≤ 2(g−1) and in the second case N ≤ 4(g−1).

(B.2) If k1 + k2 ≥ 2, then J = 2k1 + k2 − (2Σk1
i=11/vi + Σk2

j=11/wj).

We need to find the maximal value of (2Σk1
i=11/vi +Σk2

j=11/wj) ≥
2k1/2 + k2/2 = k1 + k2/2 ≥ 1. So, N ≤ 2(g − 1).

(C) Case γ = 0. In this case J = −2 + 2Σk1
i=1(1 − 1/vi) + Σk2

j=1(1 −
1/wj) = (2k1 +k2−2)−(2Σk1

i=11/vi +Σk2
j=11/wj). By hypotheses,

2k1 + k2 > 3.

(C.1) If 2k1 + k2 ≥ 6, then J ≥ 2k1 + k2 − 2 − 2k1/2 − k2/2 = k1 +
k2/2− 2 ≥ 3− 2 = 1. So, N ≤ 2(g − 1).
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(C.2) If 2k1 + k2 = 5, then the only possible pairs (k1, k2) are (0,5),
(1,3) or (2,1).

(1) If k1 = 0 and k2 = 5, then J = 5−2−Σ5
j=11/wj ≥ 3−5/2 =

1/2. So, N ≤ 4(g − 1).

(2) If k1 = 1 and k2 = 3, then J = 2+3−2−2/v1−Σ3
j=11/wj ≥

3− 1− 3/2 = 1/2. So, N ≤ 4(g − 1).

(3) If k1 = 2 and k2 = 1, then J = 4+1−2−2Σ2
i=11/vi−1/w1 ≥

3− 2− 1/2 = 1/2. So, N ≤ 4(g − 1).

(C.3) If 2k1 +k2 = 4, then the possible pairs for (k1, k2) are (0,4), (1,2)
or (2,0).

(1) If k1 = 0 and k2 = 4, then J = 4 − 2 − Σ4
j=11/wj = 2 −

Σ4
j=11/wj ≥ 2−(1/2+1/2+1/2+1/3) = 1/6. So, N ≤ 12(g−1).

(2) If k1 = 1 and k2 = 2, then J = 2+2−2−2/v1−Σ2
j=11/wj =

2−2/v1−Σ2
j=11/wj ≥ 2−1−1/2−1/3 = 1/6. So N ≤ 12(g−1).

(3) If k1 = 2 and k2 = 0, then J = 4 − 2 − 2Σ2
i=11/vi = 2 −

2Σ2
i=11/vi ≥ 2− 2(1/2 + 1/3) = 1/3. So, N ≤ 6(g − 1).

The largest of the above bounds for the order of H is 12(g − 1).
Let us assume the order of H to be greater than 8(g − 1). From the
above computations, we only need to take care of cases (C.3)-(1) and
(C.3)-(2). In the first case, we have

2(g − 1) = N(2− Σ4
j=11/wj) > 8(g − 1)(2− Σ4

j=11/wj),

that is, Σ4
j=11/wj > 7/4. We may assume 2 ≤ w1 ≤ w2 ≤ w3 ≤ w4 <

∞. The only 4−tuples that satisfy the above inequality are (2, 2, 2, 2)
and (2, 2, 2, 3). The first 4−tuple implies g = 1, a contradiction. The
second 4−tuple implies N = 12(g − 1) in which case we are done. In
the second case, we have

2(g − 1) = N(2− 2/v1 −Σ2
j=11/wj) > 8(g − 1)(2− 2/v1 −Σ2

j=11/wj),

that is, 2/v1 + Σ2
j=11/wj > 7/4. If we assume w1 ≤ w2, then the only

3−tuples (v1, w1, w2) satisfying the above inequality are (2, 2, 2) and
(2, 2, 3). In the first one, we have g = 1, a contradiction. The second
3−tuple implies N ≤ 2. In fact, consider the surjective homomorphism
(of section 3)
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Φ : Π1(X, x) → H.

In this case, Π1(X, x) is generated by δ1, η1, θ1 and θ2 with the
only relation δ1η1θ1θ2 = 1. The kernel of the above homomorphism
is a normal subgroup containing the elements δ1η1, δ2

1, θ2
1 and θ3

2.
Consider the smallest normal subgroup T of Π1(X, x) containing the
above elements and let us consider the group Π1(X, x)/T . The order
of this group is greater than N . It is easy to see that this group is
Z/2Z.

In the case that H satisfies condition (A*), we have case (C.3) part
(3). 2

Corollary 4. Let S and H be as in Theorem 2. Then

(1) If H does not contain non-abelian dihedral subgroups, then N ≤
6(g − 1).

(2) If N is odd, then N ≤ 3(g − 1).

Proof. (1) We only need to take care of case (C.3). In that case, we
have three possibilities for the pair (k1, k2). The no existence of non-
abelian Dihedral subgroups of H implies necessarily that wj = 2, for all
j. For the pair (0, 4) it will imply that J = 0, so g = 1, a contradiction.
For the pair (1, 2) we must have J = 1− 2/v1. Since J > 0, we must
have v1 ≥ 3 and J ≥ 1/3. As a consequence N ≤ 6(g − 1).

(2) If N is odd, then H does not have elements of order two. In
particular, k2 = 0 and vi must be odd. From the proof of Theorem 2,
we only need to take care of case (C.3) with k1 = 2 and k2 = 0. In
this case, 0 < J = 2 − 2Σ2

i=11/vi and 3 ≤ v1 ≤ v2. In this situation
we have J ≥ 2/3 and N ≤ 3(g − 1). 2

Corollary 5. Under the same hypotheses of Theorem 2.

(i) If g 6≡ 1 mod 3, and N ≥ 6(g − 1), then either N = 6(g − 1) or
N = 8(g − 1) or N = 12(g − 1).

(ii) If g ≡ 1 mod 3, and N ≥ 6(g − 1), then either N is as in (i) or
N = 20(g − 1)/3.
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Proof. If assume N > 6(g− 1), then in the proof of Theorem 2 we
only need to consider the cases

(a) γ = 0, k1 = 0, k2 = 4; and

(b) γ = 0, k1 = 1, k2 = 2.

Since we know that N ≥ 8(g − 1) implies either N = 8(g − 1) or
N = 12(g − 1), we may assume

(∗) 6(g − 1) < N < 8(g − 1).

In case (a), the Riemann-Hurwitz’s formula implies 2(g − 1) =
N(2− Σ4

i=11/wj). The inequality (∗) implies

5/3 < Σ4
j=11/wj < 7/4.

We may assume w1 ≤ w2 ≤ w3 ≤ w4. Then the only 4−tuple
(w1, w2, w3, w4) satisfying the above is (2, 2, 2, 5), in which case, N =
20(g − 1)/3.

In case (b), the Riemann-Hurwitz’s formula asserts 2(g − 1) =
N(2−2/v1−Σ2

j=11/wj, where we may assume w1 ≤ w2. The inequality
(∗) implies

5/3 < 2/v1 + Σ2
j=11/wj < 7/4.

The only 3−tuple (v1, w1, w2) satisfying the above is (2, 2, 5). Let
us consider the surjective homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, θ1 and θ2 with the
only relation δ1η1θ1θ2. The kernel of the above homomorphism is a
normal subgroup containing the elements θ2

1, θ5
2, δ2

1 and δ1η1. Let us
consider the smallest normal subgroup T of Π1(X, x) containing the
above elements and let us consider the group Π1(X, x)/T . The order
of this group is greater than N . It is easy to see that this group is
Z/2Z and, in particular, N ≤ 2, a contradiction. 2

Corollary 6. Under the same hypotheses of Theorem 2.

If N > 4(g − 1), then N =
4n(g − 1)
(n− 2)

.
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Proof. Let us assume N > 4(g − 1). From the proof of theorem 2,
we only need to consider the following situations:

(1) γ = 0, k1 = 0, k2 = 4.

(2) γ = 0, k1 = 1, k2 = 2.

(3) γ = 0, k1 = 2, k2 = 0.

Since we know that N ≥ 6(g − 1) implies either N = 6(g − 1),

N =
20(g − 1)

3 (in which case g ≡ 1 mod 3), N = 8(g − 1) or N =
12(g − 1), we may, from now on, assume that

(∗) 4(g − 1) < N < 6(g − 1).

In case (1), we may assume w1 ≤ w2 ≤ w2 ≤ w3 ≤ w4. The
Riemann-Hurwitz’s formula implies

2(g − 1) = N(2− Σ4
j=11/wj).

The above equality and (∗) imply

3/2 < Σ4
j=11/wj < 5/3

The only 4−tuples (w1, w2, w3, w4) satisfying the above are (2, 2, 2, n),
n ≥ 7 and (2, 2, 3, k), k ∈ {4, 5}. For the 4−tuple (2, 2, 2, n), n ≥ 7,

the Riemann-Hurwitz’s formula implies N =
4n(g − 1)
(n− 2)

. For the

4−tuple (2, 2, 3, k), k ∈ {4, 5} the Riemann-Hurwitz’s formula im-

plies that either N =
24(g − 1)

5 (in which case g ≡ 1 mod 5) or

N =
30(g − 1)

7 (in which case g ≡ 1 mod 7). These two possibles
values of N have the desired form.

In case (2), we may assume w1 ≤ w2 The Riemann-Hurwitz’s for-
mula implies

2(g − 1) = N(2− 2/v1 − Σ2
j=11/wj).

The above equality and (∗) imply

3/2 < 2/v1 + Σ2
j=11/wj < 5/3.
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The only 3−tuples (v1, w1, w2) satisfying the above are (2, 2, n),
n ≥ 7 and (2, 3, k), k ∈ {4, 5}.

For the 3−tuple (2, 2, n), n ≥ 7, the Riemann-Hurwitz’s formula
implies N ≤ 28(g−1)/5 < 4(g−1) a contradiction to our assumptions
on N . For the 3−tuple (2, 3, 4), consider the surjective homomorphism
of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, θ1 and θ2 with the only
relation δ1η1θ1θ2. The kernel of the above homomorphism is a normal
subgroup containing the elements δ2

1, δ1η1, θ3
1 and θ4

2. Consider the
smallest normal subgroup T of Π1(X, x) containing the above elements
and the group Π1(X, x)/T . The order of this group is greater than N .
It is easy to see that this group is Z/2Z. Then N ≤ 2 a contradiction.
For the 3−tuple (2, 3, 5), consider the surjective homomorphism of
section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, θ1 and θ2 with the only
relation δ1η1θ1θ2. The kernel of the above homomorphism is a normal
subgroup containing the elements δ2

1, δ1η1, θ3
1 and θ5

2. Consider the
smallest normal subgroup T of Π1(X, x) containing the above elements
and the group Π1(X, x)/T . The order of this group is greater than N .
It is easy to see that this group is Z/2Z. Then N ≤ 2 a contradiction.
In the case (3), we may assume v1 ≤ v2. The Riemann-Hurwitz’s
formula implies

2(g − 1) = N(2− 2Σ2
i=11/vi).

The above equality and (∗) implies 3/4 < 1/v1 + 1/v2 < 5/6.
It is easy to see that there is no pair (v1, v2) satisfying the above
inequalities. 2

Theorem 3. Let S be a closed Riemann surface of genus g ≥ 2 and
let H be an abelian group of conformal automorphisms of S satisfying
condition (A). Then the order of H is at most 2(g + 1) (resp., 16) if
g 6= 5 (resp., g = 5). Moreover, the above bounds are the best. In
genus 5 there is a group H isomorphic to Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕
Z/2Z satisfying condition (A), and for every genus there is a group
H isomorphic to Z/2Z⊕ Z/(g + 1)Z satisfying condition (A).
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Proof. The existence of groups H as in Theorem 3 is done in section
6. Let S of genus g ≥ 2 and H be as in the hypotheses. Denote by N
the order of H. The quotient Riemann surface S/H has signature of
type

(γ, 2k1 + k2; v1, v1, v2, v2, ..., vk1 , vk1 , 2, ..., 2).

In this case, the Riemann-Hurwitz’s implies

2(g − 1) = N(2(γ − 1) + 2Σk1
i=1(1− 1/vi) + k2/2).

We look for minimal J such that, 0 < J = 2(γ − 1) + 2Σk1
i=1(1 −

1/vi) + k2/2).

(A) Case γ ≥ 2. In this case, J ≥ 2 and N ≤ g − 1.

(B) Case γ = 1. In this case, J = 2Σk1
i=1(1 − 1/vi) + k2/2. Since

g ≥ 2, we must have k1 + k2 > 0.

(B.1) If k1 > 0, then J ≥ 1 in which case N ≤ g − 1.

(B.2) If k1 = 0, then k2 ≥ 2. In fact, assume k2 = 1 and consider on
the punctured surface X (as defined in section 2) a basis α, β,
θ (also as defined in section 2). Any simple loop free homotopic
to θ lifts to a path and its square lifts to a loop on the surface
S ′ (as defined in section 2). The loop [α, β] lifts to a loop (since
the group H is abelian) and is free homotopic to θ, contradicting
the above. Now, k2 ≥ 2 implies that J ≥ 1 and N ≤ g − 1.

(C) Case γ = 0. In this case , J = −2 + 2Σk1
i=1(1− 1/vi) + k2/2 and

2k1 + k2 ≥ 4.

(C.1) If 2k1 + k2 ≥ 6, then J ≥ 1 and N ≤ 2(g − 1).

(C.2) If 2k1 + k2 = 5, then the only possible pairs (k1, k2) are given by
(0, 5), (1, 3) and (2, 1).

(1) If k1 = 0 and k2 = 5, then J = 5/2− 2 = 1/2 and 4(g− 1) =
N . In particular, 4 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.
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In this case Π1(X, x) is generated by θj, j = 1, ..., 5, with the
only relation θ1θ2θ3θ4θ5 = 1. The kernel of the above homo-
morphism is a normal subgroup containing the elements θ2

j and
the commutators of them. Let us consider the smallest normal
subgroup T of Π1(X, x) containing the above elements and the
group (abelian) Π1(X, x)/T . The order of this group is greater
than N . This group is Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/2Z and, in
particular, N ≤ 16. Since 4 divides N , we have three possibil-
ities for N , that is, either N = 4, N = 8 or N = 16. In the
first case, g = 2, H is isomorphic to Z/2Z⊕ Z/2Z and we have
N = 2(g + 1). In the case N = 8, we have g = 3, H isomorphic
to Z/2Z⊕Z/2Z⊕Z/2Z and we have N = 2(g + 1). In the last
case, N = 16, we have g = 5 and H is isomorphic to Π1(X, x)/T .

(2) If k1 = 1 and k2 = 3, then J = 3/2− 2/v1.

(2.1) If v1 = 2, then J = 1/2 and N = 4(g − 1). Thus 4 divides
N . Let us consider the surjective homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, θj, j = 1, 2, 3, with
the only relation θ1θ2θ3δ1η1 = 1. The kernel of the above ho-
momorphism is a normal subgroup containing the elements θ2

j ,
δ2
1, η2

1, δ1η1 and the commutators of them. Let us consider the
smallest normal subgroup T of Π1(X, x) containing the above
elements and the group (abelian) Π1(X, x)/T . The order of this
group is greater than N . It is easy to see that this group is
Z/2Z ⊕ Z/2Z ⊕ Z/2Z and N ≤ 8. Since 4 divides N , we have
two possibilities for N , that is, either N = 4 or N = 8. In the
first case, g = 2 and H is isomorphic to Z/2Z ⊕ Z/2Z. In the
case N = 8, g = 3 and H is isomorphic to Π1(X, x)/T . Observe
that in both cases N ≤ 2(g + 1)

(2.2) If v1 = 3, then J = 5/6 and 5N = 12(g− 1). In particular,
12 divides N . Let us consider the surjective homomorphism of
section 3

Φ : Π1(X, x) → H.
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In this case Π1(X, x) is generated by δ1, η1, θj, j = 1, 2, 3, with
the only relation θ1θ2θ3δ1η1 = 1. The kernel of the above ho-
momorphism is a normal subgroup containing the elements θ2

j ,
δ3
1, η3

1, δ1η1 and the commutators of them. Let us consider the
smallest normal subgroup T of Π1(X, x) containing the above
elements and the group (abelian) Π1(X, x)/T . The order of this
group is greater than N . It is easy to see that this group is
Z/2Z⊕Z/2Z⊕Z/3Z, so N ≤ 12. Since 12 divides N , we must
have N = 12 and H is the above group. In this case g = 6 and
N = 2g.

(2.3) If v1 ≥ 4, then J ≥ 1 and N ≤ 2(g − 1).

(3) If k1 = 2 and k2 = 1, then J = 5/2 − 2Σ2
i=11/vi. We may

assume 2 ≤ v1 ≤ v2.

(3.1) If v1 = v2 = 2, we can use similar arguments as in case
k1 = 0 and k2 = 5.

(3.2) If v1 = 2 and v2 = 3, then J = 5/6 and 12(g − 1) =
5N . In particular, 12 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, θ1, with the
only relation θ1δ2η2δ1η1 = 1. The kernel of the above homo-
morphism is a normal subgroup containing the elements θ2

1, δ2
1,

η2
1, δ3

2, η3
2, δ1η1, δ2η2 and the commutators of them. Let us con-

sider the smallest normal subgroup T of Π1(X, x) containing the
above elements and the group (abelian) Π1(X, x)/T . The order
of this group is greater than N . It is easy to see that this group
is Z/2Z ⊕ Z/3Z. In particular, N ≤ 6 and since 12 divides N ,
we have a contradiction.

(3.3) If v1 ≥ 2 and v2 ≥ 4, then J ≥ 1 and N ≤ 2(g − 1).

(3.4) If v1 = 3 and v2 ≥ 3, then J ≥ 7/6 and N ≤ 12(g− 1)/7 ≤
2(g + 1).

(C.3) If 2k1 + k2 = 4, then the only possible pairs (k1, k2) are given by
(0, 4), (1, 2) or (2, 0).
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(1) If k1 = 0 and k2 = 4, then J = 0; a contradiction.

(2) If k1 = 1 and k2 = 2, then J = 1− 2/v1. Since J > 0, v1 ≥ 3
and J ≥ 1/3. In this case, N ≤ 6(g − 1).

(3) If k1 = 2 and k2 = 0, then J = 2− 2(1/v1 + 1/v2). We may
assume that 2 ≤ v1 ≤ v2. Since J > 0, (v1, v2) 6= (2, 2).

(3.1) If v1 ≥ 4, then J ≥ 1 and N ≤ 2(g − 1).

(3.2) If v1 = 3 and v2 ≥ 6, then J > 1 and N < 2(g − 1).

(3.3) If v1 = 3 and v2 = 5, then J = 14/15 and 15(g − 1)/7 =
N . In particular, 15 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism
is normal subgroup containing the elements δ3

1, η3
1, δ5

2, η5
2, δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/3Z⊕Z/5Z
and, in particular, N ≤ 15. Since 15 divides N , we have N = 15,
H is the above group and g = 8.

(3.4) If v1 = 3 and v2 = 4, then J = 5/6 and 12(g − 1)/5 =
N . In particular, 12 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism is
a normal subgroup containing the elements δ3

1, η3
1, δ4

2, η4
2, δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/3Z⊕Z/4Z
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and, in particular, N ≤ 12. Since 12 divides N , we have N = 12,
H is the above group and g = 6.

(3.5) If v1 = 3 and v2 = 3, then J = 2/3 and 3(g − 1) =
N . In particular, 3 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism
is a normal subgroup containing the elements δ3

1, η3
1, δ3

2, η3
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/3Z⊕Z/3Z
and, in particular, N ≤ 9. Since 3 divides N , we have three
possibilities for N , that is, N = 3, N = 6 or N = 9. In the first
case g = 2, in the second g = 3 and in the last g = 4. Anyway,
in the three cases we have N < 2(g + 1).

(3.6) If v1 = 2 and v2 ≥ 3, then J = 1− 2/v2 and N = 2v2(g −
1)/(v2 − 2). Let us consider the surjective homomorphism of
section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism is
a normal subgroup containing the elements δ2

1, η2
1, δv2

2 , ηv2
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian ) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/2Z⊕Z/v2Z
and, in particular, N ≤ 2v2. In this case

2(g + 1) = (v2 − 2)N/v2 + 4 ≥ N .
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2

Remark. Observe from the proof that if g = 5, then the maximal
possible order of an abelian group is 16 in which case, it is isomorphic
to the group Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/2Z. If g 6= 5, then the
maximal order is 2(g + 1) in which case the group is isomorphic to
Z/2Z⊕Z/(g + 1)Z. In section 6 we construct explicitly these groups.

Theorem 4. Let S be a closed Riemann surface of genus g ≥ 2 and
let H be a cyclic group of conformal automorphisms of S satisfying
condition (A). Then the order of H can be at most 2(g+1) (resp., 2g)
if g is even (resp., odd). Moreover, in every even genus g (resp., odd
genus) there is a cyclic group H of order 2(g +1) (resp., of order 2g),
satisfying condition (A).

Proof. The last part of Theorem 4, that is, the existence of cyclic
groups of the desired orders is done in section 6. If the group is
cyclic of order N , then the quotient Riemann surface S/H has signa-
ture (γ, 2k1; v1, v1, v2, v2, ..., vk1 , vk1), that is k2 = 0. In this case the
Riemann-Hurwitz’s formula implies the equality

g − 1 = N(γ − 1 + Σk1
i=1(1− 1/vi)).

To find the maximal value for N , we need to find the minimal
possible value for J such that, 0 < J = γ − 1 + Σk1

i=1(1− 1/vi). From
now on, we assume N ≥ 2.

(A) Case γ ≥ 2. In this case, J ≥ 1 and N ≤ g − 1.

(B) Case γ = 1. In this case, J = Σk1
i=1(1− 1/vi) = k1 − Σk1

i=11/vi ≥
k1 − k1/2 = k1/2 ≥ 1/2. Thus, N ≤ 2(g − 1).

(C) Case γ = 0. In this case, k1 ≥ 2 (by hypotheses) and J =
k1 − 1− Σk1

i=11/vi.

(C.1) If k1 ≥ 6, then J ≥ 2 and N ≤ (g − 1)/2.

(C.2) If k1 = 5, then J ≥ 3/2 and N ≤ 2(g − 1)/3.
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(C.3) If k1 = 4, then J ≥ 1 and N ≤ g − 1.

(C.4) If k1 = 3, then J ≥ 1/2 and N ≤ 2(g − 1).

(C.5) If k1 = 2, then J = 1−Σ2
i=11/vi and N = (g−1)/J . Since J > 0,

we cannot have v1 = v2 = 2. We may assume 2 ≥ v1 ≥ v2.

(1) If v1 ≥ 4, then J ≥ 1/2 and N ≤ 2(g − 1).

(2) If v1 = 3 and v2 ≥ 6, then J ≥ 1/2 and N ≤ 2(g − 1).

(3) If v1 = 3 and v2 = 5, then J = 7/15 and N = 15(g −
1)/7. In particular, N is divisible by 15. Consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism
is a normal subgroup containing the elements δ3

1, η3
1, δ5

2, η5
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/3Z⊕Z/5Z,
which is a cyclic group of order 15 and, in particular, N ≤ 15.
Since 15 divides N , we must have N = 15 and the group H is
the cyclic group of order 15. In this case g = 8 and N < 2g.

(4) If v1 = 3 and v2 = 4, then J = 5/12 and N = 12(g −
1)/5. In particular, 12 divides N . Let us consider the surjective
homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism
is a normal subgroup containing the elements δ3

1, η3
1, δ4

2, η4
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian ) Π1(X, x)/T . The order of this group is
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greater than N . It is easy to see that this group is Z/3Z⊕Z/4Z,
which is isomorphic to the cyclic group of order 12. Thus, N =
12 and H is isomorphic to Z/12Z. In this case g = 6 and N = 2g.

(5) If v1 = v2 = 3, then J = 1/3 and N = 3(g − 1). Thus,
3 divides N . Let us consider the surjective homomorphism of
section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism
is a normal subgroup containing the elements δ3

1, η3
1, δ3

2, η3
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/3Z⊕Z/3Z.
Since H is cyclic, N ≤ 9 and 3 divides N , we have that the only
possibility is N = 3. In that case H is isomorphic to Z/3Z.

(6) If v1 = 2 and v2 ≥ 3, then J = (v2 − 2)/2v2, N = 2v2(g −
1)/(v2 − 2). In particular, v2 divides N . Let us consider the
surjective homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, δ2, η2, with the only
relation δ2η2δ1η1 = 1. The kernel of the above homomorphism is
a normal subgroup containing the elements δ2

1, η2
1, δv2

2 , ηv2
2 δ1η1,

δ2η2 and the commutators of them. Let us consider the smallest
normal subgroup T of Π1(X, x) containing the above elements
and the group (abelian) Π1(X, x)/T . The order of this group is
greater than N . It is easy to see that this group is Z/2Z⊕Z/v2Z
and, in particular, N ≤ 2v2. Since v2 divides N , we have two
possibilities for N ; either N = v2 or N = 2v2. In the first case,
g = (v2 − 2)/2 + 1 and N = 2g. In the second case, g = v2 − 1
and N = 2(g + 1).
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Observe that for all cases except (C.5 – (6)) we always have N ≤
2g. The only case in which we can have N = 2(g+1) is in (C.5–(6)) for
N = 2v2. In that case we must have H isomorphic to Z/2Z⊕Z/v2Z.
Since H is cyclic, this only can happen if v2 is odd. Then g = v2 − 1
must be even. 2

5. Maximal Groups with Condition (A) and Con-
dition (A*).

Maximal Groups with Condition (A)

The maximal possible order for a non-triangular group H of conformal
automorphisms of a closed Riemann surface S of genus g ≥ 2, is 12(g−
1). If we assume that H satisfies condition (A), as a consequence of
the proof of Theorem 2, we have that this order can be achieved only
if γ = 0 and either

(i) k1 = 0, k2 = 4, w1 = w2 = w3 = 2 and w4 = 3; or

(ii) k1 = 1, k2 = 2, v1 = w1 = 2 and w2 = 3.

In case (ii) we consider the homomorphism of section 3

Φ : Π1(X, x) → H.

In this case Π1(X, x) is generated by δ1, η1, θ1, θ2, with the only
relation δ1η1θ1θ2 = 1. The kernel of the above homomorphism is
a normal subgroup containing the elements δ2

1, η2
1, θ2

1, θ3
2, δ1η1 and

δ2η2. Let us consider the smallest normal subgroup T of Π1(X, x)
containing the above elements and the group Π1(X, x)/T . The group
H is a surjective image of the above one. It is easy to see that this
group is

< A, B, C; A2 = B2 = C3 = BC = 1 >=< A; A2 = 1 >.

In particular, H can have at most order two. In particular, the
only possible way to get maximal groups is given by groups of type
(i). In that case, using the similar argument as above, they are given
as surjective images of the group
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< A,B,C,D; A2 = B2 = C2 = D3 = ABCD = 1 >.

The following asserts that there are infinitely many genera for
which there is a Riemann surface with a maximal group of confor-
mal automorphisms satisfying the condition (A). The technique used
in [12], to obtain the same result for maximal groups of conformal
automorphisms, is used to get our result.

Theorem 5. There is an infinite sequence of non-negative integers gi,
all different and bigger than one, for which there is a closed Riemann
surface Si of genus gi and a group Hi of conformal automorphisms of
Si satisfying the condition (A) and having order 12(gi − 1), that is,
maximal groups.

The proof of the above is a rapid consequence of the following two
lemmas.

Lemma 1. Let K be a Kleinian finite normal extension of a Schottky
group G of genus g such that the index [K : G] = p(g − 1). If F is a
subgroup of G which is normal in K and [G : F ] = r, then (i) F is
a Schottky group of genus γ = r(g − 1) + 1, and (ii) K is a Kleinian
finite normal extension of F of index [K : F ] = p(γ − 1).

Proof. Since F is a subgroup of a free group, F is also free group.
The fact that [G : F ] = r implies that F is a free group of rank
γ = r(g − 1) + 1. The group G being purely loxodromic and Kleinian
ensures that F is purely loxodromic and Kleinian. A result of Maskit
(see [14]) asserts that F is a Schottky group of genus γ. The second
part is consequence of the equality [K : F ] = [K : G][G : F ] =
pr(g − 1) = p(γ − 1). 2

Lemma 2. Let K be a Kleinian finite normal extension of a Schottky
group G. Then there exist infinitely many subgroup Fi 6= G of G of
finite (different) index which are normal in K.

Proof. Denote by [G, G] the commutator subgroup of G and, for
each integer m ≥ 2, denote by Gm the subgroup of G generated by
the m−powers of the elements of G. Since G is normal subgroup of
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K, both groups [G,G] and Gm are also normal subgroups of K. Set
G(m) = Gm[G,G]. The quotient group G/G(m) is a finitely generated
abelian group for which every element to the power m is the identity.
It follows that G/G(m) is finite abelian group of order mg. As a
consequence, the group G(m) is the desired group. We also have that
G(m) is a Schottky group of genus mg(g − 1) + 1. 2

Now apply Lemmas 2 and 1, in this order, to obtain the desired
result. In section 6 we give examples of maximal groups in genus 2, 3,
5 and 17.

Maximal Groups with Condition (A*)

As observed from theorem 2, the order of a group H, acting on a
surface S of genus g ≥ 2, satisfying condition (A*) is bounded by 6(g−
1). This only happen if S/H is the Riemann sphere with signature
(0, 4; 2, 2, 3, 3).

Theorem 6. If H is a group of order 6(g− 1) and satisfies condition
(A*), then H is of Schottky type.

Proof. In this case, we have that S/H is a Riemann surface of
signature (0, 4; 2, 2, 3, 3). We draw two pairwise disjoint simple loops
α1 and α2, so that each one bounds a topological disc containing two
branched values of same order. Condition (A*) asserts that each of
these loops lift into exactly 6(g − 1) loops. From this is simple to
see that the lifting of each of the three components of S/H −{α1, α2}
consists on genus zero holed surfaces. It follows that we may find a col-
lection of g pairwise disjoint simple loops, homologically independent,
inside the liftings of the two above loops. Such a collection determines
a Schottky uniformization (up to equivalence) for which the group H
lifts. 2

Explicit examples of maximal groups with condition (A*) are given
in the next section.
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6. Explicit examples of Kleinian finite normal ex-
tensions of Schottky groups

In this section, we construct explicit examples of kleinian finite normal
extensions of Schottky groups and, in particular, explicit examples of
(non-triangular) conformal automorphisms of closed Riemann surfaces
satisfying condition (A) and condition (A*).

6.1. Kleinian finite normal extensions of Schottky groups of
index 4(g+1)

Let g ≥ 2 be fixed and consider Möbius transformations as follows.
W (z) = e2πi/(g+1)z, T (z) = 1/z, J0(z) = ((p + 1/p)z − 2)/(2z − (p +
1/p)), where 0 < p < 1 and Jk = W k ◦ J0 ◦W−k, for k = 1, ..., g. Let
p be close enough to 1 such that, the translates of the isometric circle
of the involution J0 under the non-trivial powers of W are all disjoint.
Consider the group G generated by the transformations Ak = J0 ◦ Jk,
k = 1, ..., g. It is clear by the choice of p that G is a Schottky group
of genus g. Observe that

(1) W ◦ Ak ◦W−1 is either A−1
1 ◦ Ak+1 or A−1

1 ,

(2) T ◦ Ak ◦ T = Ag−k+1, and

(3) J0 ◦ Ak ◦ J0 = A−1
k .

Moreover, every element different from the identity in the (finite)
group
< W,T, J0 >, generated by W , T and J0, cannot be in G. The group
< W,T, J0 > is isomorphic to Z/2Z⊕D2(g+1) (the cyclic group in the
sum is generated by J0 and the Dihedral group is generated by W and
T ). The group K, generated by G and < W,T, J0 >, is a finite normal
extension of G with index 4(g + 1).

Observe that, we have constructed a Kleinian finite normal exten-
sion F of G with index 2(g + 1) such that F/G is abelian, where the
group F is the group generated by G, J0 and W .
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6.2. Cyclic Kleinian finite normal extensions of Schottky
groups of index 2(g+1) (resp., 2g) for g even (resp., odd)

Consider the same Schottky group G as in the first example. The
group K, in this case, is the group generated by G and the transfor-
mations J0 and W . The group K is a Kleinian finite normal extension
of G with index 2(g + 1). Moreover, K/G is isomorphic to the finite
group Z/2Z⊕ Z/(g + 1)Z. If g is even, then this is a cyclic group of
order 2(g + 1).

For g odd we proceed to construct a Kleinian finite normal exten-
sion, as desired, in the following way. Consider Möbius transforma-
tions as follows. L(z) = eπi/gz, J0(z) = −z, J1(z) = ((p + 1/p)z −
2)/(2z − (p + 1/p)), where 0 < p < 1 and Jk = Lk−1 ◦ J1 ◦ L1−k,
k = 1, ..., g. Let us consider p close enough to 1 such that, the trans-
lates of the isometric circle of J1 under the non-trivial powers of L are
all disjoint. Let us consider the group G generated by the transfor-
mations Ak = J0 ◦ Jk, k = 1, ..., g. It is clear, because of the choice of
p, that G is a Schottky group of genus g. Observe that L ◦Ak ◦L−1 is
either Ak+1 or A1 and J0 ◦Ak ◦ J0 is A−1

k . Moreover, J0 = Lg and the
group, generated by J0 and L, is a cyclic group of order 2g. Consider
as the group K the group generated by G, L and J0. The group K
is a Kleinian finite normal extension of G such that K/G is a cyclic
group of order 2g.

6.3. Kleinian finite normal extensions of Schottky groups of
index 8(g-1) for g odd.

The following example was constructed in [16] and we recall it now.
Let us consider the geometrically finite Kleinian group K which is
generated by the transformations

T (z) = 1/z, W (z) = iz and J(z) = ((p+1/p)z−2)/(2z−(p+1/p)),

where 0 < p < 1 is close enough to 1. The group K is in fact iso-
morphic to the direct product, amalgamated over Z/2Z, of a dihedral
group of order four (the Klein group) and a dihedral group of order 8.
The group K is in fact constructed from Maskit’s combination theo-
rems. Write g = 2q + 1 with q an integer greater or equal to 1, and
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consider the group H generated by the elements x, w, j and t, subject
to the relations: xq = e, w4 = e, j2 = e, t2 = e, (wt)2 = e, (jt)2 = e,
wxw−1 = x−1, tx = xt, jxj = x−1 and jwj = xw. It is not hard to
see that H is a finite group of order 8(g − 1). The homomorphism
ρ : K → H defined by ρ(W ) = w, ρ(J) = j and ρ(T ) = t is surjective
since ρ(J ◦W ◦ J ◦W−1) = x. Set G the kernel of such a homomor-
phism. By Maskit’s combination theorems, the elliptic elements of K
are conjugated to either W , W 2, W 3, J , T , W ◦ T or J ◦ T . None of
these transformations belongs to G and, as a consequence, the group
G is torsion-free. Moreover, G is purely loxodromic since K has no
parabolic elements (also a direct consequence of the Maskit’s combi-
nation theorems). Any non-trivial relation on G gives a non-trivial
relation in K, but the non-trivial relations of K are consequence of
the elliptic elements of K. The fact that G is torsion-free then ensure
that G must be a free group. The region of discontinuity Ω of K is
connected and is the same for G. The surface Ω/G is a finite degree
branched covering of the finite Riemann surface Ω/K and, in partic-
ular, G is finitely generated. A theorem of Maskit (see [14]) asserts
that G is a Schottky group. The Riemann-Hurwitz’s formula (see [4])
gives us that the rank of G is g and, as a consequence, G is a Schottky
group of genus g for which K is a Kleinian finite normal extension of
G with index 8(g − 1).

6.4. An explicit example in genus 5

We construct a Kleinian finite normal extension H of a Schottky group
G of genus 5 such that, H/G is isomorphic to Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/2Z.

Let us consider the circles Lj, j = 1, ..., 5, in the Riemann sphere
defined by:

(1) L5 = {z ∈ C : |z| = 1};

(2) L1, L2, L3 and L4 are orthogonal to L5;

(3) L1 and L2 are orthogonal;

(4) L3 is disjoint to both L1 and L2;
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(5) L4 is orthogonal to both L3 and L1; and

(6) L4 is disjoint from L2.

Let us denote by σj the reflection on the circle Lj, for each j =
1, ..., 5. We denote by K the group generated by all these reflections.
By Klein-Maskit’s combination theorems, we have that K is a Kleinian
group (with orientation reversing Möbius transformations) with con-
nected region of discontinuity. This group K uniformizes a closed disc
with 5 points of order two in the border.

Set A1 = (σ3σ1)
2, A2 = σ2A1σ2, A3 = (σ2σ3)

2, A4 = (σ4σ2)
2 and

A5 = (σ2σ4σ3)
2. The group G generated by the transformations A1,

A2, A3, A4 and A5 is a Schottky group of genus 5.Simple computations
show that G is a normal subgroup of K and that K/G is isomorphic to
the group Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z. If we denote by K+

the index two subgroup of orientation preserving transformations of K,
then we have that K+/G is isomorphic to Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z.

6.5. Maximal groups in genus 2 with Condition (A)

For g = 2, the maximal possible order is 12(2−1) = 12. Let us consider
the Möbius transformations W (z) = e2πi/3z, T (z) = 1/z, J0(z) =
((p+1/p)z−2)/(2z−(p+1/p)), with 0 < p < 1, and Jk = W k◦J0◦W−k

for k = 1, 2. We choose p close enough to 1 so that, the translates
of the isometric circle of J0 under the non-trivial powers of W are
disjoint. Let G be the group generated by the elements A = J0 ◦ J1

and B = J0 ◦J2. Our choice of p implies that G is a Schottky group of
genus 2, with A and B as free generators. If K is the group generated
by G, T , J0 and W , then K is a Kleinian finite normal extension of
G. Moreover, the group K/G is isomorphic to D3 ⊕ Z/2Z, where D3

is the Dihedral group of order 6. The surjective homomorphism from
last section (maximal groups) can be seen explicitly as:

Φ :< A, B, C,D; A2 = B2 = C2 = D3 = ABCD = 1 >→ K/G,

with Φ(A) = [J0], Φ(B) = [J0 ◦ T ], Φ(C) = [T ◦W ] and Φ(D) =
[W−1], where bracket mean the equivalence class in K/G.

The subgroup G(2) (as defined in the proof of Lemma 2) is a
Schottky group of genus five for which K is a Kleinian finite normal
extension of index 48 = 12(5− 1).
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6.6. Maximal group in genus 3 with Condition (A)

In this case, the maximal order for a group under consideration is
12(3 − 1) = 24. Observe that the symmetric group in four letters
S4 =< A, B; A4 = B2 = (B ◦ A)3 = 1 >, acts as group of conformal
automorphisms of the Riemann sphere, where A(z) = iz and B(z) =
(z + 1)/(z − 1). Let R be the loxodromic transformation R(z) = λ2z,
where λ is a non-zero complex number of absolute value different from
one. Assume λ > 1, so 0 is the repelling fixed point of R. Let G be
the group generated by R, B ◦R ◦B and A ◦B ◦R ◦B ◦A−1. If the
absolute value of λ is large enough, then the group G is a Schottky
group of genus three with the above generators as free ones. The group
K generated by G, A and B is a Kleinian finite normal extension of G
such that K/G is isomorphic to S4. We have an explicitly surjective
homomorphism

Φ :< θ1, θ2, θ3, θ4; θ
2
1 = θ2

2 = θ2
3 = θ3

4 = θ1θ2θ3θ4 = 1 >→ Σ4,

given by Φ(θ1) = A−1◦C, Φ(θ2) = C, Φ(θ3) = B and Φ(θ4) = B◦A,
where C(z) = B ◦ A2 ◦B(z) = 1/z.

The subgroup G(2) (as defined in the proof of Lemma 2) is a
Schottky group of genus 17 for which K is a Kleinian finite normal
extension of index 192 = 12(17− 1).

6.7. Maximal groups with Condition (A*)

Let us consider a Kleinian group K obtained as free product of a
cyclic group of order two 〈X : X2 = 1〉 and a cyclic one of order
three 〈Y : Y 3 = 1〉. Let G1 be the normalizer of (Y X)2 in K, G2 the
normalizer of (Y X)3, and G3 the normalizer of (Y X)4. Then each of
this groups is a Schottky group of genus 2, 3 and 5, respectively. We
have that K/G1, K/G2 and K/G3 are isomorphic to D3, A4 and S4,
respectively.

7. Connection with Handlebodies

In this section, we apply the results of the above sections to obtain
bounds on the orders of finite groups of orientation-preserving homeo-
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morphisms of handlebodies of genus g ≥ 2. Bounds, for such a groups,
are in fact obtained in [15] and [16] using graphs of finite groups.

Let Vg be a handlebody of genus g and let H be a finite group of
orientation preserving homeomorphisms of Vg of order N . This group
acts as a finite group of orientation preserving homeomorphisms on
the boundary S of Vg, which is a closed orientable surface of genus g.
It is known [11] that S admits a Riemann surface structure for which
H is a group of conformal automorphisms. If we choose g disjoint,
homologically independent simple loops on S such that, they are ho-
motopically trivial in Vg, then the Schottky group (up to conjugation)
G determined by these loops satisfies the property that H lifts as a
group of conformal automorphisms of its region of discontinuity. In
particular, the group H satisfies condition (A) and they have signa-
ture different from (0, 3; p, q, r). As a consequence of the results of the
above sections, we obtain the known bounds of [15] and [16].

Theorem 7. Let H be a finite group of orientation preserving home-
omorphisms of a handlebody Vg of genus g ≥ 2. Then the order N of
H is at most 12(g − 1). Moreover, if we assume N ≥ 6(g − 1), then

N ∈ { 6(g − 1), 8(g − 1), 12(g − 1), 20(g − 1)/3 }.

Theorem 8. Let H be a finite group, of order N , of orientation
preserving homeomorphisms of a handlebody Vg of genus g ≥ 2. If
N ≥ 4(g − 1), then N = 4n(g − 1)/(n− 2) for some n ≥ 3.

Remark. Since we know that every handlebody of genus g ≥ 2 has a
group of orientation preserving homeomorphisms of order 4(g + 1) >
4(g− 1), the maximal order for such a group of orientation-preserving
homeomorphisms must have the form in Theorem 6. Moreover, for g
odd we know that the maximal order is either 12(g − 1) or 8(g − 1),
that is, [4n/(n− 2)](g − 1), where n ∈ {3, 4}.

Theorem 9. Let H be a finite abelian group of orientation preserving
homeomorphisms of a handlebody Vg of genus g ≥ 2. Then the order
of H is at most 2(g + 1) if g 6= 5 and at most 16 if g = 5. Moreover,
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these bounds are achieved by a group isomorphic to Z/2Z⊕Z/(g+1)Z
for g 6= 5 and by Z/2Z⊕ Z/2Z⊕ Z/2Z⊕ Z/2Z for g = 5.

Theorem 9. Let H be a finite cyclic group of orientation preserving
homeomorphisms of a handlebody Vg of genus g ≥ 2. Then the order
of H is at most 2(g + 1) for g even and at most 2g for g odd. These
bounds are achieved in every genus.
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