Proyecciones Vol. 24, N^o 2, pp. 105-119, August 2005. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172005000200002

A NEW FORM OF FUZZY β -COMPACTNESS *

FU - GUI SHI Beijing Institute of Technology, China

Received : March 2005. Accepted : July 2005

Abstract

A new form of β -compactness is introduced in L-topological spaces by means of β -open L-sets and their inequality where L is a complete de Morgan algebra. This new form doesn't rely on the structure of basis lattice L. It can also be characterized by means of β -closed L-sets and their inequality. When L is a completely distributive de Morgan algebra, its many characterizations are presented. Meanwhile countable β -compactness and the β -Lindelöf property are also researched.

Key Words and Phrases: *L*-topology, compactness, β -compactness, countable β -compactness, the β -Lindelöf property

Mathematics Subject Classification (2000): 54A40, 54D30, 54A20

Dedicatory : Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China

^{*}This work is supported by the National Natural Science Foundation of China (10371079) and the Basic Research Foundation of Beijing Institute of Technology.

1. Introduction

As we know, stronger and weaker forms of compactness occupy very important places in general topology. In [5], Abd El-Monsef et al introduced the concepts of β -open sets and β -continuous functions in general topology, and Fath Alla in [1] introduced these concepts in [0,1]-topological spaces. In [2], G. Balasubramanian generalized the concept of β -compactness [6] to [0,1]-topological spaces along the line of Chang's compactness which is not a good extension.

In [12, 13], a new definition of fuzzy compactness is presented in Ltopological spaces by means of open L-sets and their inequality where L is a complete de Morgan algebra. This new definition doesn't depend on the structure of L. When L is completely distributive, it is equivalent to the notion of fuzzy compactness in [9, 10, 15]. In this paper, following the lines of [12, 13], we shall introduce a new form of β -compactness in L-topological spaces by means of β -open L-sets and their inequality. This new form of β -compactness has many characterizations if L is completely distributive.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a complete de Morgan algebra, X a nonempty set. L^X is the set of all L-fuzzy sets (or L-sets for short) on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$.

An element a in L is called prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. a in L is called co-prime element if a' is a prime element [7]. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [4]. In a completely distributive de Morgan algebra L, each element b is a sup of $\{a \in L \mid a \prec b\}$. $\{a \in L \mid a \prec b\}$ is called the greatest minimal family of b in the sense of [9, 15], in symbol $\beta(b)$. Moreover for $b \in L$, define $\beta^*(b) = \beta(b) \cap M(L)$, $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we use the following notations in [14].

$$A_{[a]} = \{ x \in X \mid A(x) \ge a \}, \quad A^{(a)} = \{ x \in X \mid A(x) \not\le a \}.$$

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains \mathcal{X}_{\emptyset} , \mathcal{X}_X and is closed for any suprema

and finite infima. \mathcal{T} is called an *L*-topology on *X*. Members of \mathcal{T} are called open *L*-sets and their complements are called closed *L*-sets. We often don't differ a crisp subset *A* of *X* and its character function \mathcal{X}_A .

Definition 2.1 ([9, 15]) : An *L*-space (X, \mathcal{T}) is called weak induced if $\forall a \in L, \forall A \in \mathcal{T}$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

Definition 2.2 ([9,15]) : For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all the lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X \mid A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X, in this case, $(X, \omega_L(\tau))$ is called topologically generated by (X, τ) . A topologically generated L-space is also called an induced L-space.

It is obvious that $(X, \omega_L(\tau))$ is weak induced.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamily of Φ . $2^{[\Phi]}$ denotes the set of all countable subfamily of Φ .

Definition 2.3 ([12, 13]) : Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$ is called (countably) compact if for every (countably) family $\mathcal{U}\subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Definition 2.4 [13]: Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$ is said to have the Lindelöf property if for every family $\mathcal{U}\subseteq \mathcal{T}$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{\mathcal{A} \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right)$$

Lemma 2.5 [13]: Let L be a complete Heyting algebra, $f: X \to Y$ be a map, $f_{L}^{\to}: L^{X} \to L^{Y}$ is the extension of f, then for any family $\mathcal{P} \subseteq L^{Y}$, we have:

$$\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \land \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right).$$

The following definition is presented in [0,1]-topological spaces. Analogously we can generalize it to *L*-fuzzy setting as follows:

Definition 2.6 [1] : An *L*-set *A* in an *L*-space (X, δ) is said to be β -open if $A \leq cl$ (int (cl (A))).

Definition 2.7. A map $f : (X, \delta) \to (Y, \mu)$ is said to be fuzzy β continuous [1] (resp. M β -continuous [8] if the inverse image $f_L^{\leftarrow}(B)$ of
every open (resp. β -open) *L*-set *B* in *Y* is β -open in *X*.

3. Definition and characterizations of β -compactness

Definition 3.1 : Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is called (countably) β -compact if for every (countable) family \mathcal{U} of β -open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Definition 3.2:Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is said to have the β -Lindelöf property (or be an β -Lindelöf *L*-set) if for every family \mathcal{U} of β -open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right).$$

Obviously we have the following theorem.

Theorem 3.3 : β -compactness implies countably β -compactness and the β -Lindelöf property. Moreover an *L*-set having the β -Lindelöf property is β -compact if and only if it is countably β -compact.

Since an open L-set must be β -open, we have the following theorem.

Theorem 3.4 : β -compactness implies compactness, countably β -compactness implies countably compactness, and the β -Lindelöf property implies the Lindelöf property.

From Definition 3.1 and Definition 3.2 we can obtain the following two theorems by simply using complement.

Theorem 3.5 : Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is (countably) β -compact if and only if for every (countable) family \mathcal{B} of β -closed *L*-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\mathcal{F} \in 2^{(\mathcal{B})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right)$$

Theorem 3.6 : Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ has the β -Lindelöf property if and only if for every family \mathcal{B} of β -closed *L*-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\mathcal{F} \in 2^{[\mathcal{B}]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right).$$

In order to present characterizations of β -compactness, countable β compactness and the β -Lindelöf property, we generalize the notions of a-shading and a-R-neighborhood family in [12, 13] as follows:

Definition 3.7 : Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{1\}$ and $G \in L^X$. A family $\mathcal{A} \subseteq L^X$ is said to be

(1) An *a*-shading of *G* if for any $x \in X$, $\left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right) \not\leq a$. (2) A strong *a*-shading of *G* if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right) \not\leq a$. (3) An *a*-remote family of *G* if for any $x \in X$, $\left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x)\right) \not\geq a$. (4) A strong *a*-remote family of *G* if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x)\right) \not\geq a$.

It is obvious that a strong a-shading of G is an a-shading of G, a strong a-remote family of G is an a-remote family of G, and \mathcal{P} is a strong a-remote family of G if and only if \mathcal{P}' is a strong a'-shading of G.

Definition 3.8: Let $a \in L \setminus \{0\}$ and $G \in L^X$. A subfamily \mathcal{A} of L^X is said to have weak *a*-nonempty intersection in *G* if

 $\bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{A \in \mathcal{A}} A(x) \right) \geq a. \ \mathcal{A} \text{ is said to have the finite (countable) weak} \\ a-\text{intersection property in } G \text{ if every finite (countable) subfamily } \mathcal{F} \text{ of } \mathcal{A} \\ \text{has weak } a-\text{nonempty intersection in } G.$

From Definition 3.1, Definition 3.2, Theorem 3.5 and Theorem 3.6 we immediately obtain the following two results.

Theorem 3.9 : Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then the following conditions are equivalent:

(1) G is (countably) β -compact.

(2) For any $a \in L \setminus \{1\}$, each (countable) β -open strong a-shading \mathcal{U} of G has a finite subfamily which is a strong a-shading of G.

(3) For any $a \in L \setminus \{0\}$, each (countable) β -closed strong a-remote family \mathcal{P} of G has a finite subfamily which is a strong a-remote family of G.

(4) For any $a \in L \setminus \{0\}$, each (countable) family of β -closed *L*-sets which has the finite weak *a*-intersection property in *G* has weak *a*-nonempty intersection in *G*.

Theorem 3.10 :Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then the following conditions are equivalent:

(1) G has the β -Lindelöf property.

(2) For any $a \in L \setminus \{1\}$, each β -open strong a-shading \mathcal{U} of G has a countable subfamily which is a strong a-shading of G.

(3) For any $a \in L \setminus \{0\}$, each β -closed strong a-remote family \mathcal{P} of G has a countable subfamily which is a strong a-remote family of G.

(4) For any $a \in L \setminus \{0\}$, each family of β -closed *L*-sets which has the countable weak *a*-intersection property in *G* has weak *a*-nonempty intersection in *G*.

4. Properties of (countable) β -compactness

Theorem 4.1 : Let *L* be a complete Heyting algebra. If both *G* and *H* are (countably) β -compact, then $G \lor H$ is (countably) β -compact.

Proof. For any (countable) family \mathcal{P} of β -closed *L*-sets, by Theorem 3.5 we have that

$$\bigvee_{x \in X} \left((G \lor H)(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right)$$

$$= \left\{ \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \right\} \lor \left\{ \bigvee_{x \in X} \left(H(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \right\}$$

$$\ge \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\} \lor \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(H(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\}$$

$$= \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left((G \lor H)(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\}.$$

This shows that $G \vee H$ is (countably) β -compact.

Analogously we have the following result.

Theorem 4.2 : Let *L* be a complete Heyting algebra. If both *G* and *H* have the β -Lindelöf property, then $G \vee H$ has the β -Lindelöf property.

Theorem 4.3 : If G is (countably) β -compact and H is β -closed, then $G \wedge H$ is (countably) β -compact.

Proof: For any (countable) family P of β -closed L-sets, by Theorem 3.5 we have that

$$\begin{split} \bigvee_{x \in X} \left((G \land H)(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \\ &= \bigvee_{x \in X} \left((G \land H)(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \\ &\geq \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P} \cup \{H\})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \\ &= \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\} \land \\ &\quad \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \land H(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\} \\ &\quad \left\{ \bigwedge_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \land H(x) \land \bigwedge_{B \in \mathcal{F}} B(x) \right) \right\} \end{split}$$

$$\bigwedge_{\mathcal{F}\in 2^{(\mathcal{P})}}\bigvee_{x\in X}\left((G\wedge H)(x)\wedge\bigwedge_{B\in\mathcal{F}}B(x)\right)$$

This shows that $G \wedge H$ is (countably) β -compact.

Analogously we have the following result.

Theorem 4.4 : If G has the β -Lindelöf property and H is β -closed, then $G \wedge H$ has the β -Lindelöf property.

Theorem 4.5 : Let *L* be a complete Heyting algebra and let f : $(X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be $M\beta$ -continuous. If *G* is an β -compact (respectively a countably β -compact, an β -Lindelöf) *L*-set in (X, \mathcal{T}_1) , then so is $f_L^{\to}(G)$ in (Y, \mathcal{T}_2) .

Proof. We only prove that the theorem is true for β -compactness. Suppose that \mathcal{P} is a family of β -closed *L*-sets in (Y, \mathcal{T}_2) , by Lemma 2.5 and β -compactness of *G* we have that

$$\begin{array}{l} \bigvee\limits_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge\limits_{B \in \mathcal{P}} B(y) \right) \\ = & \bigvee\limits_{x \in X} \left(G(x) \wedge \bigwedge\limits_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right) \\ \geq & \bigwedge\limits_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee\limits_{x \in X} \left(G(x) \wedge \bigwedge\limits_{B \in \mathcal{F}} f_L^{\leftarrow}(B)(x) \right) \\ = & \bigwedge\limits_{\mathcal{F} \in 2^{(\mathcal{P})}} \bigvee\limits_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge\limits_{B \in \mathcal{F}} B(y) \right). \end{array}$$

Therefore $f_L^{\rightarrow}(G)$ is β -compact.

Analogously we have the following result.

Theorem 4.6 : Let *L* be a complete Heyting algebra and let f : $(X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be β -continuous. If *G* is an β -compact (respectively a countably β -compact, an β -Lindelöf) *L*-set in (X, \mathcal{T}_1) , then $f_L^{\rightarrow}(G)$ is a compact (countably compact, Lindelöf) *L*-set in (Y, \mathcal{T}_2) .

Definition 4.7 : Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called strongly $M\beta$ -continuous if $f_L^{\leftarrow}(G)$ is open in (X, \mathcal{T}_1) for every β -open *L*-set *G* in (Y, \mathcal{T}_2) .

It is obvious that a strongly $M\beta$ -continuous map is $M\beta$ -continuous. Analogously we have the following result.

Theorem 4.8 : Let *L* be a complete Heyting algebra and let f : $(X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a strongly $M\beta$ -continuous map. If *G* is a compact (respectively countably compact, Lindelöf) *L*-set in (X, \mathcal{T}_1) , then $f_L^{\to}(G)$ is an β -compact (a countably β -compact, an β -Lindelöf) *L*-set in (Y, \mathcal{T}_2) .

5. Further characterizations of β -compactness and goodness

In this section, we assume that L is a completely distributive de Morgan algebra.

Now we generalize the notions of open β_a -cover and open Q_a -cover [13] as follows:

Definition 5.1: Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a β_a -cover of G if for any $x \in X$, it follows that $a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right)$. \mathcal{U} is called a strong β_a -cover of G if $a \in \beta \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \right)$.

Definition 5.2: Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathbf{U} \subseteq L^X$ is called a Q_a -cover of G if for any $x \in X$, it follows that $G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \ge a$.

It is obvious that a strong β_a -cover of G must be a β_a -cover of G and a β_a -cover of G must be a Q_a -cover of G.

Analogous to the proof of Theorem 2.9 in [13] we can obtain the following theorem.

Theorem 5.3 : Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then the following conditions are equivalent.

(1) G is β -compact.

(2) For any $a \in L \setminus \{0\}$, each β -closed strong a-remote family \mathcal{P} of G has a finite subfamily which is a strong a-remote family of G.

(3) For any $a \in L \setminus \{0\}$, each β -closed strong a-remote family \mathcal{P} of G has a finite subfamily which is an a-remote family of G.

(4) For any $a \in L \setminus \{0\}$ and any β -closed strong a-remote family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that \mathcal{F} is a strong b-remote family of G.

(5) For any $a \in L \setminus \{0\}$ and any β -closed strong a-remote family \mathcal{P} of G, there exist a finite subfamily \mathcal{F} of \mathcal{P} and $b \in \beta(a)$ such that \mathcal{F} is a b-remote family of G.

(6) For any $a \in L \setminus \{1\}$, each β -open strong a-shading \mathcal{U} of G has a finite subfamily which is a strong a-shading of G.

(7) For any $a \in L \setminus \{1\}$, each β -open strong a-shading \mathcal{U} of G has a finite subfamily which is an a-shading of G.

(8) For any $a \in L \setminus \{1\}$ and any β -open strong a-shading \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in \alpha(a)$ such that \mathcal{V} is a strong b-shading of G.

(9) For any $a \in L \setminus \{1\}$ and any β -open strong a-shading \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in \alpha(a)$ such that \mathcal{V} is a b-shading of G.

(10) For any $a \in L \setminus \{0\}$, each β -open strong β_a -cover \mathcal{U} of G has a finite subfamily which is a strong β_a -cover of G.

(11) For any $a \in L \setminus \{0\}$, each β -open strong β_a -cover \mathcal{U} of G has a finite subfamily which is a β_a -cover of G.

(12) For any $a \in L \setminus \{0\}$ and any β -open strong β_a -cover \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in L$ with $a \in \beta(b)$ such that \mathcal{V} is a strong β_b -cover of G.

(13) For any $a \in L \setminus \{0\}$ and any β -open strong β_a -cover \mathcal{U} of G, there exist a finite subfamily \mathcal{V} of \mathcal{U} and $b \in L$ with $a \in \beta(b)$ such that \mathcal{V} is a β_b -cover of G.

(14) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each β -open Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.

(15) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each β -open Q_a -cover of G has a finite subfamily which is a β_b -cover of G.

(16) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each β -open Q_a -cover of G has a finite subfamily which is a strong β_b -cover of G.

Remark 5.4 : In Theorem 5.3, $a \in L \setminus \{0\}$ and $b \in \beta(a)$ can be replaced by $a \in M(L)$ and $b \in \beta^*(a)$ respectively, $a \in L \setminus \{1\}$ and $b \in \alpha(a)$ can be replaced by $a \in P(L)$ and $b \in \alpha^*(a)$

Now we consider the goodness of β -compactness.

For $a \in L$ and a crisp subset $D \subset X$, we define $a \wedge D$ and $a \vee D$ as follows:

$$(a \wedge D)(x) = \begin{cases} a, & x \in D; \\ 0, & x \notin D. \end{cases} \quad (a \vee D)(x) = \begin{cases} 1, & x \in D; \\ a, & x \notin D. \end{cases}$$

Theorem 5.5 ([14]) :For an *L*-set $A \in L^X$, the following facts are true. (1) $A = \bigvee_{a \in L} (a \wedge A_{(a)}) = \bigvee_{a \in L} (a \wedge A_{[a]}).$ (2) $A = \bigwedge_{a \in L} (a \vee A^{(a)}) = \bigwedge_{a \in L} (a \vee A^{[a]}).$

Theorem 5.6 ([15])Let $(X, \omega_L(\tau))$ be the *L*-space topologically generated by (X, τ) and $A \in L^X$. Then the following facts hold.

$$\begin{array}{l} (1) \ cl(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{-}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{-}); \\ (2) \ cl(A)_{(a)} \subset (A_{(a)})^{-}) \subset (A_{[a]})^{-}) \subset cl(A)_{[a]}; \\ (3) \ cl(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^{-}) = \bigwedge_{a \in L} (a \vee (A^{[a]})^{-}); \\ (4) \ cl(A)^{(a)} \subset (A^{(a)})^{-}) \subset (A^{[a]})^{-}) \subset cl(A)^{[a]}; \\ (5) \ int(A) = \bigvee_{a \in L} (a \wedge (A_{(a)})^{\circ}) = \bigvee_{a \in L} (a \wedge (A_{[a]})^{\circ}); \\ (6) \ int(A)_{(a)} \subset (A_{(a)})^{\circ}) \subset (A_{[a]})^{\circ}) \subset int(A)_{[a]}; \\ (7) \ int(A) = \bigwedge_{a \in L} (a \vee (A^{(a)})^{\circ}) = \bigwedge_{a \in L} (a \vee (A^{[a]})^{\circ}); \\ (8) \ int(A)^{(a)} \subset (A^{(a)})^{\circ}) \subset (A^{[a]})^{\circ}) \subset int(A)^{[a]}, \end{array}$$

where $(A_{(a)})^-$ and $(A_{(a)})^\circ$ denote respectively the closure and the interior of $A_{(a)}$ in (X, τ) , and cl(A) and int(A) denote respectively the closure and the interior of A in $(X, \omega_L(\tau))$.

Lemma 5.7: Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . If *A* is an β -open *L*-set in (X, τ) , Then \mathcal{X}_A is an β -open set in $(X, \omega_L(\tau))$. If *B* is an β -open *L*-set in $(X, \omega_L(\tau))$, Then $B_{(a)}$ is an β -open set in (X, τ) for every $a \in L$. **Proof.** If A is a β -open set in (X, τ) , then $A \subseteq ((A^{-})^{\circ})^{-}$. Thus we have that

$$\mathcal{X}_A \leq \mathcal{X}_{((A^-)^\circ)^-} = cl(\mathcal{X}_{(A^-)^\circ}) = cl(int(\mathcal{X}_{A^-})) = cl(int(cl(A))).$$

This shows that A is β -open in $(X, \omega_L(\tau))$.

If B is a β -open L-set in $(X, \omega_L(\tau))$, then $B \leq cl(int(cl(B)))$. From Theorem 4.2 we have that

$$B_{(a)} \subseteq cl(int(cl(B)))_{(a)} \subseteq (int(cl(B))_{(a)})^{-} \subseteq ((cl(B)_{(a)})^{\circ})^{-} \subseteq (((B_{(a)})^{-})^{\circ})^{-}$$

This shows that $B_{(a)}$ is a β -open set in (X, τ) .

The following two theorems show that β -compactness, countable β -compactness and the β -Lindelöf property are good extensions.

Theorem 5.8 : Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ is (countably) β -compact if and only if (X, τ) is (countably) β -compact.

Proof: (Necessity) Let \mathcal{A} be an (a countable) β -open cover of (X, τ) . Then $\{_A | A \in \mathcal{A}\}$ is a family of β -open L-sets in $(X, \omega_L(\tau))$ with $\bigwedge_{x \in X} \left(\bigvee_{A \in \mathbf{U}} A(x)\right) = 1$. From (countable) β -compactness of $(X, \omega_L(\tau))$ we know that

$$1 \ge \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} A(x) \right) \ge \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{U}} A(x) \right) = 1.$$

This implies that there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $\bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} A(x)\right) = 1$. Hence \mathcal{V} is a cover of (X, τ) . Therefore (X, τ) is (countably) β -compact.

(Sufficiency) Let \mathcal{U} be a (countable) family of β -open L-sets in

 $(X, \omega_L(\tau))$ and let $\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x)\right) = a$. If a = 0, then obviously we have that

 $\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{V}} B(x) \right).$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$ we have that

$$b \in \beta \left(\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \right) \subseteq \bigcap_{x \in X} \beta \left(\bigvee_{B \in \mathcal{U}} B(x) \right) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta \left(B(x) \right).$$

From Lemma 5.7 this implies that $\{B_{(b)} \mid B \in \mathcal{U}\}$ is a β -open cover of (X, τ) . From (countable) β -compactness of (X, τ) we know that there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $\{B_{(b)} \mid B \in \mathcal{V}\}$ is a cover of (X, τ) . Hence

$$b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$
 Further we have that
$$b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$

This implies that

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) = a = \bigvee \{ b \mid b \in \beta(a) \} \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{V}} B(x) \right).$$

Therefore $(X, \omega_L(\tau))$ is (countably) β -compact.

Analogously we have the following result.

Theorem 5.1. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ has the β -Lindelöf property if and only if (X, τ) has the β -Lindelöf property.

References

- M. A. Fath Alla, On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- [2] G. Balasubramanian, On fuzzy β-compact spaces and fuzzy βextremally disconnected spaces, Kybernetika [cybernetics] 33, pp. 271– 277, (1997).

- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24, pp. 182–190, (1968).
- [4] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, I, Nederl. Akad. Wetensch. indag. Math., 44, pp. 403–414, (1982).
- [5] M. E. A. El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci., Assiut Univ., 12, pp. 77– 90, (1983).
- [6] M. E. A. El-Monsef and A.M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci. 9(2), pp. 257–269, (1985).
- [7] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, (1980).
- [8] I. M. Hanafy, Fuzzy β-compactness and fuzzy β-closed spaces, Turk J. Math., 28, pp. 281–293, (2004).
- [9] Y. M. Liu, M.K. Luo, Fuzzy topology, World Scientific, Singapore, (1997).
- [10] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64, pp. 446–454, (1978).
- [11] M. K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems, 44, pp. 273–281, (1991).
- [12] F.-G. Shi, Fuzzy compactness in L-topological spaces, submitted.
- [13] F.-G. Shi, Countable compactness and the Lindelöf property of *L*-fuzzy sets, Iranian Journal of Fuzzy Systems, 1, pp. 79–88, (2004).
- [14] F.-G. Shi, Theory of L_{β} -nest sets and L_{α} -nest sets and their applications, Fuzzy Systems and Mathematics, 4, pp. 65–72, (1995) (in Chinese).
- [15] G.J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Publishers, Xian, 1988. (in Chinese).

Fu - Gui Shi

Department of Mathematics Beijing Insitut of Technology Beijing 100081 P. R. China China E-mail: fuguishi@bit.edu.cn or f.g.shi@263.net