Proyecciones Vol. 26, N^o 3, pp. 237-244, December 2007. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172007000300001

ON THE ALGEBRAIC DIMENSION OF BANACH SPACES OVER NON-ARCHIMEDEAN VALUED FIELDS OF ARBITRARY RANK

HERMINIA OCHSENIUS PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, CHILE and W. H. SCHIKHOF RADBOUD UNIVERSITY, THE NETHERLANDS

Received : July 2007. Accepted : October 2007

Abstract

Let K be a complete non-archimedean valued field of any rank, and let E be a K-Banach space with a countable topological base. We determine the algebraic dimension of E (2.3, 2.4, 3.1).

AMS Classification [2000] : Primary 46S10.

Keywords : Banach spaces, valued fields, algebraic dimension.

Introduction

It is a well-known fact that the (algebraic) dimension of the Hilbert space l^2 is the power of the continuum. (See the Appendix for an elegant and general proof, kindly pointed out to us by A. van Rooij).

Now consider a Banach space E with a topological base e_1, e_2, \ldots over a field K of any cardinality, with a non-archimedean valuation of arbitrary rank. To compute the dimension of E a new approach is needed. In fact we extend Köthe's method ([2] Ch.2, Sec.9.5) used to determine the dimension of the algebraic dual of a vector space.

The results are striking. They depend strongly on whether or not K is metrizable (see 2.4 and 3.1). It is also noteworthy that, if K is non-metrizable the dimension of E turns out to be so small and independent of the cardinality of K!

1. Preliminaries

We will use notations and terminology from [3], but for convenience we quote a few basics here.

Throughout K is a field. Let G be a totally ordered multiplicatively written abelian group with unit 1, augmented with an element 0 satisfying 0 < g, $0 \cdot g = g \cdot 0 = 0 \cdot 0 = 0$ for all $g \in G$. (We point out that G is not necessarily a subgroup of the positive real numbers).

A valuation on K with value group G is a surjective map $| : K \to G \cup \{0\}$ satisfying

- (i) $|\lambda| = 0$ if and only if $\lambda = 0$
- (ii) $|\lambda\mu| = |\lambda| |\mu|$
- (iii) $|\lambda + \mu| \le \max(|\lambda|, |\mu|)$

for all $\lambda, \ \mu \in K$.

The valuation is called *trivial* if $G = \{1\}$. The *balls* $B(\alpha, g) := \{\lambda \in K : |\lambda - \alpha| < g\}$ where $\alpha \in K$, $g \in G$, induce a topology on K making it into a topological field; we assume the valued field (K, | |) to be equipped with this topology. One introduces the notion of a Cauchy net in K in a natural way. (K, | |) is called *complete* if each Cauchy net converges. We will need the following criterion on metrizability of K.

Proposition 1.1. ([3] 1.4.1) (K, | |) is metrizable if and only if G has a coinitial sequence.

A linearly ordered set X without smallest element is called a *G*-module if there exists an action $(g, x) \mapsto gx$ of G on X that is increasing in both variables and such that Gx is coinitial in X for all $x \in X$.

Let *E* be a vector space over a valued field (K, | |), and let *X* be a *G*-module, augmented with and element 0_X satisfying $0_X < x$, $0 \cdot x = 0 \cdot 0_X = 0_X = g \cdot 0_X$ for all $x \in X$, $g \in G$. For simplicity we will write 0 instead of 0_X .

An X-norm is a map $\| \| : E \to X \cup \{0\}$ satisfying

- (i) ||x|| = 0 if and only if x = 0
- (ii) $\|\lambda x\| = |\lambda| \|x\|$
- (iii) $||x + y|| \le \max(||x||, ||y||)$

for all $x, y \in E, \ \lambda \in K$.

The space (E, || ||) is as usual called a *normed space* (more precisely, an *X*-normed space). Notice that the subset $||E|| \setminus \{0\} := \{||x|| : x \in E, x \neq 0\}$ of *X* is a *G*-module in its own right. The *X*-norm induces naturally a topology on *E* and the notion of a Cauchy net. (E, || ||) is called a *Banach space* if *E* and *K* are complete. It is easily seen that if (K, ||) is metrizable then so is (E, || ||).

Let (E, || ||) be a Banach space over K. A system $\{e_1, e_2, \ldots\} \subset E \setminus \{0\}$ is called a *topological base of* E if each $x \in E$ has a unique expansion as a convergent sum

$$x = \sum_{n=1}^{\infty} \lambda_n e_n. \qquad (\lambda_n \in K)$$

If, in addition

$$\|x\| = \max_n \|\lambda_n e_n\|$$

it is called an *orthogonal base*.

Since in this paper we are concerned with the (algebraic) dimension of E, we recall that this is the cardinality of an algebraic base of E (in the sense that each $x \in E$ can uniquely be represented as a *finite* linear combination of its elements).

2. The main result

We prove first a well-known general fact about infinite dimensional vector spaces.

Lemma 2.1. Let *E* be a vector space of infinite dimension *d* over a field *K*. Let κ be the cardinality (finite or not) of *K*, and let ε be the cardinality of *E*. Then $\varepsilon = d\kappa$.

Proof. Let δ be an ordinal with cardinality d and let $\{e_{\nu} : \nu \in \delta\}$ be an (algebraic) base of E.

For every $n \geq 1$ the cardinality of the set of elements of the form $\alpha_1 e_{\nu_1} + \alpha_2 e_{\nu_2} + \ldots + \alpha_n e_{\nu_n}$ with $\alpha_i \neq 0$ $(i = 1, \ldots, n)$ is equal to $((\kappa - 1)d)^n$. Therefore

$$\varepsilon = \sum_{n=0}^{\infty} ((\kappa - 1)d)^n = d(\sum_{n=0}^{\infty} (\kappa - 1)^n),$$

since $d^n = d$.

If $\kappa < \aleph_0$ then $\sum_{n=0}^{\infty} (\kappa - 1)^n = \aleph_0$ and $\varepsilon = d \aleph_0 = d = d\kappa$. If $\kappa \ge \aleph_0$ then $\sum_{n=0}^{\infty} (\kappa - 1)^n = \kappa$ and $\varepsilon = d\kappa$.

From now on K shall be an infinite field. As customary, we will often use the aleph notation for infinite cardinalities.

Lemma 2.2. Let K be a valued field with value group $G \neq \{1\}$. Let X be a G-module, let K_0 be a subfield of K, $K_0 \neq K$. Then, for each s, $t \in X$ there exists a $\lambda \in K \setminus K_0$ such that $|\lambda| s < t$.

Proof. Let $G_0 := |K_0^*|$.

- (i) Suppose G_0s is coinitial in X. Then choose $\mu \in K \setminus K_0$. There is a $\lambda_0 \in K_0^*$ such that $|\lambda_0| s < |\mu|^{-1}t$, i.e. $|\lambda_0\mu| s < t$. Choose $\lambda := \lambda_0\mu$. Clearly, $\lambda \notin K_0$ (otherwise, $\mu = \lambda \lambda_0^{-1} \in K_0$, a contradiction).
- (ii) Suppose $G_0 s$ is not coinitial in X. Then there is a $v \in X$ such that $g_0 s \ge v$ for all $g_0 \in G_0$. In this case, choose $\lambda \in K^*$ such that $|\lambda| s < t$ and $|\lambda| s < v$. Then $|\lambda| \notin G_0$, so $\lambda \notin K_0$.

Let E be an infinite-dimensional Banach space with a topological base e_1, e_2, \ldots over a nontrivially valued field K. We assume K to be metrizable. We can identify E with a subspace of K^N as follows.

$$E = \{(\xi_1, \xi_2, \ldots) \in K^N : |\xi_n| ||e_n|| \to 0\}$$

(where the $||e_n||$ are in the *G*-module $||E|| \setminus \{0\}$).

We want to prove the following.

Theorem 2.3. Let E be an infinite-dimensional Banach space with topological base e_1, e_2, \ldots over a metrizable K. Then the dimension of E is equal to its cardinality.

Proof. Let \aleph_{κ} be the cardinality of K, let \aleph_{ε} be the cardinality of E, let d be the dimension of E. It is enough to prove that $d \geq \aleph_{\kappa}$, since by 2.1 $\aleph_{\varepsilon} = d \aleph_{\kappa}$. Therefore we shall assume, by contradiction, that $d < \aleph_{\kappa}$. Let δ be an ordinal with cardinality d and $\{f_{\nu} : \nu \in \delta\}$ an algebraic base of E.

For every $\nu \in \delta$ we write $f_{\nu} = \sum_{i=0}^{\infty} \alpha_i^{\nu} e_i$, and let $M := \{\alpha_i^{\nu} : \nu \in \delta, i \in N\}$. Therefore the cardinality of M is less than or equal to $d\aleph_0$. We also fix a sequence t_1, t_2, \ldots in $||E|| \setminus \{0\}$ such that $t_n \to 0$; we will use it to construct a chain $K_0 \subset K_1 \subset K_2, \ldots$ of subfields of K. In fact, let K_0 be the subfield of K generated by M. Then, observing that the cardinality of the prime field of K is at most \aleph_0 , we conclude that the cardinality of K_0 is at most $d\aleph_0 = d$. Since by assumption $d < \aleph_{\kappa}$, there exists a $\xi_1 \in K \setminus K_0$, and by 2.2 we can assume that $|\xi_1| ||e_1|| < t_1$. We define $K_1 := K_0(\xi_1)$; once again K_1 has no more than $d\aleph_0 = d$ elements, and we can pick $\xi_2 \in K \setminus K_1$ such that $|\xi_2|||e_2|| < t_2$. Recursively we obtain a sequence $K_0 \subset K_1 \subset K_2 \subset \ldots$ of subfields, where $K_n = K_{n-1}(\xi_n)$ and $|\xi_n|||e_n|| < t_n$ for all n.

We define the vector $\xi := (\xi_n)_{n \in \mathbb{N}}$, note that ξ belongs to E by construction. Write ξ as a finite linear combination of the vectors in the algebraic base

$$\xi = \sum_{j=1}^{n} \eta_j f_{\nu_j}.\tag{*}$$

Let $K_{\infty} = \bigcup_n K_n$, and consider K as a K_{∞} -vector space. Then K_{∞} , as a subspace of K, has a complement W. Let $\varphi : K \to K_{\infty}$ be the K_{∞} -linear map such that $\varphi|_{K_{\infty}}$ is the identity map and $\varphi|_W = 0$.

Then $\psi: K^N \to (K_{\infty})^N$ defined by the formula $\psi(\alpha_1, \alpha_2, \ldots) = (\varphi(\alpha_1), \varphi(\alpha_2), \ldots)$ is a K_{∞} -linear map that is the identity on $(K_{\infty})^N$. Note that, since $M \subset K_0 \subset K_{\infty}$, the vectors ξ as well as f_{ν} , for any $\nu \in \delta$, belong to $(K_{\infty})^N$. Now $\eta_j f_{\nu_j} = \eta_j (\alpha_i^{\nu_j})_{i \in N} = (\eta_j \alpha_i^{\nu_j})_{i \in N}$, and therefore $\psi(\eta_j f_{\nu_j}) = (\varphi(\eta_j) \alpha_i^{\nu_j})_{i \in N}$.

Then it follows from (*) that

$$\psi(\xi) = \xi = \sum_{j=1}^{n} \eta_j f_{\nu_j} = \sum_{j=1}^{n} \varphi(\eta_j) f_{\nu_j}$$

and, by linear independence of the set of base vectors f_{ν} , we obtain that $\eta_j = \varphi(\eta_j)$, hence $\eta_j \in K_{\infty}$. But then, there exists an $m \in N$ such that all of the $\eta_1, \eta_2, \ldots, \eta_n$ belong to K_m . Then all coordinates of $\sum_{j=1}^n \eta_j f_{\nu_j}$ lie in K_m . Therefore for all $i \in N$ we have that $\xi_i \in K_m$, and this contradiction shows that $d \geq \aleph_{\kappa}$, which finishes the proof.

We can even say more.

Theorem 2.4. Let *E* be an infinite-dimensional Banach space with topological base e_1, e_2, \ldots over a metrizable *K*. Let \aleph_{κ} be the cardinality of *K*, let *d* be the dimension of *E*. Then $d = \aleph_{\kappa}^{\aleph_0}$.

Proof. By 1.1 there exist $\alpha_1, \alpha_2, \ldots \in K^*$ such that $|\alpha_n| \to 0$. Choose $s \in ||E|| \setminus \{0\}$ and put $t_n := |\alpha_n|s$. Then $t_n \to 0$, and E contains the set

$$B = \{(\xi_n)_{n \in \mathbb{N}} : \xi_n \in B_n\}$$

where $B_n := \{ \mu \in K : |\mu| ||e_n|| \le t_n \}.$

All B_n are balls in K about 0. Now we claim that \aleph_β , the cardinality of B_n , is equal to \aleph_κ . In fact, choose $1 < |\lambda_1| < |\lambda_2| < \ldots$, $|\lambda_j| \to \infty$. Then for each element $\alpha \in K$ we can choose $m \in N$ such that $\mu' = \lambda_m^{-1} \alpha$ belongs to B_n . Therefore $\alpha = \lambda_m \mu'$, which implies that $\aleph_\kappa \leq \aleph_0 \cdot \aleph_\beta = \aleph_\beta$. The other inequality being trivial, we obtain $\aleph_\beta = \aleph_\kappa$. In particular all the balls B_n have the same cardinality. Since $E \supset B$ and the cardinality of B is $\aleph_{\kappa}^{\aleph_0}$, we have $\aleph_{\varepsilon} \geq \aleph_{\kappa}^{\aleph_0}$. As $E \subset K^N$, the opposite inequality is trivial.

Remark 2.5. From set theory (see [1]) we know, assuming the Axiom of Choice and the Generalized Continuum Hypothesis, that if $\kappa \neq 0$ is a limit ordinal with cofinality \aleph_0 then $\aleph_{\kappa}^{\aleph_0} = \aleph_{\kappa+1} = 2^{\aleph_{\kappa}}$ and that in all other cases $\aleph_{\kappa}^{\aleph_0} = \aleph_{\kappa}$.

3. The case for non-metrizable K

Theorem 3.1. Let E be an infinite-dimensional Banach space with topological base e_1, e_2, \ldots over a non-metrizable K. Then the dimension of E is \aleph_0 and the cardinalities of E and K are equal.

Proof. Let $x \in E$ have the expansion $\sum_{n=0}^{\infty} \lambda_n e_n$; we will show that this is in fact a finite sum. In fact, assume $\|\lambda_{n_1} e_{n_1}\| > \|\lambda_{n_2} e_{n_2}\| > \ldots$, $\|\lambda_{n_i} e_{n_i}\| \to 0$. Since $\|E\| \setminus \{0\}$ is a *G*-module, there are $\mu_1, \mu_2, \ldots \in K^*$ such that $|\mu_k| \|\lambda_{n_1} e_{n_1}\| < \|\lambda_{n_k} e_{n_k}\|$ for all k. It follows that $\mu_k \lambda_{n_1} e_{n_1} \to 0$, hence $|\mu_k| \to 0$, so that *G* has a coinitial sequence, conflicting 1.1. We see that *E* is the space of all finite linear combinations of e_1, e_2, \ldots , which is algebraically isomorphic to $\bigoplus_N K$ and the conclusion follows.

Remark. At first sight it may seem strange that a Banach space can have countable dimension! But one has to keep in mind that, due to non-metrizability, the Baire Category Theorem does not apply to E.

4. Appendix

As promised in the Introduction we compute the dimension of l^2 . In fact we prove more.

Proposition 4.1. Let E be a Banach space over \mathbf{R} or \mathbf{C} with a topological base e_1, e_2, \ldots . Then the dimension of E is the power of the continuum.

Proof. Let *L* be either **R** or **C**, with cardinality *c*. For a set *I*, let $l^{\infty}(I)$ be the *L*-vector space of all bounded functions $I \to L$. By 2.1 we only have to prove that dim $E \ge c$. To this end we may assume by scalar multiplication, that $\sum_{n=1}^{\infty} ||e_n|| < \infty$. Then the formula

$$(\xi_1,\xi_2,\ldots)\mapsto \sum_{n=1}^{\infty}\xi_n e_n$$

defines a linear injection $l^{\infty}(\mathbf{N}) \to E$. Since \mathbf{Q} is countable, the spaces $l^{\infty}(\mathbf{N})$ and $l^{\infty}(\mathbf{Q})$ are isomorphic. For each $t \in \mathbf{R}$, let $f_t \in l^{\infty}(\mathbf{Q})$ be defined by

$$f_t(q) = \begin{cases} 1 & \text{if } q \in Q, q \ge t \\ 0 & \text{if } q \in Q, q < t \end{cases}$$

It is easily seen that the f_t ($t \in \mathbf{R}$) are linearly independent. Then dim $E \ge \dim l^{\infty}(\mathbf{N}) = \dim l^{\infty}(\mathbf{Q}) \ge c$ and we are done.

Remark. It is not hard to see that the techniques used in Section 2, appropriately modified, may furnish another proof of the Proposition above.

References

- [1] T. Jech. Set Theory. San Diego: Academic Press. U. S. A., (1978).
- [2] G. Köthe. Topological Vector spaces. New York: Springer-Verlag, (1969).
- [3] H. Ochsenius and W. Schikhof. Banach spaces over fields with an infinite rank valuation. In: *p*-adic Functional Analysis, Lecture Notes in pure and applied mathematics 207, edited by J. Kakol, N. De Grande-De Kimpe and C. Perez-Garcia. Marcel Dekker, pp. 233-293, (1999).

H. OCHSENIUS

Facultad de Matemáticas Pontificia Universidad Católica de Chile Casilla 306 - Correo 22 Santiago Chile e-mail : hochsen@mat.puc.cl

and

W. H. SCHIKHOF

Department of Mathematics Radboud University, Toernooiveld 6525 ED Nijmegen The Netherlands e-mail : w_schikhof@hetnet.nl