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Abstract
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strong compactness need not imply Sβ−compactness.
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1. Introduction

The concept of compactness in [0, 1]-set theory was first introduced by C.L.
Chang in terms of open cover [1]. Goguen was the first to point out a defi-
ciency in Chang’s compactness theory by showing that the Tychonoff Theo-
rem is false [5]. Since Chang’s compactness has some limitations, Gantner,
Steinlage and Warren introduced α−compactness [3], Lowen introduced
fuzzy compactness, strong compactness and ultra-compactness [10, 11],
Liu introduced Q-compactness [8], Li introduced strong Q-compactness [7]
which is equivalent to strong fuzzy compactness in [11], and Wang and Zhao
introduced N-compactness [16, 18]. In 1988, fuzzy compactness, strong
compactness and ultra-compactness were generalized to general L-fuzzy
subset by Wang in [17] (These can also be seen in [9]).

Recently in [14] Shi introduced a new notion of fuzzy compactness by
means of βa−cover and Qa−cover, which is called S∗-compactness. For
an L-topological space, Ultra compactness implies S∗-compactness and S∗-
compactness implies fuzzy compactness in the sense of [17]. When L =
[0, 1], strong compactness implies S∗-compactness. But when L 6= [0, 1],
we don’t know whether N-compactness and strong compactness imply S∗-
compactness.

In this paper, we shall present a new definition of fuzzy compactness in
L-topological spaces by means of βa−cover, which is called Sβ−compactness.
Sβ−compactness is a generalization of strong compactness in [11], but it
is different from Wang’s strong compactness in [9, 17]. Ultra-compactness
implies Sβ−compactness. Sβ−compactness implies S∗-compactness, hence
it implies fuzzy compactness. But in general N-compactness and Wang’s
strong compactness need not imply Sβ−compactness.

2. Preliminaries

Throughout this paper (L,
W
,
V
,0 ) is a completely distributive de Mor-

gan algebra, X is a nonempty set, LX is the set of all L-fuzzy sets on X.
The smallest element and the largest element in LX are denoted respec-
tively by 0 and 1. An L-fuzzy set is briefly written as an L-set. We often
don’t differ a crisp subset A of X and its character function χA.

An element a in L is said to be prime if a ≥ b ∧ c implies a ≥ b or
a ≥ c. An element a in L is said to be co-prime if a0 is prime [4]. The
set of nonunit prime elements in L is denoted by P (L). The set of nonzero
co-prime elements in L is denoted by M(L). The set of nonzero co-prime
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elements in LX is denoted by M(LX).
The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if

and only if for every subset D ⊆ L, the relation b ≤ supD always implies
the existence of d ∈ D with a ≤ d [2]. In a completely distributive de
Morgan algebra L, each member b is a sup of {a ∈ L | a ≺ b}. In the
sense of [9, 17], {a ∈ L | a ≺ b} is called the greatest minimal family of b,
in symbol β(b). Moreover for b ∈ L, define α(b) = {a ∈ L | a0 ≺ b0} and
α∗(b) = α(b) ∩ P (L).

For a ∈ L and A ∈ LX , we use the following notations in [13].

A[a] = {x ∈ X | A(x) ≥ a}, A(a) = {x ∈ X | a ∈ β(A(x))},
A[a] = {x ∈ X | a 6∈ α(A(x))}, A(a) = {x ∈ X | A(x) 6≤ a}.

An L-topological space (or L-space for short) is a pair (X, T ), where T
is a subfamily of LX which contains 0, 1 and is closed for any suprema and
finite infima. T is called an L-topology on X. Members of T are called
open L-sets and their complements are called closed L-sets.

Definition 2.1 ([9, 17]). For a topological space (X, τ), let ωL(τ) denote
the family of all lower semi-continuous maps from (X, τ) to L, i.e., ωL(τ) =
{A ∈ LX | A(a) ∈ τ, a ∈ L}. Then ωL(τ) is an L-topology on X, in this
case, (X,ωL(τ)) is called topologically generated by (X, τ).

Definition 2.2 ([9, 17]). An L-space (X, T ) is called weak induced if
∀a ∈ L, ∀A ∈ T , it follows that A(a) ∈ [T ], where [T ] denotes the topology
formed by all crisp sets in T .

Lemma 2.3 ([14]). Let (X, T ) be a weakly induced L-space, a ∈ L,A ∈ T .
Then A(a) is an open set in [T ].

Definition 2.4 ([9, 17]). An L-space (X, T ) is called ultra-compact if
ιL(T ) is compact, where ιL(T ) is the topology generated by {A(a) | A ∈
T , a ∈ L}.

In [16], Wang introduced the notion of N-compactness in [0,1]-topological
spaces by means of α-nets. Zhao [18] generalized the notion of N-compactness
to L-fuzzy set theory in terms of a−R-neighborhood family and a−−R-
neighborhood family as follows:
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Definition 2.5 ([18]). Let (X, T ) be an L-space, a ∈M(L) and G ∈ LX .
A family P ⊆ T 0 is called an a−R-neighborhood family of G if for any
x ∈ X with G(x) ≥ a, there exists a B ∈ P such that B(x) 6≥ a. P is called
an a−−R-neighborhood family of G if there exists b ∈ β∗(a) such that P is
b−R-neighborhood family of G.

It is obvious that P is an a−R-neighborhood family of G if and only if
P 0 is an open a−Q-cover of G in [9].

Definition 2.6 ([18]). Let (X, T ) be an L-space, A ∈ LX . A is called
N-compact if for every a ∈ M(L), every a−R-neighborhood family of G
has a finite subfamily which is an a−−R-neighborhood family of G.

Definition 2.7 ([15]). A net S with index set D is also denoted by
{S(n) | n ∈ D} or {S(n)}n∈D. For G ∈ LX , a net S is said to quasi-coincide
with G if ∀n ∈ D,S(n) 6≤ G0.

Definition 2.8 ([9, 17]). Let (X, T ) be an L-space, G ∈ LX . G is called
strongly compact if for every a ∈ M(L), every constant a−net in G has a
cluster point in G with height a.

Definition 2.9. Let (X, T ) be an L-space, a ∈ L\{1} and G ∈ LX . A
subfamily U of LX is said to be an a−shading of G if for any x ∈ X with
G(x) ≥ a0, there exists an A ∈ U such that A(x) 6≤ a.

The notion of a−shading in Definition 2.9 is a generalization of the
corresponding notion in [6, 17].

Theorem 2.10 ([17]). Let (X, T ) be an L-space, G ∈ LX . Then G is
strongly compact if and only if for every a ∈ P (L), every open a−shading
of G has a finite subfamily which is an a−shading of G.

Definition 2.11 ([14]). Let (X, T ) be an L-space, a ∈ M(L) and G ∈
LX . A subfamily U of LX is called a βa−cover of G if for any x ∈ X, it

follows that a ∈ β

Ã
G0(x) ∨ W

A∈U
A(x)

!
.
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Definition 2.12. Let (X, T ) be an L-space, a ∈ L\{0} and G ∈ LX .
A subfamily U of LX is called a Qa−cover of G if for any x ∈ X with
G(x) 6≤ a0, it follows that

W
A∈U

A(x) ≥ a.

It is obvious that for a ∈ M(L), the notion of Qa−cover in Definition
2.12 is a generalization of Qa−open cover in [15].

Definition 2.13 ([9, 17]). Let (X, T ) be an L-space, G ∈ LX . G is called
fuzzy compact if for any a ∈ M(L) and for any b ∈ β∗(a), every constant
a−net in G has a cluster point in G with height b.

Theorem 2.14 ([15]). Let (X, T ) be an L-space, G ∈ LX . Then G is
fuzzy compact if and only if for all a ∈M(L), for all b ∈ β∗(a), each open
Qa−cover Φ of G has a finite subfamily B such that B is an open Qb−cover
of G.

Definition 2.15 ([14]). Let (X, T ) be an L-space, G ∈ LX . Then G is
S∗-compact if and only if for all a ∈M(L), each open βa−cover Φ of G has
a finite subfamily B such that B is an open Qa−cover of G.

3. Sβ−compactness

Definition 3.1. Let (X, T ) be an L-space and G ∈ LX . Then G is called
Sβ−compact if for each a ∈M(L), each open βa−cover ofG has a finite sub-
family which is still an open βa−cover of G. (X,T ) is called Sβ−compact
if 1 is Sβ−compact.

When L = [0, 1], U is an open βa−cover of X if and only if U is an
open a−shading of X in the sense of [3]. Therefore Sβ−compactness is a
generalization of strong compactness in [11].

The following two theorems are obvious.

Theorem 3.2. An L-set with finite support is Sβ−compact.

Theorem 3.3. In an L-space (X, T ) with a finite L-topology T , each L-set
is Sβ−compact.
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Theorem 3.4. If G is Sβ−compact and H is closed, then G ∧H is
Sβ−compact.

Proof. Suppose that U is an open βa−cover ofG∧H. Then U∪{H 0} is an
open βa−cover of G. By Sβ−compactness of G we know that U ∪{H 0} has
a finite subfamily V which is an open βa−cover of G. Take W = V\{H 0}.
Then W is a finite open βa−cover of G ∧ H. This shows that G ∧ H is
Sβ−compact.

Theorem 3.5. Let (X, T1), (Y, T2) be two L-spaces, f : X → Y be a set
map and G be Sβ−compact in (X, T1). If f→L : LX → LY is continuous and
for any y ∈ Y , there exists x ∈ f−1(y) such that f→L (G)(y) = G(x), then
f→L (G) is Sβ−compact in (Y, T2).

Proof. Let U ⊆ T2 be an open βa−cover of f→L (G). Then for any y ∈ Y ,

we have that a ∈ β

Ã
f→L (G)

0(y) ∨ W
A∈U

A(y)

!
. Hence for any x ∈ X, a ∈

β

Ã
G0(x) ∨ W

A∈U
f←L (A)(x)

!
. This shows that f←L (U) = {f←L (A) | A ∈ U}

is an open βa−cover of G. By Sβ−compactness of G we know that U has
a finite subfamily V such that f←L (V) is an open βa−cover of G. For any
y ∈ Y , take x ∈ f−1(y) such that f→L (G)(y) = G(x). We have that

a ∈ β

Ã
G0(x) ∨

Ã _
A∈V

f←L (A)(x)
!!

= β

Ã
G0(x) ∨

Ã _
A∈V

A(f(x))

!!

= β

Ã
f→L (G)

0(y) ∨
Ã _
A∈V

A(y)

!!

This implies that V is an open βa−cover of f→L (G). Therefore f→L (G)
is Sβ−compact.

Theorem 3.6. If (X, T ) is a weakly induced L-space, then (X, [T ]) is com-
pact if and only if (X, T ) is Sβ−compact.

Proof. Necessity. Let (X, [T ]) be compact. For a ∈ M(L), let U
be an open βa−cover of 1 in (X, T ). Then by Lemma 2.3 we know that
{A(a) | A ∈ U} is an open cover of (X, [T ]). By compactness of (X, [T ]),
there exists a finite subfamily V of U such that V(a) = {A(a) | A ∈ V} is
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an open cover of (X, [T ]). Obviously V is an open βa−cover of 1 in (X, T ).
This shows that (X, T ) is Sβ−compact.

Sufficiency. Let (X, T ) be Sβ−compact and U be an open cover of
X in (X, [T ]). Then for any a ∈ β∗(1), U is an open βa−cover of 1 in
(X,T ). By Sβ−compactness of (X, T ), U has a finite subfamily V which is
an open βa−cover. Obviously V is an open cover of (X, [T ]). This shows
that (X, [T ]) is compact.

Corollary 3.7. For a topological space (X, τ), (X,ωL(τ)) is Sβ−compact
if and only if (X, τ) is compact.

4. The Tychonoff Theorem

Lemma 4.1. Let (X, T ) be an L-space and for any b, c ∈ L, β(b ∧ c) =
β(b) ∩ β(c). Then for each a ∈ L, (X, T(a)) is a topological space, where
T(a) = {A(a) | A ∈ T }.

Proof. This can be proved from the following fact.

(A ∧B)(a) = A(a) ∩B(a),
Ã_
i∈Ω

Ai

!
(a)

=
[
i∈Ω
(Ai)(a) .

Theorem 4.2. Let (X, T ) be an L-space, G ∈ LX and for any b, c ∈ L,
β(b ∧ c) = β(b) ∩ β(c). Then G is Sβ−compact if and only if for each
a ∈M(L), G[a

0] is compact in (X, T(a)).

Proof. This can be shown from the following fact.
A subfamily U of T is an open βa−cover of G if and only if for any

x ∈ X, it follows that a ∈ β

Ã
G0(x) ∨ W

A∈U
A(x)

!
if and only if for each

a ∈ M(L), a 6∈ β(G0(x)) implies a ∈ β

Ã W
A∈U

A(x)

!
if and only if for each

a ∈ M(L), a0 6∈ α(G(x)) implies a ∈ S
A∈U

β (A(x)) if and only if for each

a ∈M(L), x ∈ G[a
0] implies x ∈ S

A∈U
A(a) if and only if for each a ∈M(L),

G[a
0] ⊂ S

A∈U
A(a). 2

The proof of the following two lemmas is easy.
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Lemma 4.3. Suppose that for any a, b ∈ L, β(a ∧ b) = β(a) ∧ β(b).
If (X, T ) is the product of {(Xi, Ti)}i∈Ω, then for each a ∈ L, T(a) =Q
i∈Ω
(Ti)(a).

Lemma 4.4. Let X =
Q
i∈Ω

Xi, G =
Q
i∈Ω

Gi, where Gi ∈ LXi. Then for each

a ∈ L, G[a] =
Q
i∈Ω
(Gi)

[a].

By Theorem 4.2, Lemma 4.3 and Lemma 4.4 we can obtain the following
theorem.

Theorem 4.5. Suppose that for any a, b ∈ L, β(a ∧ b) = β(a) ∧ β(b). Let
(X, T ) be the product of {(Xi,Ti)}i∈Ω. If for each i ∈ Ω, Gi is Sβ−compact
in (Xi, Ti), then G =

Q
i∈Ω

Gi is Sβ−compact in (X, T ).

The following example shows that β(b ∧ c) = β(b) ∧ β(c) cannot be
omitted in Theorem 4.5.

Example 4.6. Let X = Y be the set of all natural numbers and let L =
[0, 1/3]∪{a, b}∪ [2/3, 1], where a, b are incomparable and 1/3 = a∧b, 2/3 =
a ∨ b. For each e ∈ L with e 6= a, b, define e0 = 1 − e, and a0 = b, b0 = a.
Then L is a completely distributive de Morgan algebra, and

M(L) = (0, 1/3] ∪ {a, b} ∪ (2/3, 1],

β(a ∧ b)) = β(1/3) = [0, 1/3) 6= [0, 1/3] = β(a) ∩ β(b).
For each n ∈ X, define S2n, S2n+1 ∈ LX as follows:

S2n(y) =

(
a, y = 2n;
b, y 6= 2n, S2n+1(y) =

(
b, y = 2n+ 1;
a, y 6= 2n+ 1.

Let T1 be the L-topology on X generated by A = {Sn | n ∈ X}, and
let T2 be the L-topology on Y generated by {Cb, Ca}, where Ca and Cb

are respectively the constant L-sets on Y with value a and b. It is easy to
prove that each βa−open cover of X consisting of members of A has a finite
subfamily which is an open βa−cover of X and each βb−open cover of X
consisting of members of A has a finite subfamily which is a βb−open cover
of X. Moreover it is easy to prove that for all e ∈ [0, 1/3], each βe−open
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cover of X consisting of members of A has a finite subfamily which is a
βe−open cover of X. This implies that (X,T1) is Sβ−compact. Obviously
(Y, T2) is also Sβ−compact. But (X × Y,T1 × T2) is not Sβ−compact. In
fact, it is easy to see that

{P←2 (Ca), P
←
2 (Cb)} ∪ {P←1 (Sn) | n ∈ X}

is a base of T1 × T2 and

{P←2 (Ca) ∧ P←1 (S2n) | n ∈ X} ∪ {P←2 (Cb) ∧ P←1 (S2n+1) | n ∈ X}

is a β1/3−open cover of X × Y , but it has no finite subfamily which is a
β1/3−open cover of X × Y .

Corollary 4.7. Suppose that for any a, b ∈ L, β(a∧b) = β(a)∧β(b). Then
the product of {(Xi, Ti)}i∈Ω is Sβ−compact if and only if for each i ∈ Ω,
(Xi,Ti) is Sβ−compact.

Proof can be obtain from Theorem 3.5 and Theorem 4.5.

5. Sβ−compactness characterized by nets

Definition 5.1. Let {S(n) | n ∈ D} be a net in (X, T ) and e ∈ M(LX).
e is called a β−cluster point of S, if for all U ∈ T with e ∈ β(U), S is
frequently in β(U). e is a β−limit point of S, if for all U ∈ T with e ∈ β(U),
S is eventually in β(U), in this case we also say that S β−converges to e,
denoted by S

β−→ e.

Theorem 5.2. An L-set G is Sβ−compact in (X, T ) if and only if ∀a ∈
M(L), each constant a−net {S(n)}n∈D which is not in β∗(G0) has a β−cluster
point xa 6∈ β∗(G0).

Proof. Suppose that G is Sβ−compact. For a ∈M(L), let {S(n) | n ∈
D} be a constant a−net which is not in β∗(G0). Suppose that S has no
β−cluster point xa which is not in β∗(G0). Then for each xa 6∈ β∗(G0),
there exist an open L-set Ux with xa ∈ β∗(Ux) and nx ∈ D such that
∀n ≥ nx, S(n) 6∈ β∗(Ux). Take Φ = {Ux | xa 6∈ β∗(G0)}, then Φ is an
open βa−cover of G. Since G is Sβ−compact, Φ has a finite subfamily



162 Fu - Gui Shi

Ψ = {Uxi | i = 1, 2, · · · , k} which is a βa−open cover of G. Since D is a
directed set, there exists n0 ∈ D such that n0 ≥ nxi for each i ≤ k. Thus

we can obtain that ∀n ≥ n0, S(n) 6∈ β

Ã
kW
i=1

Uxi

!
. This contradicts that

Ψ is an open βa−cover of G. Therefore S has at least a β−cluster point
xa 6∈ β∗(G0).

Conversely suppose that ∀a ∈ M(L), each constant a−net which is
not in β∗(G0) has a β−cluster point xa 6∈ β∗(G0). We now prove that G is
Sβ−compact. Let Φ be an open βa−cover of G. If none of finite subfamilies
of Φ is an open βa−cover of G , then for each finite subfamily Ψ of Φ, there
exists S(Ψ) ∈M(LX) with height a such that S(Ψ) 6∈ β (G0 ∨WΨ).

Take
S = {S(Ψ) | Ψ is a finite subfamily of Φ}.

S is a constant a−net which is not in β∗(G0). Let xa be a β−cluster point
of S and xa 6∈ β∗(G0). Then for each finite subfamily Ψ of Φ we have that
xa 6∈ β (

W
Ψ), in particular, xa 6∈ β∗(B) for each B ∈ Φ. But since Φ is an

open βa−cover of G , we know that there exists B ∈ Φ such that xa ∈ β(B),
this is a contradiction. So G is Sβ−compact.

Corollary 5.3. (X, T ) is Sβ−compact if and only if ∀a ∈ M(L), each
constant a−net has a β−cluster point xa with height a.

6. A comparison of different compactness

Theorem 6.1. If (X, T ) is an ultra-compact L-space, then it is
Sβ−compact.

Proof. By ultra-compactness of (X, T ) we know that (X, ι(T )) is com-
pact. This implies (X,ωL ◦ ιL(T )) is Sβ−compact from Corollary 3.7.
Further from ωL ◦ ιL(T ) ⊇ T we can obtain the proof.

Theorem 6.2. Sβ−compactness implies S∗−compactness, hence fuzzy com-
pactness.

Proof. Let G be Sβ−compact in (X,T ) and U be an open βa−cover of
G. Then U has a finite subfamily V which forms an open βb− cover of G,
of course V is also an open Qb−cover of G. Therefore G is S∗−compact.

The following example shows that N-compactness in [17, 18] need not
imply Sβ−compactness, hence strong compactness in [9, 17] need not imply
Sβ−compactness.
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Example 6.3. In Example 4.6, we have proved that X × Y is not
Sβ−compact. To prove that it is N-compact, we only need to prove that
X,Y are N-compact.

(i) For a ∈ M(L), let F ⊆ A0 and F be a closed a−R-neighborhood
family of X. Then for each x ∈ X, there exists A ∈ F such that A(x) 6≥
a. In particular, for 2, 4 ∈ X, there exists A,B ∈ F such that A(2) 6≥
a,B(4) 6≥ a. In this case, we have that A(2) = b and B(4) = b. This
implies that {A,B} is an a−−R-neighborhood family of X. Analogously
we can prove that each closed b−R-neighborhood family of X has a finite
subfamily which is a b−−R-neighborhood family of X.

(ii) Let e ∈ M(L) and e 6= a, b. We need only consider e > 2
3 . Let

F ⊆ A0 and F be a closed e−R-neighborhood family of X. Then for
1, 2 ∈ X, there exists A,B ∈ F such that A(1) 6≥ e,B(2) 6≥ e. In this case,
{A,B} is an e−−R-neighborhood family of X.

By (i), (ii) and the Alexander Subbase Theorem for N-compactness,
we know that (X, T1) is N-compact. N-compactness of (Y, T2) is obvious.
Therefore X × Y is N-compact.

When L = [0, 1], since Sβ−compactness is equivalent to strong com-
pactness, we know that Sβ−compactness need not imply N-compactness
and S∗−compactness need not imply Sβ−compactness (see Example 6.4
in [14]). Moreover we don’t know whether Sβ−compactness implies strong
compactness. We leave it as an open problem.
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