Proyecciones Vol. 24, N^o 3, pp. 287-294, December 2005. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172005000300007

COUNTABLE S*-COMPACTNESS IN L-SPACES

GUI - QIN YANG Mudanjiang Teachers College, China

Received : September 2005. Accepted : November 2005

Abstract

In this paper, the notions of countable S^* -compactness is introduced in L-topological spaces based on the notion of S^* -compactness. An S^* -compact L-set is countably S^* -compact. If L = [0,1], then countable strong compactness implies countable S^* -compactness and countable S^* -compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S^* -compact L-set and a closed L-set is countably S^* -compact. The continuous image of a countably S^* -compact L-set is countably S^* -compact. A weakly induced L-space (X, T) is countably S^* -compact if and only if (X, [T])is countably compact.

Subjclass : 54A40

Keywords : *L*-topology, β_a -open cover, Q_a -open cover, S^* -compactness, countable S^* -compactness.

1. Introduction

The concept of compactness is one of most important concepts in general topology. The concept of compactness in [0, 1]-fuzzy set theory was first introduced by C.L. Chang in terms of open cover [1]. Goguen was the first to point out a deficiency in Chang's compactness theory by showing that the Tychonoff Theorem is false [5]. Since Chang's compactness has some limitations, Gantner, Steinlage and Warren introduced α -compactness [3], Lowen introduced F-compactness, strong compactness and ultra-compactness [9], Liu introduced Q-compactness [7], Li introduced strong Q-compactness [6] which is equivalent to strong F-compactness in [10], and Wang and Zhao introduced N-compactness [16, 21].

In [15], Shi introduced a new notion of fuzzy compactness in L-topological spaces, which is called S^* -compactness. Ultra-compactness implies S^* -compactness. S^* -compactness implies F-compactness. If L = [0, 1], then strong compactness implies S^* -compactness.

There has been many papers about countable fuzzy compactness of L-sets (see [11, 12, 14, 18, 19, 20] etc.). They were based on the concepts of N-compactness, Chang's compactness, strong compactness and F-compactness respectively.

In this paper, based on the S^* -compactness, we shall introduce the notion of countable S^* -compactness and research its properties.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a completely distributive de Morgan algebra. X is a nonempty set. L^X is the set of all L-fuzzy sets on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$.

An element a in L is called prime if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. An element a in L is called co-prime if a' is a prime element [4]. The set of nonunit prime elements in L is denoted by P(L). The set of nonzero co-prime elements in L is denoted by M(L). The set of nonzero co-prime elements in L^X is denoted by $M(L^X)$.

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [2]. In a completely distributive de Morgan algebra L, each member b is a sup of $\{a \in L \mid a \prec b\}$. In the sense of [8, 17], $\{a \in L \mid a \prec b\}$ is the greatest minimal family of b, in symbol $\beta(b)$. Moreover for $b \in L$, define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For an *L*-set $A \in L^X$, $\beta(A)$ denotes the greatest minimal family of *A* and $\beta^*(A) = \beta(A) \cap M(L^X)$.

For $a \in L$ and $A \in L^X$, we use the following notations in [15].

$$A_{[a]} = \{ x \in X \mid A(x) \ge a \}, \quad A_{(a)} = \{ x \in X \mid a \in \beta(A(x)) \}, \\ A^{(a)} = \{ x \in X \mid A(x) \not\le a \}.$$

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on *X*. Each member of \mathcal{T} is called an open *L*-set and its complement is called a closed *L*-set.

Definition 2.1. [[8, 17]] For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X \mid A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X, in this case, $(X, \omega_L(\tau))$ is called topologically generated by (X, τ) .

Definition 2.2. [[8, 17]] An *L*-space (X, \mathcal{T}) is called weakly induced if $\forall a \in L, \forall A \in \mathcal{T}$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

Lemma 2.3. [[15]] Let (X, \mathcal{T}) be a weakly induced *L*-space, $a \in L, A \in \mathcal{T}$. Then $A_{(a)}$ is an open set in $[\mathcal{T}]$.

Definition 2.4. [[20]] An *L*-space (X, \mathcal{T}) is called countably ultracompact if $\iota_L(\mathcal{T})$ is countably compact, where $\iota_L(\mathcal{T})$ is the topology generated by $\{A^{(a)} \mid A \in \mathcal{T}, a \in L\}$.

Definition 2.5. [[11]] Let (X, \mathcal{T}) be an *L*-space, $A \in L^X$. A is called countably N-compact if for every $a \in M(L)$, every countable *a*-R-neighborhood family of *G* has a finite subfamily which is an a^- -R-neighborhood family of *G*.

Definition 2.6. [[19]] Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$. *G* is called countably strong compact if for every $a \in M(L)$, every countable *a*-R-neighborhood family of *G* has a finite subfamily which is an *a*-R-neighborhood family of *G*.

Definition 2.7. Let (X, \mathcal{T}) be an *L*-space, $a \in L \setminus \{0\}$ and $G \in L^X$. A family $\mathcal{U} \subseteq \mathcal{T}$ is called a Q_a -open cover of G if $a \leq \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}A(x)} \right)$.

It is obvious that for $a \in M(L)$, the notion of Q_a -open cover in Definition 2.7 is the corresponding notion in [15].

Definition 2.8. [[12]] Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$. *G* is called countably F-compact if for any $a \in M(L)$ and for any $b \in \beta^*(a)$, every constant *a*-sequence in *G* has a cluster point in *G* with height *b*.

Definition 2.9. [[15]] Let (X, \mathcal{T}) be an *L*-space, $a \in M(L)$ and $G \in L^X$. A family $\mathcal{U} \subseteq \mathcal{T}$ is called a β_a -open cover of *G* if for any $x \in X$, it follows that $a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}A(x)} \right)$.

When L = [0, 1], \mathcal{U} is a β_a -open cover of <u>1</u> if and only if \mathcal{U} is an *a*-shading of <u>1</u> in the sense of [3]. \mathcal{U} is a β_a -open cover of *G* if and only if \mathcal{U}' is an *a'*-R-neighborhood family of *G*.

3. Countable S*-compactness

Definition 3.1. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called countably *S*^{*}-compact if for any $a \in M(L)$, each countable β_a -open cover of *G* has a finite subfamily which is a Q_a -open cover of *G*. (X, \mathcal{T}) is said to be countably *S*^{*}-compact if <u>1</u> is countably *S*^{*}-compact.

Obviously we have the following theorem.

Theorem 3.2. S^* -compactness implies countably S^* -compactness.

From Theorem 3.2, we know that an *L*-set with finite support is S^* -compact. Moreover in an *L*-space (X, \mathcal{T}) with a finite *L*-topology, each *L*-set is S^* -compact.

Definition 3.3. Let $\mathcal{A} \subset L^X$, $G, H \in L^X$ and $a \in M(L)$.

(1) *H* is called Q_a -nonempty in *G* if there exists $x \in X$ such that $G(x) \wedge A(x) \not\leq a'$.

(2) *H* is called weak Q_a -nonempty in *G* if there exists $x \in X$ such that $a' \notin \alpha(G(x) \wedge A(x))$.

(3) \mathcal{A} is said to have a Q_a -nonempty intersection in G if $\bigwedge \mathcal{U}$ is Q_a -nonempty in G.

(4) \mathcal{A} is said to have a weak Q_a -nonempty intersection in G if $\bigwedge \mathcal{U}$ is weak Q_a -nonempty in G.

(5) If each finite subfamily of \mathcal{A} has Q_a -nonempty intersection in G, then \mathcal{A} is said to have finite Q_a -intersection property in G.

It is obvious that if \mathcal{A} has a Q_a -nonempty intersection in G, then it also has a weak Q_a -nonempty intersection in G.

It is easy to prove the following theorem.

Theorem 3.4. For an *L*-space (X, \mathcal{T}) and $G \in L^X$, the following conditions are equivalent:

(1) G is countably S^* -compact.

(2) Each countable family of closed *L*-sets with finite Q_a -intersection property in *G* has weakly Q_a -nonempty intersection in *G*.

(3) For each decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed *L*-sets which are Q_a -nonempty in G, $\{F_i \mid i = 1, 2, \cdots\}$ has a weakly Q_a -nonempty intersection in G.

Theorem 3.5. If G is countably S^* -compact and H is closed, then $G \wedge H$ is countably S^* -compact.

Proof. Suppose that \mathcal{U} is a countable β_a -open cover of $G \wedge H$. Then $\mathcal{U} \cup \{H'\}$ is a countable β_a -open cover of G. By countable S^* -compactness of G, we know that $\mathcal{U} \cup \{H'\}$ has a finite subfamily \mathcal{V} which is a Q_a -open cover of G. Take $\mathcal{W} = \mathcal{V} \setminus \{H'\}$. Then \mathcal{W} is Q_a -open cover of $G \wedge H$. This shows that $G \wedge H$ is countably S^* -compact. \Box

Theorem 3.6. If G is countably S^* -compact in (X, \mathcal{T}_1) and $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is continuous, then $f_L^{\rightarrow}(G)$ is countably S^* -compact in (Y, \mathcal{T}_2) .

Proof. Let $\mathcal{U} \subseteq \mathcal{T}_2$ be a countable β_a -open cover of $f_L^{\rightarrow}(G)$. Then for any $y \in Y$, we have that $a \in \beta\left(f_L^{\rightarrow}(G)'(y) \lor \bigvee_{A \in \mathcal{U}} A(y)\right)$. Hence for any $x \in X$, $a \in \beta\left(G'(x) \lor \bigvee_{A \in \mathcal{U}} f_L^{\leftarrow}(A)(x)\right)$. This shows that $f_L^{\leftarrow}(\mathcal{V}) =$ $\{f_L^{\leftarrow}(A) \mid A \in \mathcal{U}\}$ is a countable β_a -open cover of G. By countable S^* compactness of G, we know that \mathcal{U} has a finite subfamily \mathcal{V} such that

compactness of G, we know that \mathcal{U} has a finite subfamily \mathcal{V} such that $f_L^{\leftarrow}(\mathcal{V})$ is a Q_a -open cover of G. By the following equation we can obtain that \mathcal{V} is a Q_a -open cover of f(G).

$$\begin{split} f_{L}^{\rightarrow}(G)'(y) \lor \begin{pmatrix} \bigvee \\ A \in \mathcal{V}A(y) \end{pmatrix} &= \left(\bigwedge_{x \in f^{-1}(y)} G'(x)\right) \lor \begin{pmatrix} \bigvee \\ A \in \mathcal{V}A(y) \end{pmatrix} \\ &= \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \lor \begin{pmatrix} \bigvee \\ A \in \mathcal{V}A(f(x)) \end{pmatrix}\right) \\ &= \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}(f^{\leftarrow}(A))(x)}\right). \end{split}$$

Therefore $f_L^{\rightarrow}(G)$ is countably S^{*}-compact. \Box

Theorem 3.7. If (X, \mathcal{T}) is a weakly induced *L*-space, then (X, \mathcal{T}) is countably S^* -compact if and only if $(X, [\mathcal{T}])$ is countably compact.

Proof. Let $(X, [\mathcal{T}])$ be countably compact. For $a \in M(L)$, let \mathcal{U} be a countable β_a -open cover of $\underline{1}$ in (X, \mathcal{T}) . Then by Lemma 2.2, $\{A_{(a)} \mid A \in \mathcal{U}\}$ is a countable open cover of $(X, [\mathcal{T}])$. By countable compactness of $(X, [\mathcal{T}])$, we know that there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\mathcal{V}_{(a)} = \{A_{(a)} \mid A \in \mathcal{V}\}$ is an open cover of $(X, [\mathcal{T}])$. Obviously \mathcal{V} is a β_a -open cover of $\underline{1}$ in (X, \mathcal{T}) , of course it is also a Q_a -open cover of $\underline{1}$ in (X, \mathcal{T}) . This shows that (X, \mathcal{T}) is countably S^* -compact.

Conversely let (X, \mathcal{T}) be countably S^* -compact and \mathcal{W} be a countable open cover of $(X, [\mathcal{T}])$. Then for each $a \in \beta^*(1)$, \mathcal{W} is a countable β_a -open cover of $\underline{1}$ in (X, \mathcal{T}) . By countable S^* -compactness of (X, \mathcal{T}) , we know that there exists a finite subfamily \mathcal{V} of \mathcal{W} such that \mathcal{V} is a Q_a -open cover of $\underline{1}$ in (X, \mathcal{T}) . Obviously \mathcal{V} is an open cover of $(X, [\mathcal{T}])$. This shows that $(X, [\mathcal{T}])$ is compact. \Box

Corollary 3.8. Let (X, τ) be a crisp topological space. Then $(X, \omega_L(\tau))$ is countably S*-compact if and only if (X, τ) is countably compact.

4. A comparison of different notions of countable compactness

In [13], a characterization of F-compactness was presented by means of Q_a -open cover. Analogously we can present the characterization of countable F-compactness as follows:

Lemma 4.1. Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$. Then *G* is countably F-compact if and only if for all $a \in M(L)$, for all $b \in \beta^*(a)$, each countable Q_a -open cover Φ of *G* has a finite subfamily \mathcal{B} such that \mathcal{B} is a Q_b -open cover of *G*.

Theorem 4.2. Countable S^* -compactness implies countable F-compactness.

Proof. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$ be countably S^* compact. To prove that *G* is countably F-compact, suppose that \mathcal{U} is a
countable Q_a -open cover of *G*. Obviously for any $b \in \beta^*(a)$, \mathcal{U} is a countable β_b -open cover of *G*. By countable S^* -compactness of *G* we know that \mathcal{U} has a finite subfamily \mathcal{V} which is a Q_b -open cover of *G*. By Lemma 4.1
we know that *G* is countably F-compact. \Box

In general, countable F-compactness needn't imply countable S^* -compactness. This can be seen from Example 6.2 in [12].

When L = [0, 1], since each β_a -open cover of G is Q_a -open cover of G and \mathcal{U} is a β_a -open cover of G if and only if \mathcal{U} is an a-shading of G, we can obtain the following:

Theorem 4.3. When L = [0, 1], countable strong compactness implies countable S^* -compactness, hence countable N-compactness implies countable S^* -compactness.

In general, countable S^* -compactness needn't imply countable strong compactness. This can be seen from Example 6.4 in [12].

Theorem 4.4. If (X, \mathcal{T}) is a countably ultra-compact *L*-space, then it is countably S^* -compact.

Proof. By countable ultra-compactness of (X, \mathcal{T}) we know that $(X, \iota(\mathcal{T}))$ is countably compact. This shows that $(X, \omega_L \circ \iota_L(\mathcal{T}))$ is countably S^* -compact from Corollary 3.8. Further from $\omega_L \circ \iota_L(\mathcal{T}) \supseteq \mathcal{T}$ we can obtain the proof. \Box

References

- C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. 24, pp. 182–190, (1968).
- P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings) 85, pp. 403–414, (1982).
- [3] T. E. Gantner, R. C. Steinlage and R.H. Warren, Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62, pp. 547-562, (1978).
- [4] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, (1980).
- [5] J. A. Goguen, The fuzzy Tychonoff theorem, J.Math. Anal. Appl. 43, pp. 734–742, (1973).
- [6] Z. F. Li, Compactness in fuzzy topological spaces, Chinese Kexue Tongbao 6, pp. 321-323, (1983).
- [7] Y. M. Liu, Compactness and Tychnoff Theorem in fuzzy topological spaces, Acta Mathematica Sinica 24, pp. 260-268, (1981).
- [8] Y. M. Liu, M. K. Luo, *Fuzzy topology*, World Scientific, Singapore, (1997).
- R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, pp. 621-633, (1976).

- [10] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64, pp. 446–454, (1978).
- [11] G. W. Meng, Countable N-compactness in L-fuzzy topological spaces, Fuzzy Systems and Mathematics. add, pp. 234–238, (1992).
- [12] F.-G. Shi, G.-Q. Yang, Countable fuzzy compactness in L-topological spaces, J. Harbin Univ. Sci. & Tech. 2, pp. 499–507, (1992).
- [13] F.-G. Shi, C.-Y. Zheng, O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems 140, pp. 499–507, (2003).
- [14] F.-G. Shi, Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems, 1, pp. 79–88, (2004).
- [15] F.-G. Shi. A new notion of fuzzy compactness in L-topological spaces, Information Sciences 173, pp. 35–48, (205), (2005).
- [16] G.-J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94, pp. 1–23, (1983).
- [17] G.-J. Wang, Theory of L-fuzzy topological space, Shanxi Normal University Press, Xi'an, (1988). (in Chinese).
- [18] C. K. Wong, Covering properties of fuzzy topological spaces, J. Math. Anal. Appl. 43, (1973), pp. 697–704.
- [19] L. X. Xuan, Countable strong compactness and strong sequential compactness, J. Nanjing Normal Unifersity 2, pp. 14–19, (1989).
- [20] L. X. Xuan, Countable ultra-compactness and ultra-sequential compactness, J. Mathematical Research and Exposition 9, pp. 519–520, (1989)
- [21] D. S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128, pp. 64–70, (1987).

Yang Gui-Qin

Department of Mathematics Mudanjiang Teachers College Mudanjiang 157012 P. R. China e-mail : guiqin_yang@hotmail.com