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and

W. H. SCHIKHOF
RADBOUD UNIVERSITY, THE NETHERLANDS

Received : July 2007. Accepted : October 2007

Proyecciones
Vol. 26, No 3, pp. 237-244, December 2007.
Universidad Católica del Norte
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Abstract

Let K be a complete non-archimedean valued field of any rank,
and let E be a K-Banach space with a countable topological base. We
determine the algebraic dimension of E (2.3, 2.4, 3.1).
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Introduction

It is a well-known fact that the (algebraic) dimension of the Hilbert space
l2 is the power of the continuum. (See the Appendix for an elegant and
general proof, kindly pointed out to us by A. van Rooij).

Now consider a Banach space E with a topological base e1, e2, . . . over a
field K of any cardinality, with a non-archimedean valuation of arbitrary
rank. To compute the dimension of E a new approach is needed. In fact we
extend Köthe’s method ([2] Ch.2, Sec.9.5) used to determine the dimension
of the algebraic dual of a vector space.

The results are striking. They depend strongly on whether or not K is
metrizable (see 2.4 and 3.1). It is also noteworthy that, if K is non-
metrizable the dimension of E turns out to be so small and independent of
the cardinality of K!

1. Preliminaries

We will use notations and terminology from [3], but for convenience we
quote a few basics here.

ThroughoutK is a field. Let G be a totally ordered multiplicatively written
abelian group with unit 1, augmented with an element 0 satisfying 0 <
g, 0 · g = g · 0 = 0 · 0 = 0 for all g ∈ G. (We point out that G is not
necessarily a subgroup of the positive real numbers).

A valuation on K with value group G is a surjective map | | : K → G∪{0}
satisfying

(i) |λ| = 0 if and only if λ = 0

(ii) |λμ| = |λ| |μ|

(iii) |λ+ μ| ≤ max(|λ|, |μ|)

for all λ, μ ∈ K.

The valuation is called trivial if G = {1}. The balls B(α, g) := {λ ∈ K :
|λ− α| < g} where α ∈ K, g ∈ G, induce a topology on K making it into
a topological field; we assume the valued field (K, | |) to be equipped with
this topology. One introduces the notion of a Cauchy net in K in a natural
way. (K, | |) is called complete if each Cauchy net converges. We will need
the following criterion on metrizability of K.
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Proposition 1.1. ([3] 1.4.1) (K, | |) is metrizable if and only if G has a
coinitial sequence.

A linearly ordered set X without smallest element is called a G-module if
there exists an action (g, x) 7→ gx of G on X that is increasing in both
variables and such that Gx is coinitial in X for all x ∈ X.

Let E be a vector space over a valued field (K, | |), and letX be a G-module,
augmented with and element 0X satisfying 0X < x, 0 · x = 0 · 0X = 0X =
g · 0X for all x ∈ X, g ∈ G. For simplicity we will write 0 instead of 0X .

An X-norm is a map k k : E → X ∪ {0} satisfying

(i) kxk = 0 if and only if x = 0

(ii) kλxk = |λ| kxk

(iii) kx+ yk ≤ max(kxk, kyk)

for all x, y ∈ E, λ ∈ K.

The space (E, k k) is as usual called a normed space (more precisely, an X-
normed space). Notice that the subset kEk\{0} := {kxk : x ∈ E, x 6= 0}
of X is a G-module in its own right. The X-norm induces naturally a
topology on E and the notion of a Cauchy net. (E, k k) is called a Banach
space if E and K are complete. It is easily seen that if (K, | |) is metrizable
then so is (E, k k).

Let (E, k k) be a Banach space over K. A system {e1, e2, . . .} ⊂ E\{0} is
called a topological base of E if each x ∈ E has a unique expansion as a
convergent sum

x =
∞X
n=1

λnen. (λn ∈ K)

If, in addition

kxk = maxnkλnenk

it is called an orthogonal base.

Since in this paper we are concerned with the (algebraic) dimension of E,
we recall that this is the cardinality of an algebraic base of E (in the sense
that each x ∈ E can uniquely be represented as a finite linear combination
of its elements).
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2. The main result

We prove first a well-known general fact about infinite dimensional vector
spaces.

Lemma 2.1. Let E be a vector space of infinite dimension d over a field
K. Let κ be the cardinality (finite or not) of K, and let ε be the cardinality
of E. Then ε = dκ.

Proof. Let δ be an ordinal with cardinality d and let {eν : ν ∈ δ} be an
(algebraic) base of E.

For every n ≥ 1 the cardinality of the set of elements of the form
α1eν1 +α2eν2 + . . . αneνn with αi 6= 0 (i = 1, . . . , n) is equal to ((κ− 1)d)n.
Therefore

ε =
∞X
n=0

((κ− 1)d)n = d(
∞X
n=0

(κ− 1)n),

since dn = d.

If κ < ℵ0 then
P∞

n=0(κ− 1)n = ℵ0 and ε = d ℵ0 = d = dκ.

If κ ≥ ℵ0 then
P∞

n=0(κ− 1)n = κ and ε = dκ.

From now on K shall be an infinite field. As customary, we will often use
the aleph notation for infinite cardinalities.

Lemma 2.2. Let K be a valued field with value group G 6= {1}. Let X be
a G-module, let K0 be a subfield of K, K0 6= K. Then, for each s, t ∈ X
there exists a λ ∈ K\K0 such that |λ|s < t.

Proof. Let G0 := |K∗
0 |.

(i) Suppose G0s is coinitial in X. Then choose μ ∈ K\K0. There is a
λ0 ∈ K∗

0 such that |λ0|s < |μ|−1t, i.e. |λ0μ|s < t. Choose λ := λ0μ.
Clearly, λ /∈ K0 (otherwise, μ = λλ−10 ∈ K0, a contradiction).

(ii) Suppose G0s is not coinitial in X. Then there is a v ∈ X such that
g0s ≥ v for all g0 ∈ G0. In this case, choose λ ∈ K∗ such that |λ|s < t
and |λ|s < v. Then |λ| /∈ G0, so λ /∈ K0.



Algebraic dimension of Banach spaces 241

Let E be an infinite-dimensional Banach space with a topological base
e1, e2, . . . over a nontrivially valued fieldK. We assume K to be metrizable.
We can identify E with a subspace of KN as follows.

E = {(ξ1, ξ2, . . .) ∈ KN : |ξn|kenk→ 0}

(where the kenk are in the G-module kEk\{0}).
We want to prove the following.

Theorem 2.3. Let E be an infinite-dimensional Banach space with topo-
logical base e1, e2, . . . over a metrizable K. Then the dimension of E is
equal to its cardinality.

Proof. Let ℵκ be the cardinality of K, let ℵε be the cardinality of E, let
d be the dimension of E. It is enough to prove that d ≥ ℵκ, since by 2.1
ℵε = d ℵκ. Therefore we shall assume, by contradiction, that d < ℵκ. Let
δ be an ordinal with cardinality d and {fν : ν ∈ δ} an algebraic base of E.

For every ν ∈ δ we write fν =
P∞

i=0 α
ν
i ei, and letM := {ανi : ν ∈ δ, i ∈

N}. Therefore the cardinality ofM is less than or equal to dℵ0. We also fix
a sequence t1, t2, . . . in kEk\{0} such that tn → 0; we will use it to construct
a chain K0 ⊂ K1 ⊂ K2, . . . of subfields of K. In fact, let K0 be the subfield
of K generated by M . Then, observing that the cardinality of the prime
field of K is at most ℵ0, we conclude that the cardinality of K0 is at most
d ℵ0 = d. Since by assumption d < ℵκ, there exists a ξ1 ∈ K\K0, and by
2.2 we can assume that |ξ1|ke1k < t1. We define K1 := K0(ξ1); once again
K1 has no more than d ℵ0 = d elements, and we can pick ξ2 ∈ K\K1 such
that |ξ2|ke2k < t2. Recursively we obtain a sequence K0 ⊂ K1 ⊂ K2 ⊂ . . .
of subfields, where Kn = Kn−1(ξn) and |ξn|kenk < tn for all n.

We define the vector ξ := (ξn)n∈N , note that ξ belongs to E by construction.
Write ξ as a finite linear combination of the vectors in the algebraic base

ξ =
nX

j=1

ηjfνj . (∗)

Let K∞ =
S
nKn, and consider K as a K∞- vector space. Then K∞, as a

subspace of K, has a complement W . Let ϕ : K → K∞ be the K∞-linear
map such that ϕ|K∞ is the identity map and ϕ|W = 0.
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Then ψ : KN → (K∞)N defined by the formula

ψ(α1, α2, . . .) = (ϕ(α1), ϕ(α2), . . .) is a K∞-linear map that is the identity
on (K∞)N . Note that, since M ⊂ K0 ⊂ K∞, the vectors ξ as well as fν ,
for any ν ∈ δ, belong to (K∞)N . Now ηjfνj = ηj(α

νj
i )i∈N = (ηjα

νj
i )i∈N ,

and therefore ψ(ηjfνj ) = (ϕ(ηj)α
νj
i )i∈N .

Then it follows from (∗) that

ψ(ξ) = ξ =
nX

j=1

ηjfνj =
nX

j=1

ϕ(ηj)fνj

and, by linear independence of the set of base vectors fν , we obtain that
ηj = ϕ(ηj), hence ηj ∈ K∞. But then, there exists an m ∈ N such that all
of the η1, η2, . . . , ηn belong to Km. Then all coordinates of

Pn
j=1 ηjfνj lie in

Km. Therefore for all i ∈ N we have that ξi ∈ Km, and this contradiction
shows that d ≥ ℵκ, which finishes the proof.

We can even say more.

Theorem 2.4. Let E be an infinite-dimensional Banach space with topo-
logical base e1, e2, . . . over a metrizable K. Let ℵκ be the cardinality of K,
let d be the dimension of E. Then d = ℵℵ0κ .

Proof. By 1.1 there exist α1, α2, . . . ∈ K∗ such that |αn| → 0. Choose
s ∈ kEk\{0} and put tn := |αn|s. Then tn → 0, and E contains the set

B = {(ξn)n∈N : ξn ∈ Bn}

where Bn := {μ ∈ K : |μ|kenk ≤ tn}.
All Bn are balls in K about 0. Now we claim that ℵβ, the cardinality of
Bn, is equal to ℵκ. In fact, choose 1 < |λ1| < |λ2| < . . . , |λj | → ∞.
Then for each element α ∈ K we can choose m ∈ N such that μ0 = λ−1m α
belongs to Bn. Therefore α = λm μ0, which implies that ℵκ ≤ ℵ0 ·ℵβ = ℵβ.
The other inequality being trivial, we obtain ℵβ = ℵκ. In particular all the
balls Bn have the same cardinality. Since E ⊃ B and the cardinality of B
is ℵℵ0κ , we have ℵε ≥ ℵℵ0κ . As E ⊂ KN , the opposite inequality is trivial.

Remark 2.5. From set theory (see [1]) we know, assuming the Axiom of
Choice and the Generalized Continuum Hypothesis, that if κ 6= 0 is a limit
ordinal with cofinality ℵ0 then ℵℵ0κ = ℵκ+1 = 2ℵκ and that in all other cases
ℵℵ0κ = ℵκ.
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3. The case for non-metrizable K

Theorem 3.1. Let E be an infinite-dimensional Banach space with topo-
logical base e1, e2, . . . over a non-metrizable K. Then the dimension of E
is ℵ0 and the cardinalities of E and K are equal.

Proof. Let x ∈ E have the expansion
P∞

n=0 λnen; we will show that this
is in fact a finite sum. In fact, assume kλn1en1k > kλn2en2k > . . .,
kλnienik → 0. Since kEk\{0} is a G-module, there are μ1, μ2, . . . ∈ K∗

such that |μk|kλn1en1k < kλnkenkk for all k. It follows that μkλn1en1 → 0,
hence |μk|→ 0, so that G has a coinitial sequence, conflicting 1.1.

We see that E is the space of all finite linear combinations of e1, e2, . . .,
which is algebraically isomorphic to

L
N K and the conclusion follows.

Remark. At first sight it may seem strange that a Banach space can
have countable dimension! But one has to keep in mind that, due to non-
metrizability, the Baire Category Theorem does not apply to E.

4. Appendix

As promised in the Introduction we compute the dimension of l2. In fact
we prove more.

Proposition 4.1. Let E be a Banach space overR orC with a topological
base e1, e2, . . . . Then the dimension of E is the power of the continuum.

Proof. Let L be either R or C, with cardinality c. For a set I, let l∞(I) be
the L-vector space of all bounded functions I → L. By 2.1 we only have to
prove that dim E ≥ c. To this end we may assume by scalar multiplication,
that

P∞
n=1 kenk <∞. Then the formula

(ξ1, ξ2, . . .) 7→
∞X
n=1

ξnen

defines a linear injection l∞(N) → E. Since Q is countable, the spaces
l∞(N) and l∞(Q) are isomorphic. For each t ∈ R, let ft ∈ l∞(Q) be
defined by

ft(q) =

(
1 if q ∈ Q, q ≥ t
0 if q ∈ Q, q < t
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It is easily seen that the ft (t ∈ R) are linearly independent. Then dim
E ≥ dim l∞(N) = dim l∞(Q) ≥ c and we are done.

Remark. It is not hard to see that the techniques used in Section 2,
appropriately modified, may furnish another proof of the Proposition above.

References

[1] T. Jech. Set Theory. San Diego: Academic Press. U. S. A., (1978).
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