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Abstract

We use a two—step Steffensen—type method [1], [2], [4], [6], [13]—[16] to solve
a generalized equation in a Banach space setting under Hölder—type conditions
introduced by us in [2], [6] for nonlinear equations. Using some ideas given in
[4], [6] for nonlinear equations, we provide a local convergence analysis with the
following advantages over related [13]—[16]: finer error bounds on the distances
involved, and a larger radius of convergence. An application is also provided.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the generalized equation

0 ∈ f(x) +G(x),(1.1)

where f is a continuous function defined in a neighborhood V of the solution x∗

included in a Banach space X with values in itself, and G is a set—valued map from
X to its subsets with closed graph.
Many problems in mathematical programming, mathematical economics, variational
inequalities and other fields can be formulated as in equation (1.1) [3], [5], [6], [8],
[11], [12], [18]—[21] (see also the application at the end of the study).
We consider the two—step Steffensen—type method [1], [2], [4], [6], [13]—[16] for x0 ∈ V
being the initial guess and all k ≥ 0(

0 ∈ f(xk) + [g1(xk), g2(xk); f ] (yk − xk) +G(yk)
0 ∈ f(yk) + [g1(xk), g2(xk); f ] (xk+1 − yk) +G(xk+1),

(1.2)

where g1 and g2 are a continuous functions from V into X and [x, y; f ] ∈ L(X)
(the space of bounded linear operator on X) is a divided difference of order one of
f at the points x, y satisfying

[x, y; f ] (y − x) = f(y)− f(x), for all x 6= y.(1.3)

Note that if f is Fréchet—differentiable at x, then [x, x; f ] = ∇f(x).

ForG ≡ 0, (1.2) reduces to methods studied in [1], [4], [6] for nonlinear equations.

Recently in [13] a local convergence analysis was provided for method (1.2) un-
der Hölder—type conditions introduced by us in [4], [6] to solve nonlinear equations.

Motivated by optimization considerations, and using the ideas from [4], [6], [7]
for nolinear equations we provide under less computational cost a new local conver-
gence analysis for method (1.2) with the following advantages over the corresponding
results in [13]—[16]: finer error bounds on the distances k xk − x∗ k (k ≥ 0), and
a larger radius of convergence leading to fewer steps and a wider choice of initial
guesses x0.
This observation is very important in computational mathematics [1]—[22]. The
study ends with an application.



Two-step Steffensen—type method 321

2. Preliminaries and assumptions

In order to make the paper as self—contained as possible we reintroduce some results
on fixed point theorem [6]—[9], [13]—[16].

We let Z be a metric space equipped with the metric ρ. For A ⊂ Z, we denote
by dist (x,A) = inf {ρ(x, y), y ∈ A} the distance from a point x to A. The excess
e from A to the set C ⊂ Z is given by e(A,C) = sup {dist (x,A), x ∈ C}. Let
Λ : XY be a set—valued map, we denote by gphΛ = {(x, y) ∈ X × Y, y ∈ Λ(x)}
and Λ−1(y) = {x ∈ X, y ∈ Λ(x)} is the inverse of Λ. We call Br(x) the closed ball
centered at x with radius r.

Definition 2.1. (see [8], [17], [20])
A set—valued Λ is said to be pseudo—Lipschitz around (x0, y0) ∈ gphΛ with

modulus M if there exist constants a and b such that

e(Λ(y0) ∩Ba(y0),Λ(y
00)) ≤M k y0 − y00 k, for all y0 and y00 in Bb(x0).(2.1)

Definition 2.2. ([6])
Let Ω be open subset of X, we say that the operator [., .; f ] is (ν0, ν, p)—Hölder

continuous in Ω where ν0 ≥ 0, ν ≥ 0 and p ∈ [0, 1] if the following inequalities hold

k [x, x∗; f ]− [y, u; f ] k ≤ ν0(k x− y kp + k x∗ − u kp),(2.2)

k [x, y; f ]− [u, v; f ] k ≤ ν(k x− u kp + k y − v kp),
for all x, y, u, v ∈ Ω.(2.3)

We need the following fixed point theorems.

Lemma 2.3. (see [9]) Let (Z, k . k) be a Banach space, let φ a set—valued map from
Z into the closed subsets of Z, let η0 ∈ Z and let r and λ be such that 0 ≤ λ < 1
and
(a) dist (η0, φ(η0)) ≤ r(1− λ),
(b) e(φ(x1) ∩Br(η0), φ(x2)) ≤ λ k x1 − x2 k, ∀x1, x2 ∈ Br(η0),
then φ has a fixed—point in Br(η0). That is, there exists x ∈ Br(η0) such that
x ∈ φ(x). If φ is single—valued, then x is the unique fixed point of φ in Br(η0).

We suppose that, for every distinct points x and y in a open neighborhood V of
x∗, there exists a first order divided difference of f at these points. We will make
the following assumptions:
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(H0) For i = 1, 2; the function gi is αi—center—Lipschitz from V into V , with
gi(x

∗) = x∗, and αi ∈ [0, 1). That is

k g1(x)− g1(x
∗) k≤ α1 k x− x∗ k and k g2(x)− g2(x

∗) k≤ α2 k x− x∗ k,
for all x ∈ V ;

(2.4)

(H∞) [., .; f ] is (ν0, ν, p)—Hölder continuous in V .
(H∈) The set—valued map (f(x∗) +G)−1 is M—pseudo—Lipschitz around (0, x∗).
(H3) For all x, y ∈ V , we have ||[x, y; f ]|| ≤ d with M d < 1, and k f(x)− f(x∗) k≤
d0 k x− x∗ k.

Before stating the main result on this study, we need to introduce some notations.
First, for k ∈ IN and (yk), (xk) defined in (1.2), let us define the set—valued mappings
Q, ψk, φk : XX by the following

Q(.) := f(x∗) +G(.); ψk(.) := Q−1(Zk(.)); φk(.) := Q−1(Wk(.))(2.5)

where Zk and Wk are defined from X to X by

Zk(x) := f(x∗)− f(yk)− [g1(xk), g2(xk); f ](x− yk)
Wk(x) := f(x∗)− f(xk)− [g1(xk), g2(xk); f ](x− xk)

(2.6)

3. Local convergence analysis for method (1.2)

We show the main local convergence result for method (1.2):

Theorem 3.1. We suppose that assumptions (H0)—(H3) are satisfied. For every

constant C > C0 =
M ν0 ([1 + α1]

p + αp2)

1−M d
, there exist δ > 0 such that for every

starting point x0 in Bδ(x
∗) (x0 and x∗ distincts), and a sequence (xk) defined by

(1.2) which satisfies

k xk+1 − x∗ k≤ C k xk − x∗ kp+1 .(3.1)

The proof of Theorem 3.1 is by induction on k. We need to give two lemmas.
In the first, we prove the existence of starting point y0 for x0 in V . In the second,
we state a result which the starting point (x0, y0).

Let us mention that y0 and x1 are a fixed points of φ0 and ψ0 respectively
if and only if 0 ∈ f(x0) + [g1(x0), g2(x0); f ](y0 − x0) + G(y0) and 0 ∈ f(y0) +
[g1(x0), g2(x0); f ](x1 − y0) +G(x1) respectively.
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Proposition 3.2. Under the assumptions of Theorem 3.1, there exists δ > 0 such
that for every starting point x0 in Bδ(x

∗) (x0 and x∗ distincts), the set—valued map
φ0 has a fixed point y0 in Bδ(x

∗), and satisfying

k y0 − x∗ k≤ C k x0 − x∗ kp+1 .(3.2)

Proof of the Proposition 3.2.
By hypothesis (H∈) there exist positive numbers M , a and b such that

e(Q−1(y0) ∩Ba(x
∗), Q−1(y00)) ≤M k y0 − y00 k, ∀y0, y00 ∈ Bb(0).(3.3)

Fix δ > 0 such that

δ < δ0 = min

(
a ; p+1

s
b

4 ν ([1 + α1]p + ([1 + α2]p)
;
1
p
√
C
;

b

2 d0

)
.(3.4)

The main idea of the proof of Proposition 3.2 is to show that both assertions
(a) and (b) of Lemma 2.3 hold; where η0 := x∗, φ is the function φ0 defined in (2.5)
and where r and λ are numbers to be set. According to the definition of the excess
e, we have

dist (x∗, φ0(x
∗)) ≤ e

Ã
Q−1(0) ∩Bδ(x

∗), φ0(x
∗)

!
.(3.5)

Moreover, for all point x0 in Bδ(x
∗) (x0 and x∗ distincts) we have

kW0(x
∗) k=k f(x∗)− f(x0)− [g1(x0), g2(x0); f ](x∗ − x0) k .

Note that for x ∈ Bδ(x
∗) we get (since αi ∈ [0, 1))

k gi(x)− x∗ k≤k gi(x)− gi(x
∗) k≤k x− x∗ k≤ δ,

which implies that gi(x) ∈ Bδ(x
∗).

In view of assumptions (H0)—(H∞) we obtain

kW0(x
∗) k = k

µ
[x0, x

∗; f ]− [g1(x0), g2(x0); f ]
¶
(x∗ − x0) k

≤ k [x0, x∗; f ]− [g1(x0), g2(x0); f ] k k x∗ − x0 k
≤ ν0 (k x0 − g1(x0) kp + k x∗ − g2(x0) kp) k x∗ − x0 k
≤ ν0 ([1 + α1]

p + αp2) k x∗ − x0 kp+1
(3.6)
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Then (3.4) yields, W0(x
∗) ∈ Bb(0).

Using (3.3) we have

e

Ã
Q−1(0) ∩Bδ(x

∗), φ0(x∗)

!
= e

Ã
Q−1(0) ∩Bδ(x

∗), Q−1[W0(x
∗)]

!
≤ M ν0 ([1 + α1]

p + αp2) k x∗ − x0 kp+1
(3.7)

By the inequality (3.5), we get

dist (x∗, φ0(x∗)) ≤ M ν0 ([1 + α1]
p + αp2) k x∗ − x0 kp+1 .(3.8)

Since C(1 −M d) > M ν0 ([1 + α1]
p + αp2), there exists λ ∈ [M d, 1[ such that

C(1− λ) ≥M ν0 ([1 + α1]
p + αp2) and

dist (x∗, φ0(x
∗)) ≤ C (1− λ) k x0 − x∗ kp+1 .(3.9)

By setting r := r0 = C k x0 − x∗ kp+1 we can deduce from the inequality (3.9)
that the assertion (a) in Lemma 2.3 is satisfied.

Now, we show that condition (b) of Lemma 2.3 is satisfied.
By (3.4) we have r0 ≤ δ ≤ a and moreover for x ∈ Bδ(x

∗) we have

kW0(x) k = k f(x∗)− f(x0)− [g1(x0), g2(x0); f ](x− x0) k
≤ k f(x∗)− f(x) k + k f(x)− f(x0)− [g1(x0), g2(x0); f ](x− x0) k
≤ k f(x∗)− f(x) k + k [x0, x; f ]− [g1(x0), g2(x0); f ] k k x− x0 k

(3.10)
Using assumptions (H0)—(H∞), and (H3), we get

kW0(x) k ≤ d0 k x∗ − x k +ν (k x0 − g1(x0) kp + k x− g2(x0) kp) k x− x0 k

≤ d0 k x∗ − x k +ν
Ã
(k x0 − x∗ k + k x∗ − g1(x0) k)p+

(k x− x∗ k + k x∗ − g2(x0) k)p
!
k x− x0 k

≤ d0 δ + ν ([1 + α1]
p + ([1 + α2]

p) δp (2δ)
= d0 δ + 2 ν ([1 + α1]

p + ([1 + α2]
p) δp+1

(3.11)
Then by (3.4) we deduce that for all x ∈ Bδ(x

∗) we have W0(x) ∈ Bb(0). Then
it follows that for all x0, x00 ∈ Br0(x

∗), we have
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e(ψ0(x
0) ∩Br0(x

∗), φ0(x
00)) ≤ e(φ0(x

0) ∩Bδ(x
∗), φ0(x

00)),

which yields by (3.3)

e(φ0(x
0) ∩Br0(x

∗), φ0(x00)) ≤ M kW0(x
0)−W0(x

00) k
≤ M k [g1(x0), g2(x0); f ] k k x00 − x0 k(3.12)

Using (H3) and the fact that λ ≥M d, we obtain

e(φ0(x
0) ∩Br0(x

∗), φ0(x
00)) ≤M d k x00 − x0 k≤ λ k x00 − x0 k(3.13)

and thus condition (b) of Lemma 2.3 is satisfied. Since both conditions of Lemma
2.3 are fulfilled, we can deduce the existence of a fixed point y0 ∈ Br0(x

∗) for the
map φ0. This finishes the proof of Proposition 3.2.

Proposition 3.3. Under the assumptions of Theorem 3.1, there exist δ > 0 such
that for every starting point x0 in Bδ(x

∗) and y0 given by Proposition 3.2 (x0 and
x∗ distincts), and the set—valued map ψ0 has a fixed point x1 in Bδ(x

∗) satisfying

k x1 − x∗ k≤ C k x0 − x∗ kp+1 .(3.14)

Idea of the proof of Proposition 3.3.
The proof of Proposition 3.3 is the same one as that of Proposition 3.2. The

choise of δ is the same one given by (3.4).
The inequality (3.5) is valid if we replace φ0 by ψ0.
Moreover, for all point x0 in Bδ(x

∗) (x0 and x∗ distincts), we have

k Z0(x∗) k=k f(x∗)− f(y0)− [g1(x0), g2(x0); f ](x∗ − y0) k .

In view of assumptions (H0)—(H∞) we get

k Z0(x∗) k = k
µ
[y0, x

∗; f ]− [g1(x0), g2(x0); f ]
¶
(x∗ − y0) k

≤ k [y0, x∗; f ]− [g1(x0), g2(x0); f ] k k x∗ − y0 k
≤ ν0 (k y0 − g1(x0) kp + k x∗ − g2(x0) kp) k x∗ − y0 k

(3.15)

By Proposition 3.2 and (3.4) we have
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k Z0(x∗) k ≤ C ν0

Ã
(C k x0 − x∗ kp+1 +α1 k x0 − x∗ k)p + αp2

!
k x∗ − x0 kp+1

≤ ν0 ([1 + α1]
p + αp2) k x∗ − x0 kp+1 .

(3.16)
Then (3.4) yields, Z0(x

∗) ∈ Bb(0).
Setting r := r0 = C k x0 − x∗ kp+1, we can deduce from the assertion (a) in

Lemma 2.3 is satisfied.

By (3.4) we have r0 ≤ δ ≤ a and moreover for x ∈ Bδ(x
∗) we have

k Z0(x) k = k f(x∗)− f(y0)− [g1(x0), g2(x0); f ](x− y0) k
≤ k f(x∗)− f(x) k + k f(x)− f(y0)− [g1(x0), g2(x0); f ](x− y0) k
≤ k f(x∗)− f(x) k + k [y0, x; f ]− [g1(x0), g2(x0); f ] k k x− y0 k

(3.17)

Using the assumptions (H0)—(H∞) and (H3), Proposition 3.2 and (3.4) we ob-
tain

k Z0(x) k ≤ d0 δ + 2 ν ([1 + α1]
p + ([1 + α2]

p) δp+1(3.18)

A slight change in the end of proof of Proposition 3.2 shows that the condition
(b) of Lemma 2.3 is satisfied. The existence of a fixed point x1 ∈ Br0(x

∗) for the
map ψ0 is ensured. This finishes the proof of Proposition 3.3.

Proof of Theorem 3.1.
Keeping η0 = x∗ and setting r := rk = C k x∗ − xk kp+1, the application

of Proposition 3.2 and Proposition 3.3 to the map φk and ψk respectively gives
the existence of a fixed points yk and xk+1 for φk and ψk respectively which is an
elements of Brk(x

∗). This last fact implies the inequality (3.1), which is the desired
conclusion.

Remark 3.4. The sequence (yn) given by algorithm (1.2) is also super—linearly
convergent to a solution x∗ of (1.1).

Remark 3.5. In order for us to compare our results with corresponding ones in
[13], let us introduce assumptions:

(H0)’ For i = 1, 2; there exist parameters α3, α4 ∈ [0, 1) such that

k g1(x)− g1(y) k≤ α3 k x− y k,(3.19)
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k g2(x)− g2(y) k≤ α4 k x− y k,
for all x, y ∈ V,

(3.20)

and

gi(x
∗) = x∗.

(H∞)’ [., .; f ] is (ν, p)—Hölder continuous in V .

(H3)’ For all x, y ∈ V , we have ||[x, y; f ]|| ≤ d, and M d < 1.

Using (H0)’, (H1)’, (H2), (H3)’, similar result was shown in [13]. Let us define

C 00 =
M ν [(1 + α3)

2 + α24]

1−M d
,(3.21)

and

δ00 = min

(
a ; p+1

s
b

4 ν ([1 + α3]p + ([1 + α4]p)
;
1
p
√
C
;

b

2 d
.

)
.(3.22)

Assumption (H0) is weaker than (H0)’. Note also that in general

ν0 ≤ ν,(3.23)

d0 ≤ d,(3.24)

α1 ≤ α3,(3.25)

and

α2 ≤ α4(3.26)

hold, and
ν

ν0
,

d

d0
,
α3
α1

and
α4
α2

can be arbitrarily large [4], [6]. Hence, if strict

inequality hold in any of (3.23)—(3.26) and δ0 is not equal to a or
1
p
√
C
, then we

conclude:

C0 ≤ C 00,(3.27)

and

δ00 ≤ δ0,(3.28)
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which justify the advantages of our analysis over the corresponding ones in [13]
mentioned in the introduction. Similar improvements can immediately follow the
same way with the works in [9]—[21].

Application 3.6. (see [18])
Let K be a convex set in IRn, P is a topological space and ϕ is a function from
P ×K to IRn, the ”perturbed” variational inequality problem consists of seeking k0
in K such that

For each k ∈ K, (ϕ(p, k0); k − k0) ≥ 0(3.29)

where (.; .) is the usual scalar product on IRn and p is fixed parameter in P . Let
IK be a convex indicator function of K and ∂ denotes the subdifferential operator.
Then the problem (3.29) is equivalent to problem

0 ∈ ϕ(p, k0) +H(k0)(3.30)

with H = ∂IK . H is also called the normal cone of K. The ”perturbed” variational
inequality problem (3.29) is equivalent to (3.30) which is a generalized equation in
the form (1.1). Consequently, we can approximate the solution k0 of (3.29) using
our method (1.2).
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