REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS

A. REJALI
ISFAHAN UNIVERSITY, IRÁN

and

H. R. E. VISHKI
FERDOWSI UNIVERSITY, IRÁN

Received : April 2007. Accepted : October 2007

Abstract

For a wide variety of Banach algebras A (containing the group algebras $L^1(G), M(G)$ and $A(G)$) the Arens regularity of A^{**} is equivalent to that A, and the amenability of A^{**} is equivalent to the amenability and regularity of A. In this paper, among other things, we show that this variety contains the weighted group algebras $L^1(G, w)$ and $M(G, w)$.

Keywords : Arens product, Weighted group algebra, Amenability

MR(2000) Subject Classification : 46H25, 43A10
1. Introduction

Over fifty years ago, Arens in his elaborate work [A], pointed out that, for every Banach algebra A, there exist two (Arens) products \circ and \diamond on the second dual A^{**}, extending the product of A. If these two products coincide on A^{**}, then A is said to be (Arens) regular. For further details on the properties of Arens products see the survey article [D-H]. It is readily verified that the regularity of A^{**} (equipped with either \circ or \diamond) implies that A; therefore (A^{**}, \circ) is regular if and only if (A^{**}, \diamond) is regular. However it has been shown in [Y3] that there exists a regular Banach algebra whose second dual is not regular; for a more simple example of such a Banach algebra see [P]. Every C^*-algebra is regular [S], and its second dual is a von Neumann algebra, and so is regular. As a consequence of Young’s result [Y1], (which asserts $L^1(G)$ is regular if and only if G is finite) the regularity of $L^1(G)^{**}$ is equivalent to the regularity of $L^1(G)$. For a commutative, semisimple, completely continuous and weakly sequentially complete Banach algebra A whose dual A^* is a von Neumann algebra (for instance, for the Fourier algebra $A(G)$), it has been shown in [U2] that the regularity of A^{**} is equivalent to that of A.

A Banach algebra A is said to be amenable (resp. weakly amenable) if every continuous derivation $D : A \to X^*$ (resp. $D : A \to A^*$) is inner for every Banach A–module X. It has been shown in [Go] (see also [G-L-W]) that, if either (A^{**}, \circ) or (A^{**}, \diamond) is amenable then so is A. However, for an infinite amenable group G, $L^1(G)$ is amenable, but $L^1(G)^{**}$ is not; indeed in [G-L-W] they showed that $L^1(G)^{**}$ is amenable if and only if G is finite. For the Fourier algebra $A(G)$ it is known that, $A(G)^{**}$ is amenable if and only if G is finite, see [Gra]. Although, one can use the earlier result of Forrest and Runde [F-R], to give a simple proof for the latter fact; (indeed, if $A(G)^{**}$ is amenable then so is $A(G)$, and the main result of [F-R] implies that, G has an abelian subgroup H of finite index. It induces an epimorphism from $A(G)^{**}$ on $A(H)^{**}$, in particular $A(H)^{**} = L^1(\hat{H})^{**}$ is amenable. It follows by [G-L-W], that \hat{H} is finite, and so G is finite.)

If A is commutative or if it possesses a continuous involution then as it is shown in [G-L], the amenability (resp. weak amenability) of (A^{**}, \circ) is equivalent to that of (A^{**}, \diamond). It seems still not known if there exists a Banach algebra A for which the amenability of (A^{**}, \circ) is not equivalent to that of (A^{**}, \diamond).

The main theme of this paper is to investigate the regularity and amenabil-
ity of the second dual of the weighted group algebras $L^1(G, w)$ and $M(G, w)$.

2. Preliminaries

Throughout this paper, G is a locally compact (topological) group, and w is a weight on G; (which is a continuous function $w : G \to (0, \infty)$ with $w(xy) \leq w(x)w(y)$, for all $x, y \in G$), for convenience we shall assume that $w(e) = 1$, where e is the identity of G. We define $\Omega : G \times G \to (0, 1]$ by $\Omega(x, y) = w(xy)/w(x)w(y)$.

A function $h : X \times Y \to \mathbb{C}$ is said to be 0−cluster if $\lim_n \lim_m h(x_n, y_m) = 0 = \lim_m \lim_n h(x_n, y_m)$ for every two sequences $\{x_n\} \subseteq X$ and $\{y_m\} \subseteq Y$ of distinct points, provided the involved limits exist.

We define w^* on G by $w^*(x) = w(x)w(x^{-1})$, ($x \in G$). It can be simply verified that w^* is also a weight on G; moreover w^* is bounded on G if and only if w is semi-multiplicative (that is, there exists $c > 0$ such that $cw(x)w(y) \leq w(xy)$, for all $x, y \in G$). Therefore, Ω can not be 0−cluster when w^* is bounded.

Define $L^1(G, w)$, $L^\infty(G, w)$, $G_0(G, w)$ and $LUC(G, w)$ as follows:

\[
\begin{align*}
L^1(G, w) &= \{ f : fw \in L^1(G) \}, \\
L^\infty(G, w) &= \{ f : f/w \in L^\infty(G) \}, \\
C_0(G, w) &= \{ f : f/w \in C_0(G) \}, \text{and} \\
LUC(G, w) &= \{ f : f/w \in LUC(G) \}.
\end{align*}
\]

We norm these spaces in such a way the multiplication or division by w becomes an isometry between the non-weighted and the corresponding weighted spaces (whose norm will denote by $\| \cdot \|_w$). Thus the non-weighted and the corresponding weighted spaces are isometrically isomorphic as Banach spaces, but quite different as Banach algebras. Recall the inclusion relations of non-weighted cases of these spaces and the fact that $L^1(G)^* = L^\infty(G)$, we have:

\[
C_0(G, w) \subseteq LUC(G, w) \subseteq L^\infty(G, w) = L^1(G, w)^*.
\]

We refer the reader to [R2], for more study of different subalgebras of $L^\infty(G, w)$, and their equalities.

We define $M(G, w)$ such that $M(G, w)$ becomes isometric isomorphic to the Banach space $C_0(G, w)^*$. For this sake, let $M^+(G, w)$ be the set of
all positive regular measures on G for which μw is again a positive regular measure on G; where $d(\mu w) = wdu$. Define an equivalence relation on $M^+(G, w) \times M^+(G, w)$ by $(\mu_1, \nu_1) \sim (\mu_2, \nu_2)$ if and only if $\mu_1 + \nu_2 = \mu_2 + \nu_1$. Now define $M(G, w)$ by

$$M(G, w) = \{[\mu, \nu]: \mu, \nu \in M^+(G, w)\},$$

where $[\mu, \nu]$ is the equivalence class of (μ, ν). For a full discussion on $M(G, w)$ from this point of view and the fact that $C_0(G, w)^* = M(G, w)$ see [R1] and also [B].

It should be remarked that, if w is multiplicative (i.e. $w(xy) = w(x)w(y)$, for all $x, y \in G$, or equivalently, w is a positive character on G) then $L^1(G, w) \cong L^1(G)$ and $M(G, w) \cong M(G)$ as Banach algebras. Indeed it can be readily verified that $f \rightarrow fw$ and $[\mu, \nu] \rightarrow \mu w - \nu w$ are algebra isomorphism from $L^1(G, w)$ on $L^1(G)$ and $M(G, w)$ on $M(G)$, respectively.

As a ground reference for the second dual of weighted group algebras, one may refer to [D-L].

3. Main Results

We start with the next lemma.

Lemma 1. If G is infinite (discrete) and Ω is 0–cluster, then $F \circ G = 0 = F \circ G$, for every $F, G \in L^1(G, w)^* \setminus L^1(G, w)$.

Proof. Since Ω is 0-cluster, the mapping $(x, y) \rightarrow \frac{\phi}{w}(xy)\Omega(x, y)$ is 0–cluster for every $\phi \in L^\infty(G, w)$. Using the Example 2 in page 312 of [Y2], the mapping $(f, g) \rightarrow \phi(f * g) = \sum \sum \frac{\phi}{w}(xy)(fw)(x)(gw)(y)\Omega(x, y)$ is 0–cluster on $L^1(G, w) \times L^1(G, w)$ (the sums are taken on $x, y \in G$). Now for $F, G \in L^1(G, w)^* \setminus L^1(G, w)$ there exist two nets $\{f_\alpha\}$ and $\{g_\beta\}$, each consisting of distinct points in $l^1(G, w)$ such that $f_\alpha \rightarrow F$ and $g_\alpha \rightarrow G$, in the weak* topology, with

$$< F \circ G, \phi >= \lim_\alpha \lim_\beta \phi(f_\alpha \ast g_\beta)$$

and $< F \circ G, \phi >= \lim_\beta \lim_\alpha \phi(f_\alpha \ast g_\beta)$, for every $\phi \in L^\infty(G, w)$. One can construct two subsequences $\{f_{\alpha_m}\}$ and $\{g_{\beta_n}\}$ of $\{f_\alpha\}$ and $\{g_\beta\}$, respectively, such that, $< F \circ G, \phi >= \lim_m \lim_n \phi(f_{\alpha_m} \ast g_{\beta_n}) = 0 = \lim_n \lim_m \phi(f_{\alpha_m} \ast g_{\beta_n}) = < F \circ G, \phi >$, as required.

Now, we come to the one of the main results.
Theorem 2. The following statements are equivalent.

(i) $L^1(G, w)$ is regular,
(ii) G is finite or G is discrete and Ω is 0–cluster,
(iii) $L^1(G, w)^{**}$ is regular.

Proof. For (i)⇒(ii), suppose that $L^1(G, w)$ be regular. Since $L^1(G, w)$ is weakly sequentially complete and admits a bounded approximate identity, it is unital by theorem 3.3 of [U1]. Therefore G is discrete. If G is infinite, then by corollary 3.8 of [B-R] Ω must be 0–cluster. For (ii)⇒(iii), if G is finite then $L^1(G, w)$ is reflexive; for the infinite case (iii) follows from Lemma 1.

Suppose that G admits a multiplicative weight bounded by w, (for instance, it is the case if either $1 \leq w$ or G is amenable (as a group), for the latter see Lemma 1 of [W]). Then, there exists a unique multiplicative weight on G which is equivalent to w, provided w^* is bounded. Indeed, $\varphi(x) = \lim_{n \to \infty} w(x^n)^{1/n}$ defines a multiplicative weight on G with $\varphi \leq w \leq c \varphi$, in which $c = \sup_{x \in G} w^*(x)$; see [W] for further details. In particular, $L^1(G, w) = L^1(G, \varphi) \cong L^1(G)$ and $M(G, w) = M(G, \varphi) \cong M(G)$.

An elegant result of [Gro] states $L^1(G, w)$ is amenable if and only G is amenable and w^* is bounded. Therefore, $L^1(G, w)$ is amenable if and only if G is amenable and discrete. As a weighted version of this we have;

Proposition 3. $M(G, w)$ is amenable if and only if G is amenable, discrete and w^* is bounded.

Proof. If $M(G, w)$ is amenable, then $L^1(G, w)$ is amenable, therefore G is amenable and w^* is bounded; and so by the discussion just before the proposition, there exists a unique multiplicative weight on G equivalent to w. It implies that, $M(G, w) \cong M(G)$. In particular, $M(G)$ is amenable. By [D-G-H] G must be discrete. Since in the discrete setting $M(G, w) = L^1(G, w)$, the converse follows from [Gro].

As the second main result we have the next which is an extension of Theorem 1.3 of [G-L-W].

Theorem 4. The following statements are equivalent.

(i) $L^1(G, w)^{**}$ is amenable,
(ii) $L^1(G, w)$ is amenable and regular,
(iii) $L^1(G, w)$ is regular and w^* is bounded,
(iv) $L^1(G, w)$ is reflexive and w^* is bounded,
(v) $L^1(G, w)$ is a C^*-algebra,
(vi) G is finite.

Proof. Trivially (vi) implies the other parts. If $L^1(G, w)^{**}$ is amenable, then so is $L^1(G, w)$, and so $L^1(G, w) \cong L^1(G)$. Now the amenability of $L^1(G)^{**}$ necessitates G must be finite by Theorem 1.3 of [G-L-W]. Thus (i) \Rightarrow (vi) follows. The implications (ii) \Rightarrow (iii) and (iv) \Rightarrow (iii) are obvious. Let $L^1(G, w)$ be regular and w^* be bounded; therefore Ω can not be 0–cluster and by Theorem 2, G is finite. Assume that $L^1(G, w)$ is a C^*–algebra; then it is regular and so G is discrete. Moreover, the equality $\|\delta_x \ast \delta_x^*\|_w = \|\delta_x\|_w^2$, for every $x \in G$ implies that $w(x) = \Delta(x)^{1/2}$, for each $x \in G$ (Δ is the modular function of G), and this implies that w is multiplicative and so $\Omega = 1$. Now Theorem 2 implies that G is finite and this completes the proof.

Remarks. (i) The conclusions of Theorems 2 and 4 remains valid if we replace $L^1(G, w)$ by $M(G, w)$.

(ii) For a Banach algebra A if $A^{**} \cdot F = A^* \circ F$, for every $F \in A^{**}$, then it is not hard to prove that the regularity of A^{**} is equivalent to that of A; (indeed if A is regular, then for every $f \in A^*$, the mapping $F \rightarrow f \circ F : A^{**} \rightarrow A^*$ is weakly compact, and the equality $A^{**} \cdot F = A^* \circ F$ implies that for every $\Phi \in A^{**}$ the mapping $F \rightarrow \Phi \cdot F : A^{**} \rightarrow A^{**}$ is weakly compact, which is equivalent to the regularity of A^{**}). Using this fact, one may give a different proof to the Theorem 2.

(iii) For a Banach algebra A with a bounded approximate identity of norm one, $A^* A$ is a closed subspace of A^*, and $A^{**} = (A^* A)^* \oplus (A^* A)^{\perp}$ (as Banach spaces), where $(A^* A)^{\perp} = \{F \in A^{**} : A^{**} \circ F = 0\}$ is a closed ideal of (A^{**}, \circ) and $(A^* A)^*$ is a closed subalgebra of (A^{**}, \circ). These observations together with the Lemma 2.3 of [L-L] imply that; if (A^{**}, \circ) is weakly amenable then so is $(A^* A)^*$. Now for $A = L^1(G, w)$ it has been shown in Proposition 1.3 of [Gro] that $A^* A = LUC(G, w)$. On the other hand, using the methods of Lemma 1.1 of [G-L-L], we have $LUC(G, w)^* = M(G, w) \oplus C_0(G, w)_{\perp}$, and that $M(G, w), C_0(G, w)_{\perp}$ are closed subalgebra and closed ideal of $LUC(G, w)^*$, respectively. Again use Lemma 2.3 of [L-L] the weak amenability of $L^1(G, w)^{**}$ implies that of $M(G, w)$, which is an extension of Proposition 4.14 in [L-L].
(iv) The existing examples support the conjecture that, for a Banach algebra A if A^{**} is amenable then A is regular.

References

A. Rejali
Department of Mathematics
Isfahan University
Isfahan 81746-73441
Iran
e-mail : rejali@sci.ui.ac.ir

and

H. R. E. Vishki
Faculty of Mathematical Sciences
Ferdowsi University, Mashhad
P.O. Box 91775-1159
Iran
e-mail : vishki@ferdowsi.um.ac.ir