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Abstract

Let A = {1, Aa,..., An} be a set of complex numbers. The non-
negative inverse eigenvalue problem (NIEP) is the problem of deter-
mining necessary and sufficient conditions in order that A may be the
spectrum of an entrywise nonnegative n X n matrix. If there exists a
nonnegative matriz A with spectrum A we say that A is realized by A.
If the matriz A must be symmetric we have the symmetric nonnegative
inverse eigenvalue problem (SNIEP). This paper presents a simple re-
alizability criterion by symmetric nonnegative matrices. The proof is
constructive in the sense that one can explicitly construct symmetric
nonnegative matrices realizing A.
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1. Introduction

The nonnegative inverse eigenvalue problem (hereafter NIEP) is the prob-
lem of characterizing all possible spectra of entrywise nonnegative matrices
(References [1-17]). This problem remains unsolved. In the general case,
when the possible spectrum A is a set of complex numbers, the problem has
only been solved for n = 3 by Loewy and London [8]. The cases n = 4 and
n = 5 have been solved for matrices of trace zero by Reams [11] and Laffey
and Meehan [7], respectively. When A is a set of real numbers (RNIEP),
sufficient conditions have been obtained in [16], [9], [12], [6], [1], [13]. If A
has to be the spectrum of a symmetric nonnegative matrix, we have the
symmetric nonnegative inverse eigenvalue problem (SNIEP), which is the
subject of this paper.

A set A of real numbers is said to be realizable if A is the spectrum
of an entrywise nonnegative matrix. A set K of conditions is said to be
a realizability criterion if any set of real numbers A = {A1, A2, ..., A\ }
satisfying the conditions K is realizable.

In ([13], Theorem 11) the author gives a simple realizability criterion for
the existence of an n X n nonnegative matrix with real prescribed spectrum.
The goal of this work is to show that this criterion is also a realizability
criterion for the symmetric nonnegative inverse eigenvalue problem.

Unlike several of the previous conditions which are sufficient for real-
izability of spectra, the proof of Theorem 11 in [13] is constructive in the
sense that one can explicitly construct nonnegative matrices realizing the
prescribed real spectrum. This is done by employing an extremely useful
result, due to Brauer [3], which shows how to modify one single eigen-
value of a matrix via a rank-one perturbation, without changing any of the
remaining eigenvalues.

In [4] Fiedler obtain some necessary and some sufficient conditions for
a set of n real numbers A = {\1, A2, ..., A\, } to be the spectrum of an n xn
symmetric nonnegative. There, Fiedler also shows that Kellogg’s realizabil-
ity criterion [6] is sufficient for the existence of a symmetric nonnegative
matrix with prescribed spectrum. In [10], Radwan shows that Borobia’s
realizability criterion [1] is also sufficient for the existence of a symmetric
nonnegative matrix with prescribed spectrum. Soules [15] gives a realizabil-
ity criterion for the existence of a symmetric doubly stochastic matrix and
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also shows how to construct a realizing matrix. Radwan, in [10], point out
that the realizability criteria of Kellogg and Soules are not comparable. In
[5], the authors show that the real nonnegative inverse eigenvalue problem
and the symmetric nonnegative inverse eigenvalue problem are different,
while Wuwen, in [17], shows that both problems are equivalent for n < 4.

This paper is organized as follows: In section 2, we introduce the nota-
tion and previous results, which will be necessary in order to prove Theorem
1 in section 3. In section 3 we prove that Soto’s realizability criterion ([13],
Theorem 11) established here as Theorem 1, is sufficient for the existence
of an n X n symmetric nonnegative matrix with prescribed spectrum. In
section 4 we consider the problem of constructing symmetric nonnegative
matrices realizing spectra, which satisfy Theorem 1. Some examples are
given in section 5.

2. Preliminaries and notation

Following the notation in [2], the set
A={A={X,\,... ;)\, } CR: A > |N], 0 =2,...,n}
includes all possible real spectra of nonnegative matrices. We denote
AR={A € A : A is realizable}.

We denote by N, the set of all A = {A1,Ag,..., Ay} € AR, where
A1 > Ay > ... > \,. Similarly, we denote by S,, (S,,) the set of all A € N,
for which there exists an n x m symmetric nonnegative (positive) matrix
with spectrum A. We shall only consider real sets A = {A1,\a,..., A\n}
satisfying

)\12>\22~~2)\p20>)\p+12~~2)\n7

since if A\, > 0, then A = diag{A1, A2, ..., A\n} is a symmetric nonnegative
matrix.

The following result, due to Fiedler, shows that if A and B are sym-
metric matrices of order n and m, respectively, then we may construct a
new symmetric matrix of order n + m as follows:
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Lemma 1. (Fiedler [4]) Let A be a symmetric n xn matrix with eigenval-
ues ay, ay, ..., an. Let u, ||u|| =1, be a unit eigenvector of A corresponding
to a1. Let B be a symmetric m x m matrix with eigenvalues B1, 52, . . ., Bm.-
Let v,||v|| = 1, be a unit eigenvector of B corresponding to (31. Then for

any p the matrix
A puv?
¢= ( pvul' B )

has eigenvalues o, ..., an, B2, - .., Bm, V1, Y2, Where 1 and 7o are eigenval-

ues of the matrix
A ap p
C = .
< p P )

The next relevant result, due also to Fiedler [4], is necessary for the
proof of the main result in section 3. Here we present the Wuwen version
of it [17]:

Lemma 2. (Fiedler [4]) If {aq,a2,...,00} € Sy, {61,052, ..., 0m} € S,
and ¢ > max{0,81 — aq}, then {1 +¢,61 —€,a2 ...,00, 02, ..., 0m} €
Snim-

We shall also need the following lemma:

Lemma 3. (Fiedler [4]) If A = {\1,\,..., \n} €S, and if € > 0 then

Ae={M+eX.... )} €Sp.

In ([13], Theorem 11) we give the following simple realizability crite-
rion, which also shows how to construct a realizing matrix.

Theorem 1. (Soto [13]) Let A = {\1, A, ..., Ay} be aset of real numbers,
such that
)\1Z/\QZ...Z)\p20>)\p+1Z...Z}\n.

If

(2.1) M= =An— ) Sk
S <0

where S, = Ay + M—pt1, K =2,3,...,[§] and SnTH = min{)\nTH,O} for
n odd, then A is realized by a nonnegative matrix A (with constant row
sums).
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Observe that if A = {A1,\a,..., A} satisfies the sufficient condition
(2.1), then

N={2—=Y Sth, s A}
S <0

is a realizable set.

3. Realizability by a symmetric nonnegative matrix

In this section we show that the realizability criterion given by Theorem
1 is sufficient for the existence of a symmetric nonnegative matrix with
prescribed spectrum A.

Theorem 1. Let A = {\1;Ag,...,\n} be a set of real numbers such that

)\1Z)\QE...Z/\pZO>)\p+12...2/\n.

If A satisfies the realizability criterion given by Theorem 1, then A is
realized by an n X n symmetric nonnegative matrix.

Proof.  Suppose that A satisfies the condition (2.1) of Theorem 1. That
is,

)\1 2 _)\n - ZS@‘<0 Si7

where Sy = A + A—pt1, £ =2,3,..., [5] and Sniu = min{Ani1,0} for
2 2
n odd.
It suffices to prove the statement for Ay = =X\, — > g . Sk. In fact, if

A1 > =X — 225, <0 Sk then we take A= {p1, A2, ..., A\n} with g = =X, —
25, <0 Sk Thus, if = S, then we apply Lemma 3 with e = Ay — g >0

to show that A € S, (actually A € S,).
Let

Ak = {)\lﬂ)\n*k%*l}; k= 1727 ceey [g] and

Anii = {Aapi} for nodd.
2 2

Consider the partition
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A=UZl A, with A=UEL AL UAws for noodd.

Observe that some subsets Aj can be realizable thenselves, in particular
by the symmetric nonnegative matrix

LA+ An—kt1 Ak — An—kt1
3.1 B, = - .
(31) =5 ( M= Ancker M+ ek

Without loss of generality we may reorder the subsets Ag, in such

a way that Ap,Asz,..., Ay t < [§], are nonrealizable (Sy < 0), while

A1, .,A[2 are realizable (S, > 0). Consider, if there is someone, the
2

realizable sets Ay : If By, in (3.1) realizes Ag, then the direct sum B = @By,
k=t+1,...,[%], with Bot1 = ()\n_ﬂ) if Ant1 > 0 for n odd, is a sym-
2 2 2

metric nonnegative matrix realizing U,Ef:]t 1Mk (U,[f:]t 1A U AnTH for n
odd).

Now we consider, if there is someone, the nonrealizable sets Ag, k =
2,3,...,t together with the realizable set A; = {A1, \,} and we renumber
the 2t elements in UA; as

AMZ>X > 22> M1 > 2> A > Aoy

For each one of these sets Ay, £ = 1,2,...,t, we define the associated
set

(3.2) T = {—Aot—k+1, Not—k+1},

which is realizable by the symmetric nonnegative matrix

0 —A2f—kt1
3.3 A =
(3:3) F ( — A2t —kt1 0

with I'z2ex1 = {0} if A2es1 < 0 for n odd, which is realized by the symmetric
2 2
nonnegative matrix Aze1 = (0).
2

Now, we procede as follows: First, we merge the sets

Iy = {—)\Qt,)\Qt}ES2 and
Iy = {—Xu—1, -1} €S2
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to obtain, from Lemma 2, a new set Ay € Sy. In fact, we take g9 = —S =
—(A2 4+ Agt—1) > 0. Then

Xt +e2 = —Aor—S2=—Xar — (A2 + A1)
—Xat—1—€2 = —Azu—1+S2=—X—1+ (A2 + A1) = A2

and
Ag = {—Xot — S2, A2, g1, Aot} € Sa.

Next we merge Ay with I's = {—Xo;_2, Aot—2}. Let e3 = —S3 = —(A\g +
A2¢—2) > 0. Then

Ao —S2+e3 = —Ay—S2— 53
—Xat—2—€3 = —Aa—2+S3=—Aa—a+ (A3 + Aat—2) = A3
and from Lemma 2
Ag = {—/\Qt —SQ —53,)\3,*,...,*} (S 86.

Observe that in each step we recover the first element A\ € Ag from
—A2t—k+1 — €k = Ak-
In the j — th step of the procedure ( j > 2), we merge the sets

Aj = {-Xy—82—83—-- =8N, %...,x} and
Diy1 = {=A2—j, du—j}.
Then for €41 = —Sj+1 = —(Aj+1 + Azt—;) > 0 we have
J j+1
— A2t — Z Sk tejr1 = —Aat— Z Sk
k=2 k=2
—A2t—j —Ejr1 = Aji1

and from Lemma 2
A1 ={Dat — S0 Sk, A1, %, -, k) € Sajpa.
In the last step ((t — 1)—step) we merge the sets

t—1
Ay = {=dat— > Sk, A—1,%,...,%} €S2 and
k=2

' = {=XNs1, A1)
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Let e, = =S = —(A + Ai+1). Then from Lemma 2 we obtain

t
At = {—)\Qt—ZSk,)\t,*,...,*}
= {)\17)\27"'7)\t7)\t+17"'7>\2t717>\2t} € So;.

Now, if n is odd with A2:+1 < 0 then we also merge Ay with I'2en = {0}
2 2
to obtain

t
A = {=dy —];Sk—s@,)\%,&,*,...,*}
= {)\17'"7)\t7A2t_;17)‘t+17“’7)\2t} € SQt-l—l‘

Thus, if A is a symmetrix nonnegative matrix realizing A, = U} _; Ay (A} =
UL Ak UAnTH), then A @ B realizes A = {A1;A2,..., A\ }. That is A € S,.
O

4. Constructing the realizing matrix

Let A = {A1,A2,..., An} be as in Theorem 1 with Ay = =\, — > g, ¢ Sk-
Consider the partition

A=uUlE A with A= Ul AL UAwa for nodd,
2

where Ay, = { A\, \p—py1}; K =1,2,...,[5] and Apis = {)\n+1} for n odd.
2 2
For k=2,3,...,[%] let

A= {Ak S =M+ )\n,kprl < 0}
B = {Ak CSE =M+ ka1 > 0}.

Note that A or B can be empty, n > 3, and Ant1 can be in A.or B.
Each set Ap € B is realizable in particular by the syzmmetric nonnegative
matrix By in (3.1). Then the direct sum B = @By, with Bn+1 = ()\n+1)
if )\nJrl > 0 for n odd, is a symmetric nonnegative matrix reahzlng UAg
with Ak € B. Now we consider the nonrealizable sets A € A, which can
be numbered as Az, Az, ..., A, t < [Z] with A@ = {/\%} if )\% <0
for n odd. For each A, € A we define the associated set I'y, k = 2,3,...,t,
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as in (3.2) and I'1 = {—Xat, A2+ }, which are realizable in particular by the
symmetric nonnegative matrix Ag, k =1,2,...,¢, as in (3.3).

As in the proof of Theorem 1 we merge the sets I'; and I's to obtain Ay =
{=X2t — S2, A2, Aot—1, Aot} € S4. Then a symmetric nonnegative matrix
which realizes Ag is

A pgvgug
M, =
4 ( nggvg A2

where v = ul = (%,%) and p2 = /(A2 + Aat) (A2 + A2r—1). Next we

merge As with I's to obtain
Az = {—Aat — G2 — 93, A2, A3, Aat—2, Aot 1, Aot} € Sg,

which, according to Lemma 1, is realized by the symmetric nonnegative

My psvsud
Mg = ,
0 < psugvy  As

matrix

where Myvz = (—Xot — S2)us, ||vs|| =1 and Asug = (—A2i—2)us, |lusl| =1
and p3 must be such that

—Xop — 52 P3
Co —
3 ( P3 —A2t—2 )

has eigenvalues —Ao; — S3 — S3 and 3. The process shows that, in the
(k — 1)—step, we may compute the matrix

Moo  progul
My = L k=231
2 ( prugvl A

where My is the symmetric nonnegative matrix with spectrum Ag_1, vy
and uy, are unit eigenvectors of Moy o and Ay, respectively, corresponding
to the eigenvalues —\g; — 25;21 S; and A1, respectively,.and py must
be such that the matrix

Cp = ( ot — 3523 5) Pk )

Pk —A2f—k+1

has eigenvalues —Ag; — Z;?:Q S; and Ap.
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Now we compute symmetric nonnegative matrices with spectrum A for
n=4and n=>5.

Let A = {1, A2, A3, A4} satisfying the realizability criterion of Theorem
1. We have two cases:
Z) A1 > — A4 with Ay + A3 > 0. Then

M+ A=A\ 0 0

A—l AM—M A+ M\ 0 0
2 0 0 Ao+ A3 Ay — A3
0 0 Ao — A3 Ay + A3

1) A1 > —X4 — (A2 + A3). Then

0 -2\ p
p p 0 —2X3

where p = /A3y — A1 Aa.

Let A = {1, A2, A3, Ay, A5} satisfying the realizability criterion of The-
orem 1. We have four cases:
’L) A1 > —A5 with Ao + A4 > 0 and A3 > 0. Then

AMA+A5 A1 — X5 0 0 0
AM—As A+ A5 0 0 0
A== 0 0 M4+ Aa—X O
0 0 A—N A+ O
0 0 0 0 2)3
1) A1 > —Xs — (A2 + \g) with A3 > 0. Then
0 —2)s5 p p 0
1 —2A5 0 ) ) 0
A= 3 p P 0 -2\ 0 ,
0 0 —2M4 0 0
0 0 0 0 2A3

where P = )\4)\5 — )\1)\2.
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ZZl) A1 > — A5 — A3 with Aoy + Aq4 > 0. Then

0 =25 V2p 0 0
Ll 20 V2p 0 0
A=5| V20 V20 0 0 0 ,
0 0 0 X+l A—N\

0 0 0 A2 — A A+ Mg

where p = v/—A1 3.
z'v) A1 > — A5 — ()\2 + )\4) — A3. Then

0 =2x5 p P
—2X 0 p p
1
A= 5 p P 0 —2)\4 27]1} ’
P P —2M4 0
2noT 0
T . o o
where v = (v1,v2,v3,v4) with v = v = /—2p§+2q27 U3 = U4 = \/2p2q+2q27

p=pi+M+p, g=p1+As+p, g1 =—-As—(Aa+M), p= VA5 — M
and 1 =+/—A1\s.

5. Examples

Example 1. Let A = {9,5,3,3,—5,—5,—5,—5}. We have the partition
A=A UAUA3UAy, where Ay = {9, —5}, Ay = {3, —5}, A3 = {3, —5}
and Ay = {5, —5}. We define the associated sets 'y = {5, =5}, I's = {5, =5}
and I's = {5, —5}. Then we merge I'1 with I'y to obtain

Ay =

= = Ot O
_= = O WL
UL O = =
O Ut = =

havig spectrum Ay = {7,3,—5, —5}. Next we merge Ao with I's and obtain

e e L )
_ === O Ot
— = Ot O
= O Ot
Tl O = = = =
e R G i
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with spectrum Az = {9,3,3,—5,—5,—5}. Finally we have

Lo O O OO oo
O UTO OO O OO

O O = == 0O
O O === O Ot
O O M OO =
OO = = O Ol =
SO O Ut O ==
OO O Ut ===

with spectrum A € Sg.

Example 2. Let A = {7,5,1,—3,—4,—6}. Observe that A does not satisfy
Theorem 1. However we still may obtain a symmetrix nonnegative matrix
realizing A : Consider the partition A = Ay U Ay, where Ay = {7, —6} and
Ay = {5,1,—-3,—4}. Define I'y = {6,—6} and I'y = {6,1, —3,—4}. Then

6 16
04%E

4 0
=1 & o 4
S g 3
Yo ¥E 3 9

realizes I's while

0 6 .
Aq < 6 0 ) realizes I'y.

By applying Lemma 2 to I's and I'y we obtain A and from Lemma 1 we
may compute the realizing matrix

iR o= ety

< < Q‘HEF B0 [ BS)eo

‘5’}0\8}0\ w|§ w|§| o o~

ek« o et

R S

Stk o oot
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