ON THE ALGEBRAIC DIMENSION OF BANACH SPACES OVER NON-ARCHIMEDEAN VALUED FIELDS OF ARBITRARY RANK

HERMINIA OCHSENIUS
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, CHILE and
W. H. SCHIKHOF
RADBOUD UNIVERSITY, THE NETHERLANDS

Received: July 2007. Accepted: October 2007

Abstract

Let K be a complete non-archimedean valued field of any rank, and let E be a K-Banach space with a countable topological base. We determine the algebraic dimension of E (2.3, 2.4, 3.1).

AMS Classification [2000] : Primary $46 S 10$.
Keywords : Banach spaces, valued fields, algebraic dimension.

Introduction

It is a well-known fact that the (algebraic) dimension of the Hilbert space l^{2} is the power of the continuum. (See the Appendix for an elegant and general proof, kindly pointed out to us by A. van Rooij).
Now consider a Banach space E with a topological base e_{1}, e_{2}, \ldots over a field K of any cardinality, with a non-archimedean valuation of arbitrary rank. To compute the dimension of E a new approach is needed. In fact we extend Köthe's method ([2] Ch.2, Sec.9.5) used to determine the dimension of the algebraic dual of a vector space.
The results are striking. They depend strongly on whether or not K is metrizable (see 2.4 and 3.1). It is also noteworthy that, if K is nonmetrizable the dimension of E turns out to be so small and independent of the cardinality of K !

1. Preliminaries

We will use notations and terminology from [3], but for convenience we quote a few basics here.

Throughout K is a field. Let G be a totally ordered multiplicatively written abelian group with unit 1 , augmented with an element 0 satisfying $0<$ $g, 0 \cdot g=g \cdot 0=0 \cdot 0=0$ for all $g \in G$. (We point out that G is not necessarily a subgroup of the positive real numbers).
A valuation on K with value group G is a surjective map ||:K $\rightarrow G \cup\{0\}$ satisfying
(i) $|\lambda|=0$ if and only if $\lambda=0$
(ii) $|\lambda \mu|=|\lambda||\mu|$
(iii) $|\lambda+\mu| \leq \max (|\lambda|,|\mu|)$
for all $\lambda, \mu \in K$.
The valuation is called trivial if $G=\{1\}$. The balls $B(\alpha, g):=\{\lambda \in K$: $|\lambda-\alpha|<g\}$ where $\alpha \in K, g \in G$, induce a topology on K making it into a topological field; we assume the valued field $(K,| |)$ to be equipped with this topology. One introduces the notion of a Cauchy net in K in a natural way. $(K,| |)$ is called complete if each Cauchy net converges. We will need the following criterion on metrizability of K.

Proposition 1.1. ([3] 1.4.1) $(K,| |)$ is metrizable if and only if G has a coinitial sequence.

A linearly ordered set X without smallest element is called a G-module if there exists an action $(g, x) \mapsto g x$ of G on X that is increasing in both variables and such that $G x$ is coinitial in X for all $x \in X$.
Let E be a vector space over a valued field $(K,| |)$, and let X be a G-module, augmented with and element 0_{X} satisfying $0_{X}<x, 0 \cdot x=0 \cdot 0_{X}=0_{X}=$ $g \cdot 0_{X}$ for all $x \in X, g \in G$. For simplicity we will write 0 instead of 0_{X}.
An X-norm is a map $\|\|: E \rightarrow X \cup\{0\}$ satisfying
(i) $\|x\|=0$ if and only if $x=0$
(ii) $\|\lambda x\|=|\lambda|\|x\|$
(iii) $\|x+y\| \leq \max (\|x\|,\|y\|)$
for all $x, y \in E, \lambda \in K$.
The space $(E,\| \|)$ is as usual called a normed space (more precisely, an X normed space). Notice that the subset $\|E\| \backslash\{0\}:=\{\|x\|: x \in E, x \neq 0\}$ of X is a G-module in its own right. The X-norm induces naturally a topology on E and the notion of a Cauchy net. $(E,\| \|)$ is called a Banach space if E and K are complete. It is easily seen that if $(K,| |)$ is metrizable then so is $(E,\| \|)$.

Let $(E,\| \|)$ be a Banach space over K. A system $\left\{e_{1}, e_{2}, \ldots\right\} \subset E \backslash\{0\}$ is called a topological base of E if each $x \in E$ has a unique expansion as a convergent sum

$$
x=\sum_{n=1}^{\infty} \lambda_{n} e_{n} . \quad\left(\lambda_{n} \in K\right)
$$

If, in addition

$$
\|x\|=\max _{n}\left\|\lambda_{n} e_{n}\right\|
$$

it is called an orthogonal base.
Since in this paper we are concerned with the (algebraic) dimension of E, we recall that this is the cardinality of an algebraic base of E (in the sense that each $x \in E$ can uniquely be represented as a finite linear combination of its elements).

2. The main result

We prove first a well-known general fact about infinite dimensional vector spaces.

Lemma 2.1. Let E be a vector space of infinite dimension d over a field K. Let κ be the cardinality (finite or not) of K, and let ε be the cardinality of E. Then $\varepsilon=d \kappa$.

Proof. Let δ be an ordinal with cardinality d and let $\left\{e_{\nu}: \nu \in \delta\right\}$ be an (algebraic) base of E.

For every $n \geq 1$ the cardinality of the set of elements of the form $\alpha_{1} e_{\nu_{1}}+\alpha_{2} e_{\nu_{2}}+\ldots \alpha_{n} e_{\nu_{n}}$ with $\alpha_{i} \neq 0(i=1, \ldots, n)$ is equal to $((\kappa-1) d)^{n}$. Therefore

$$
\varepsilon=\sum_{n=0}^{\infty}((\kappa-1) d)^{n}=d\left(\sum_{n=0}^{\infty}(\kappa-1)^{n}\right)
$$

since $d^{n}=d$.
If $\kappa<\aleph_{0}$ then $\sum_{n=0}^{\infty}(\kappa-1)^{n}=\aleph_{0}$ and $\varepsilon=d \aleph_{0}=d=d \kappa$.
If $\kappa \geq \aleph_{0}$ then $\sum_{n=0}^{\infty}(\kappa-1)^{n}=\kappa$ and $\varepsilon=d \kappa$.
From now on K shall be an infinite field. As customary, we will often use the aleph notation for infinite cardinalities.

Lemma 2.2. Let K be a valued field with value group $G \neq\{1\}$. Let X be a G-module, let K_{0} be a subfield of $K, K_{0} \neq K$. Then, for each $s, t \in X$ there exists a $\lambda \in K \backslash K_{0}$ such that $|\lambda| s<t$.

Proof. Let $G_{0}:=\left|K_{0}^{*}\right|$.
(i) Suppose $G_{0} s$ is coinitial in X. Then choose $\mu \in K \backslash K_{0}$. There is a $\lambda_{0} \in K_{0}^{*}$ such that $\left|\lambda_{0}\right| s<|\mu|^{-1} t$, i.e. $\left|\lambda_{0} \mu\right| s<t$. Choose $\lambda:=\lambda_{0} \mu$. Clearly, $\lambda \notin K_{0}$ (otherwise, $\mu=\lambda \lambda_{0}^{-1} \in K_{0}$, a contradiction).
(ii) Suppose $G_{0} s$ is not coinitial in X. Then there is a $v \in X$ such that $g_{0} s \geq v$ for all $g_{0} \in G_{0}$. In this case, choose $\lambda \in K^{*}$ such that $|\lambda| s<t$ and $|\lambda| s<v$. Then $|\lambda| \notin G_{0}$, so $\lambda \notin K_{0}$.

Let E be an infinite-dimensional Banach space with a topological base e_{1}, e_{2}, \ldots over a nontrivially valued field K. We assume K to be metrizable. We can identify E with a subspace of K^{N} as follows.

$$
E=\left\{\left(\xi_{1}, \xi_{2}, \ldots\right) \in K^{N}:\left|\xi_{n}\right|\left\|e_{n}\right\| \rightarrow 0\right\}
$$

(where the $\left\|e_{n}\right\|$ are in the G-module $\|E\| \backslash\{0\}$).
We want to prove the following.
Theorem 2.3. Let E be an infinite-dimensional Banach space with topological base e_{1}, e_{2}, \ldots over a metrizable K. Then the dimension of E is equal to its cardinality.

Proof. Let \aleph_{κ} be the cardinality of K, let \aleph_{ε} be the cardinality of E, let d be the dimension of E. It is enough to prove that $d \geq \aleph_{\kappa}$, since by 2.1 $\aleph_{\varepsilon}=d \aleph_{\kappa}$. Therefore we shall assume, by contradiction, that $d<\aleph_{\kappa}$. Let δ be an ordinal with cardinality d and $\left\{f_{\nu}: \nu \in \delta\right\}$ an algebraic base of E.

For every $\nu \in \delta$ we write $f_{\nu}=\sum_{i=0}^{\infty} \alpha_{i}^{\nu} e_{i}$, and let $M:=\left\{\alpha_{i}^{\nu}: \nu \in \delta, i \in\right.$ $N\}$. Therefore the cardinality of M is less than or equal to $d \aleph_{0}$. We also fix a sequence t_{1}, t_{2}, \ldots in $\|E\| \backslash\{0\}$ such that $t_{n} \rightarrow 0$; we will use it to construct a chain $K_{0} \subset K_{1} \subset K_{2}, \ldots$ of subfields of K. In fact, let K_{0} be the subfield of K generated by M. Then, observing that the cardinality of the prime field of K is at most \aleph_{0}, we conclude that the cardinality of K_{0} is at most $d \aleph_{0}=d$. Since by assumption $d<\aleph_{\kappa}$, there exists a $\xi_{1} \in K \backslash K_{0}$, and by 2.2 we can assume that $\left|\xi_{1}\right|\left\|e_{1}\right\|<t_{1}$. We define $K_{1}:=K_{0}\left(\xi_{1}\right)$; once again K_{1} has no more than $d \aleph_{0}=d$ elements, and we can pick $\xi_{2} \in K \backslash K_{1}$ such that $\mid \xi_{2}\| \| e_{2} \|<t_{2}$. Recursively we obtain a sequence $K_{0} \subset K_{1} \subset K_{2} \subset \ldots$ of subfields, where $K_{n}=K_{n-1}\left(\xi_{n}\right)$ and $\left|\xi_{n}\right|\left\|e_{n}\right\|<t_{n}$ for all n.
We define the vector $\xi:=\left(\xi_{n}\right)_{n \in N}$, note that ξ belongs to E by construction. Write ξ as a finite linear combination of the vectors in the algebraic base

$$
\begin{equation*}
\xi=\sum_{j=1}^{n} \eta_{j} f_{\nu_{j}} \tag{*}
\end{equation*}
$$

Let $K_{\infty}=\bigcup_{n} K_{n}$, and consider K as a $K_{\infty}-$ vector space. Then K_{∞}, as a subspace of K, has a complement W. Let $\varphi: K \rightarrow K_{\infty}$ be the K_{∞}-linear map such that $\left.\varphi\right|_{K_{\infty}}$ is the identity map and $\left.\varphi\right|_{W}=0$.

Then $\psi: K^{N} \rightarrow\left(K_{\infty}\right)^{N}$ defined by the formula
$\psi\left(\alpha_{1}, \alpha_{2}, \ldots\right)=\left(\varphi\left(\alpha_{1}\right), \varphi\left(\alpha_{2}\right), \ldots\right)$ is a K_{∞}-linear map that is the identity on $\left(K_{\infty}\right)^{N}$. Note that, since $M \subset K_{0} \subset K_{\infty}$, the vectors ξ as well as f_{ν}, for any $\nu \in \delta$, belong to $\left(K_{\infty}\right)^{N}$. Now $\eta_{j} f_{\nu_{j}}=\eta_{j}\left(\alpha_{i}^{\nu_{j}}\right)_{i \in N}=\left(\eta_{j} \alpha_{i}^{\nu_{j}}\right)_{i \in N}$, and therefore $\psi\left(\eta_{j} f_{\nu_{j}}\right)=\left(\varphi\left(\eta_{j}\right) \alpha_{i}^{\nu_{j}}\right)_{i \in N}$.
Then it follows from $(*)$ that

$$
\psi(\xi)=\xi=\sum_{j=1}^{n} \eta_{j} f_{\nu_{j}}=\sum_{j=1}^{n} \varphi\left(\eta_{j}\right) f_{\nu_{j}}
$$

and, by linear independence of the set of base vectors f_{ν}, we obtain that $\eta_{j}=\varphi\left(\eta_{j}\right)$, hence $\eta_{j} \in K_{\infty}$. But then, there exists an $m \in N$ such that all of the $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ belong to K_{m}. Then all coordinates of $\sum_{j=1}^{n} \eta_{j} f_{\nu_{j}}$ lie in K_{m}. Therefore for all $i \in N$ we have that $\xi_{i} \in K_{m}$, and this contradiction shows that $d \geq \aleph_{\kappa}$, which finishes the proof.

We can even say more.

Theorem 2.4. Let E be an infinite-dimensional Banach space with topological base e_{1}, e_{2}, \ldots over a metrizable K. Let \aleph_{κ} be the cardinality of K, let d be the dimension of E. Then $d=\aleph_{\kappa}^{\aleph_{0}}$.

Proof. By 1.1 there exist $\alpha_{1}, \alpha_{2}, \ldots \in K^{*}$ such that $\left|\alpha_{n}\right| \rightarrow 0$. Choose $s \in\|E\| \backslash\{0\}$ and put $t_{n}:=\left|\alpha_{n}\right| s$. Then $t_{n} \rightarrow 0$, and E contains the set

$$
B=\left\{\left(\xi_{n}\right)_{n \in N}: \xi_{n} \in B_{n}\right\}
$$

where $B_{n}:=\left\{\mu \in K:|\mu|\left\|e_{n}\right\| \leq t_{n}\right\}$.
All B_{n} are balls in K about 0 . Now we claim that \aleph_{β}, the cardinality of B_{n}, is equal to \aleph_{κ}. In fact, choose $1<\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\ldots \quad,\left|\lambda_{j}\right| \rightarrow \infty$. Then for each element $\alpha \in K$ we can choose $m \in N$ such that $\mu^{\prime}=\lambda_{m}^{-1} \alpha$ belongs to B_{n}. Therefore $\alpha=\lambda_{m} \mu^{\prime}$, which implies that $\aleph_{\kappa} \leq \aleph_{0} \cdot \aleph_{\beta}=\aleph_{\beta}$. The other inequality being trivial, we obtain $\aleph_{\beta}=\aleph_{\kappa}$. In particular all the balls B_{n} have the same cardinality. Since $E \supset B$ and the cardinality of B is $\aleph_{\kappa}^{\aleph_{0}}$, we have $\aleph_{\varepsilon} \geq \aleph_{\kappa}^{\aleph_{0}}$. As $E \subset K^{N}$, the opposite inequality is trivial.

Remark 2.5. From set theory (see [1]) we know, assuming the Axiom of Choice and the Generalized Continuum Hypothesis, that if $\kappa \neq 0$ is a limit ordinal with cofinality \aleph_{0} then $\aleph_{\kappa}^{\aleph_{0}}=\aleph_{\kappa+1}=2^{\aleph_{\kappa}}$ and that in all other cases $\aleph_{\kappa}^{\aleph_{0}}=\aleph_{\kappa}$ 。

3. The case for non-metrizable K

Theorem 3.1. Let E be an infinite-dimensional Banach space with topological base e_{1}, e_{2}, \ldots over a non-metrizable K. Then the dimension of E is \aleph_{0} and the cardinalities of E and K are equal.

Proof. Let $x \in E$ have the expansion $\sum_{n=0}^{\infty} \lambda_{n} e_{n}$; we will show that this is in fact a finite sum. In fact, assume $\left\|\lambda_{n_{1}} e_{n_{1}}\right\|>\left\|\lambda_{n_{2}} e_{n_{2}}\right\|>\ldots$, $\left\|\lambda_{n_{i}} e_{n_{i}}\right\| \rightarrow 0$. Since $\|E\| \backslash\{0\}$ is a G-module, there are $\mu_{1}, \mu_{2}, \ldots \in K^{*}$ such that $\left|\mu_{k}\right|\left\|\lambda_{n_{1}} e_{n_{1}}\right\|<\left\|\lambda_{n_{k}} e_{n_{k}}\right\|$ for all k. It follows that $\mu_{k} \lambda_{n_{1}} e_{n_{1}} \rightarrow 0$, hence $\left|\mu_{k}\right| \rightarrow 0$, so that G has a coinitial sequence, conflicting 1.1.
We see that E is the space of all finite linear combinations of e_{1}, e_{2}, \ldots, which is algebraically isomorphic to $\bigoplus_{N} K$ and the conclusion follows.
Remark. At first sight it may seem strange that a Banach space can have countable dimension! But one has to keep in mind that, due to nonmetrizability, the Baire Category Theorem does not apply to E.

4. Appendix

As promised in the Introduction we compute the dimension of l^{2}. In fact we prove more.

Proposition 4.1. Let E be a Banach space over \mathbf{R} or \mathbf{C} with a topological base e_{1}, e_{2}, \ldots. Then the dimension of E is the power of the continuum.

Proof. Let L be either \mathbf{R} or \mathbf{C}, with cardinality c. For a set I, let $l^{\infty}(I)$ be the L-vector space of all bounded functions $I \rightarrow L$. By 2.1 we only have to prove that $\operatorname{dim} E \geq c$. To this end we may assume by scalar multiplication, that $\sum_{n=1}^{\infty}\left\|e_{n}\right\|<\infty$. Then the formula

$$
\left(\xi_{1}, \xi_{2}, \ldots\right) \mapsto \sum_{n=1}^{\infty} \xi_{n} e_{n}
$$

defines a linear injection $l^{\infty}(\mathbf{N}) \rightarrow E$. Since \mathbf{Q} is countable, the spaces $l^{\infty}(\mathbf{N})$ and $l^{\infty}(\mathbf{Q})$ are isomorphic. For each $t \in \mathbf{R}$, let $f_{t} \in l^{\infty}(\mathbf{Q})$ be defined by

$$
f_{t}(q)=\left\{\begin{array}{llll}
1 & \text { if } & q \in Q, & q \geq t \\
0 & \text { if } & q \in Q, & q<t
\end{array}\right.
$$

It is easily seen that the $f_{t}(t \in \mathbf{R})$ are linearly independent. Then dim $E \geq \operatorname{dim} l^{\infty}(\mathbf{N})=\operatorname{dim} l^{\infty}(\mathbf{Q}) \geq c$ and we are done.
Remark. It is not hard to see that the techniques used in Section 2, appropriately modified, may furnish another proof of the Proposition above.

References

[1] T. Jech. Set Theory. San Diego: Academic Press. U. S. A., (1978).
[2] G. Köthe. Topological Vector spaces. New York: Springer-Verlag, (1969).
[3] H. Ochsenius and W. Schikhof. Banach spaces over fields with an infinite rank valuation. In: p-adic Functional Analysis, Lecture Notes in pure and applied mathematics 207, edited by J. Kakol, N. De GrandeDe Kimpe and C. Perez-Garcia. Marcel Dekker, pp. 233-293, (1999).

H. OCHSENIUS

Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Casilla 306 - Correo 22
Santiago
Chile
e-mail : hochsen@mat.puc.cl
and
W. H. SCHIKHOF

Department of Mathematics
Radboud University,
Toernooiveld 6525 ED Nijmegen
The Netherlands
e-mail : w_schikhof@hetnet.nl

