Proyecciones Journal of Mathematics
Vol. 36, N^{o} 1, pp. 1-11, March 2017.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172017000100001

Odd vertex equitable even labeling of graphs

P. Jeyanthi
Govindammal Aditanar College for Women, India
A. Maheswari
Kamaraj College of Engineering and Technology, India
and
M. Vijayalakshmi
Dr. G. U. Pope College of Engineering, India
Received: January 2016. Accepted: May 2016

Abstract

In this paper, we introduce a new labeling called odd vertex equitable even labeling. Let G be a graph with p vertices and q edges and $A=\{1,3, \ldots, q\}$ if q is odd or $A=\{1,3, \ldots, q+1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges uv such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \ldots, 2 q$ where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits odd vertex equitable even labeling is called odd vertex equitable even graph. We investigate the odd vertex equitable even behavior of some standard graphs.

Keywords : Mean labeling; odd mean labeling; k-equitable labeling; vertex equitable labeling; odd vertex equitable even labeling; odd vertex equitable even graph.

AMS Subject Classification : 05C78.

1. Introduction

All graphs considered here are simple, finite, connected and undirected. Let $G(V, E)$ be a graph with p vertices and q edges. We follow the basic notations and terminologies of graph theory as in [3]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [2]. The concept of mean labeling was introduced in [8].

A graph $G(V, E)$ with p vertices and q edges is called a mean graph if there is an injective function f that maps $V(G)$ to $\{0,1,2, \ldots, q\}$ such that for each edge $u v$, labeled with $\frac{f(u)+f(v)}{2}$ if $f(u)+f(v)$ is even and $\frac{f(u)+f(v)+1}{2}$ if $f(u)+f(v)$ is odd. Then the resulting edge labels are distinct. The concept of k-equitable labeling was introduced by Cahit [1]. Let G be a graph. A labeling $f: V(G) \rightarrow\{0,1, \ldots, k-1\}$ is called k-equitable labeling if the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1,\left|e_{\bar{f}}(i)-e_{\bar{f}}(j)\right| \leq 1, i \neq j, i, j=$ $0,1, \ldots, k-1$ is satisfied, where as before the induced edge labeling is given by $\bar{f}(\{u, v\})=|f(u)-f(v)|$ and $v_{f}(x)$ and $e_{\bar{f}}(x), x \in\{0,1, \ldots, k-1\}$ is the number of vertices and edges of G respectively with label x. The notion of odd mean labeling was due to Manickam and Marudai [6]. Let $G(V, E)$ be a graph with p vertices and q edges. A graph G is said to be odd mean graph if there exists a function $f: V(G) \rightarrow\{0,1,2,3, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by $f^{*}(u v)=\left\{\begin{array}{ll}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ is a bijection. The function f is called an odd mean labeling.

The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [5]. Let G be a graph with p vertices and q edges and $A=$ $\left\{0,1,2, \ldots,\left\lceil\frac{q}{2}\right\rceil\right\}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f: V(G) \rightarrow A$ induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in A, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $1,2,3, \ldots, q$, where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. The vertex labeling f is known as vertex equitable labeling. Motivated by the concepts of k equitable labeling [1], odd mean labeling [6] and vertex equitable labeling [5] of graphs, we define a new labeling called odd vertex equitable even labeling.

Let G be a graph with p vertices and q edges and $A=\{1,3, \ldots, q\}$ if q is odd or $A=\{1,3, \ldots, q+1\}$ if q is even. A graph G is said to admit odd
vertex equitable even labeling if there exists a vertex labeling $f: V(G) \rightarrow A$ that induces an edge labeling f^{*} defined by $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$ such that for all a and b in $A,\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and the induced edge labels are $2,4, \ldots, 2 q$ where $v_{f}(a)$ be the number of vertices v with $f(v)=a$ for $a \in A$. A graph that admits odd vertex equitable even labeling then G is called odd vertex equitable even graph.

We observe that $K_{1,3}$ and K_{3} are vertex equitable graphs but not odd vertex equitable even graphs. We use the following definitions in the subsequent section.

Definition 1.1. The disjoint union of two graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 1.2. The corona $G_{1} \odot G_{2}$ of the graphs G_{1} and G_{2} is defined as a graph obtained by taking one copy of G_{1} (with p vertices) and p copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex of the $i^{\text {th }}$ copy of G_{2}.

Definition 1.3. [7] Let G be a graph with n vertices and t edges. A graph H is said to be a super subdivision of G if H is obtained from G by replacing every edge e_{i} of G by a complete bipartite graph $K_{2, m_{i}}$ for some integer $m_{i}, 1 \leq i \leq t$ in such a way that ends of e_{i} are merged with two vertices of the 2-vertices part of $K_{2, m_{i}}$ after removing the edge e_{i} from G. A super subdivision H of a graph G is said to be an arbitrary super subdivision of a graph G if every edge of G is replaced by an arbitrary $K_{2, m}$ (m may vary for each edge arbitrarily).

Definition 1.4. [4] Let T be a tree and u_{0} and v_{0} be the two adjacent vertices in T. Let u and v be the two pendant vertices of T such that the length of the path $u_{0}-u$ is equal to the length of the path $v_{0}-v$. If the edge $u_{0} v_{0}$ is deleted from T and u and v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{0} v_{0}$ is called transformable edge. If by the sequence of epts, T can be reduced to a path, then T is called a T_{p}-tree (transformed tree) and such sequence regarded as a composition of mappings (epts) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$. A T_{p}-tree and the sequence of two epts reducing it to a path are illustrated in Figure 1.

Figure 1
Definition 1.5. The graph $P_{n} @ P_{m}$ is obtained by identifying the pendant vertex of a copy of path P_{m} at each vertex of the path P_{n}.

2. Main Results

Theorem 2.1. Any path is an odd vertex equitable even graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and it has n vertices and $n-1$ edges. Let $A= \begin{cases}1,3, \ldots, n-1 & \text { if } n-1 \text { is odd } \\ 1,3, \ldots, n & \text { if } n-1 \text { is even. }\end{cases}$

Define a vertex labeling $f: V\left(P_{n}\right) \rightarrow A$ as follows:
For $1 \leq i \leq n, f\left(u_{i}\right)= \begin{cases}i & \text { if } i \text { is odd } \\ i-1 & \text { if } i \text { is even. }\end{cases}$
It can be verified that the induced edge labels of P_{n} are $2,4, \ldots, 2 n-2$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of P_{n}. Thus P_{n} is an odd vertex equitable even graph.

Theorem 2.2. The graph $P_{n} @ P_{m}$ is an odd vertex equitable even graph for any $n, m \geq 1$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}. Let $v_{i 1}, v_{i 2}, \ldots, v_{i m}$ be the vertices on the $i^{t h}$ copy of the path P_{m} so that $v_{i_{m}}$ is identified with v_{i} for $1 \leq i \leq n$. Clearly $P_{n} @ P_{m}$ has $m n$ vertices and $m n-1$ edges.

Let $A= \begin{cases}1,3, \ldots, m n-1 & \text { if } m n-1 \text { is odd } \\ 1,3, \ldots, m n & \text { if } m n-1 \text { is even. }\end{cases}$
Define a vertex labeling $f: V\left(P_{n} @ P_{m}\right) \rightarrow A$ as follows:
For $1 \leq i \leq n, 1 \leq j \leq m$,
If i is odd, $f\left(v_{i j}\right)= \begin{cases}m(i-1)+j & \text { if } j \text { is odd } \\ m(i-1)+j-1 & \text { if } j \text { is even. }\end{cases}$
If i is even, $f\left(v_{i j}\right)= \begin{cases}m i-j & \text { if } j \text { is odd } \\ m i-(j-1) & \text { if } j \text { is even. }\end{cases}$
It can be verified that the induced edge labels of $P_{n} @ P_{m}$ are $2,4, \ldots, 2 m n-$ 2 and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of $P_{n} @ P_{m}$. Thus, $P_{n} @ P_{m}$ is an odd vertex equitable even graph.

Corollary 2.3. The graph $P_{n} \odot K_{1}$ is an odd vertex equitable even graph for any $n \geq 1$.

Theorem 2.4. The graph $K_{1, n}$ is an odd vertex equitable even graph if only if $n \leq 2$.

Proof. Suppose that $n \leq 2$. When $n=1, K_{1, n} \cong P_{2}$ and $n=2, K_{1, n} \cong$ P_{3}. Hence by Theorem 2.1, $K_{1, n}$ is an odd vertex equitable even graph. Suppose that $n \geq 3$ and $K_{1, n}$ is an odd vertex equitable even graph with odd vertex equitable even labeling f. Let $\left\{V_{1}, V_{2}\right\}$ be the bipartition of $K_{1, n}$ with $V_{1}=\{u\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. To get the edge label 2, we have to assign the label 1, to the two adjacent vertices. Thus 1 must be the label of u. Since $n \geq 3$, the maximum value of the edge label is either $n+1$ or $n+2$ according as n is odd or even. Hence, there is no edge with the induced label $2 n$. Thus, $K_{1, n}$ is not an odd vertex equitable even graph if $n \geq 3$.

Theorem 2.5. The graph $K_{1, n} \cup K_{1, n-2}$ is an odd vertex equitable even graph for any $n \geq 3$.

Proof. Let u, v be the centre vertices of the two star graphs, $K_{1, n}, K_{1, n-2}$. Assume that $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices incident with u and $v_{1}, v_{2}, \ldots, v_{n-2}$ be the vertices incident with v. Hence $K_{1, n} \cup K_{1, n-2}$ has $2 n+2$ vertices and $2 n-2$ edges. Let $A=\{1,3, \ldots, 2 n-1\}$.

Define a vertex labeling $f: V\left(K_{1, n} \cup K_{1, n-2}\right) \rightarrow A$ as follows: $f(u)=1, f(v)=2 n-1, f\left(u_{i}\right)=2 i-1$ if $1 \leq i \leq n$ and
$f\left(v_{i}\right)=2 i+1$ if $1 \leq i \leq n-2$.
It can be verified that the induced edge labels of $K_{1, n} \cup K_{1, n-2}$ are $2,4, \ldots, 4 n-4$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of $K_{1, n} \cup K_{1, n-2}$. Thus, $K_{1, n} \cup K_{1, n-2}$ is an odd vertex equitable even graph.

Theorem 2.6. The graph $K_{2, n}$ is an odd vertex equitable even graph for all n.

Proof. Let $\left\{V_{1}, V_{2}\right\}$ be the bipartition of $K_{2, n}$ with $V_{1}=\{u, v\}$ and $V_{2}=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. It has $n+2$ vertices and $2 n$ edges. Let $A=\{1,3, \ldots, 2 n+$ $1\}$.

Define a vertex labeling $f: V\left(K_{2, n}\right) \rightarrow A$ as follows:
$f(u)=1, f(v)=2 n+1$ and $f\left(u_{i}\right)=2 i-1$ if $1 \leq i \leq n$.
It can be verified that the induced edge labels of $K_{2, n}$ are $2,4, \ldots, 4 n$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of $K_{2, n}$. Thus, $K_{2, n}$ is an odd vertex equitable even graph.

Theorem 2.7. Let G be a graph with p vertices and q edges and $p \leq$ $\left\lceil\frac{q}{2}\right\rceil+1$ then G is not an odd vertex equitable even graph.

Proof. Let G be a graph with p vertices and q edges.
Case (i): Let $q=2 m+1$.
Suppose G is an odd vertex equitable even graph. Let $A=\{1,3, \ldots, 2 m+$ $1\}$. To get an edge label 2 , there must be two adjacent vertices u and v with label 1. Also to get the edge label $4 m+2$, there must be two adjacent vertices x and y with label $2 m+1$. Hence, the number of vertices must be greater than or equal to $m+3$. Then G is not an odd vertex equitable even graph.
Case (ii): Let $q=2 m$.
Suppose G is an odd vertex equitable even graph. Let $A=\{1,3, \ldots, 2 m+$ $1\}$. To get the edge label 2 , there must be two adjacent vertices u and v each has the label 1. The number of vertices must be greater than or equal to $m+2$. Then G is not an odd vertex equitable even graph.

Corollary 2.8. The graph $K_{m, n}$ is not an odd vertex equitable even graph if $m, n \geq 3$.

Theorem 2.9. Every T_{p}-tree is an odd vertex equitable even graph.
Proof. Let T be a T_{p}-tree with n vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup$ E_{p}
where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, \ldots, v_{n}$ starting from one pendant vertex of $P(T)$ right up to the other.

For $1 \leq i \leq n$, define the labeling f as $f\left(v_{i}\right)= \begin{cases}i & \text { if } i \text { is odd } \\ i-1 & \text { if } i \text { is even. }\end{cases}$
Then f is an odd vertex equitable even labeling of the path $P(T)$.
Let $v_{i} v_{j}$ be an edge in T for some indices i and j with $1 \leq i<j \leq n$. Let P_{1} be the ept that delete the edge $v_{i} v_{j}$ and add an edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} and the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge of the path $P(T)$, it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore i and j are of opposite parity.

The induced label of the edge $v_{i} v_{j}$ is given by $f^{*}\left(v_{i} v_{j}\right)=f^{*}\left(v_{i} v_{i+2 t+1}\right)=$ $f\left(v_{i}\right)+f\left(v_{i+2 t+1}\right)=2(i+t), 1 \leq i \leq n$. Now $f^{*}\left(v_{i+t} v_{j-t}\right)=f^{*}\left(v_{i+t} v_{i+t+1}\right)=$ $f\left(v_{i+t}+f\left(v_{i+t+1}\right)==2(i+t), 1 \leq i \leq n\right.$. Therefore, we have $f^{*}\left(v_{i} v_{j}\right)=$ $f^{*}\left(v_{i+t} v_{j-t}\right)$ and hence f is a an odd vertex equitable even labeling of the T_{p}-tree T.

Theorem 2.10. If every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph.

Proof. Let G be a graph in which every edge is an edge of a triangle. Suppose G is an odd vertex equitable even graph with odd vertex equitable even labeling f. To get 2 as an edge label, there must be two adjacent vertices u and v such that $f(u)=1$ and $f(v)=1$. Let uvwu be a triangle . To get 4 as an edge label, there must be $f(w)=3$, then $u w$ and $v w$ get the same edge label. This is contradiction to f is an odd vertex equitable even labeling. Hence G is not an odd vertex equitable even graph.

Corollary 2.11. The complete graph K_{n} where $n \geq 3$, the wheel W_{n}, the triangular snake, double triangular snake, triangular ladder, flower graph $F L_{n}$, fan graph $P_{n}+K_{1}, n \geq 2$, double fan graph $P_{n}+K_{2}, n \geq 2$, friendship graph C_{3}^{n}, windmill $K_{m}^{n}, m>3, K_{2}+m K_{1}$, square graph $B_{n, n}^{2}$, total graph $T\left(P_{n}\right)$ and composition graph $P_{n}\left[P_{2}\right]$ are not odd vertex equitable even graphs.

Theorem 2.12. The cycle C_{n} is an odd vertex equitable even graph if $n \equiv 0$ of $1(\bmod 4)$.

Proof. Suppose $n \equiv 0$ or $1(\bmod 4)$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the cycle C_{n}. Let $A= \begin{cases}1,3, \ldots, n & \text { if } n \text { is odd } \\ 1,3, \ldots, n+1 & \text { if } n \text { is even. }\end{cases}$

Define a vertex labeling $f: V\left(C_{n}\right) \rightarrow A$ as follows:
$f\left(u_{i}\right)=i$ if i is odd and

$$
1 \leq i \leq n, f\left(u_{i}\right)= \begin{cases}i-1 & \text { if } i \text { is even and } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ i+1 & \text { if } i \text { is even and }\left\lceil\frac{n}{2}\right\rceil \leq i \leq n\end{cases}
$$

It can be verified that the induced edge labels of cycle are $2,4, \ldots, 2 n$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of cycle. Thus, the cycle C_{n} is an odd vertex equitable even graph if $n \equiv 0$ or $1(\bmod 4)$.

Theorem 2.13. A quadrilateral snake Q_{n} is an odd vertex equitable even graph.

Proof. A quadrilateral snake is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i}, u_{i+1} to the new vertices v_{i}, w_{i} respectively and joining v_{i} and $w_{i}, 1 \leq i \leq n-1$. It has $3 n-2$ vertices and $4 n-4$ edges. Let $A=\{1,3, \ldots, 4 n-3\}$.

Define a vertex labeling $f: V\left(Q_{n}\right) \rightarrow A$ as follows:
$f\left(u_{i}\right)=4 i-3$ if $1 \leq i \leq n, f\left(v_{i}\right)=4 i-3$ and $f\left(w_{i}\right)=4 i-1$ if $1 \leq i \leq n-1$.

It can be verified that the induced edge labels of quadrilateral snake are $2,4, \ldots, 8 n-8$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of quadrilateral snake. Thus, quadrilateral snake is an odd vertex equitable even graph.

Theorem 2.14. The ladder graph L_{n} is an odd vertex equitable even graph for all n.

Proof. Let u_{i} and v_{i} be the vertices of L_{n}. Then $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq\right.$ $i \leq n-1\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Then L_{n} has $2 n$ vertices and $3 n-2$ edges.

Let $A= \begin{cases}1,3, \ldots, 3 n-2 & \text { if } n \text { is odd } \\ 1,3, \ldots, 3 n-1 & \text { if } n \text { is even. }\end{cases}$
Define a vertex labeling $f: V\left(L_{n}\right) \rightarrow A$ as follows:
$f\left(u_{2 i-1}\right)=f\left(v_{2 i-1}\right)=6 i-5$ if $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, f\left(u_{2 i}\right)=6 i-1$ and $f\left(v_{i}\right)=6 i-3$ if $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.

It can be verified that the induced edge labels of L_{n} are $2,4, \ldots, 6 n-4$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of L_{n}. Thus, L_{n} is an odd vertex equitable even graph.

Theorem 2.15. The graph $L_{n} \odot K_{1}$ is an odd vertex equitable even graph for all n.

Proof. Let L_{n} be the ladder. Let $L_{n} \odot K_{1}$ be the graph obtained by joining a pendant edge to each vertex of the ladder. Let u_{i} and v_{i} be the vertices of L_{n}. For $1 \leq i \leq n, u_{i}^{\prime}$ and v_{i}^{\prime} be the new vertices adjacent with u_{i} and v_{i} respectively. Clearly $L_{n} \odot K_{1}$ has $4 n$ vertices and $5 n-2$ edges.

Let $A= \begin{cases}1,3, \ldots, 5 n-2 & \text { if } n \text { is odd } \\ 1,3, \ldots, 5 n-1 & \text { if } n \text { is even. }\end{cases}$
Define a vertex labeling $f: V\left(L_{n} \odot K_{1}\right) \rightarrow A$ as follows:
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$,
$f\left(u_{2 i-1}\right)=f\left(u_{2 i-1}^{\prime}\right)=10 i-9, f\left(v_{2 i-1}\right)=f\left(v_{2 i-1}^{\prime}\right)=10 i-7$.
For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,
$f\left(u_{2 i}\right)=10 i-1, f\left(v_{2 i}\right)=10 i-5, f\left(u_{2 i}^{\prime}\right)=f\left(v_{2 i}^{\prime}\right)=10 i-3$.
It can be verified that the induced edge labels of $L_{n} \odot K_{1}$ are $2,4, \ldots, 10 n-$ 4 and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is a odd vertex equitable even labeling of $L_{n} \odot K_{1}$. Thus, $L_{n} \odot K_{1}$ is an odd vertex equitable even graph.

Theorem 2.16. The arbitrary super subdivision of any path P_{n} is an odd vertex equitable even graph.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices and $e_{i}=v_{i} v_{i+1}$ be the edges of the path P_{n} for $1 \leq i \leq n-1$. Let G be an arbitrary super subdivision of the path P_{n}. That is, for $1 \leq i \leq n-1$ each edge e_{i} of the path P_{n} is replaced by a complete bipartite graph $K_{2, m_{i}}$ where m_{i} is any positive integer. Let $V(G)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq j \leq m_{i}, 1 \leq i \leq n-1\right\}$.

Clearly G has $m_{1}+m_{2}+\ldots+m_{n-1}+n$ vertices and $2\left(m_{1}+m_{2}+\ldots+m_{n-1}\right.$ edges. Let $A=\left\{1,3, \ldots, 2\left(m_{1}+m_{2}+\ldots+m_{n-1}\right)+1\right\}$.

Define a vertex labeling $f: V(G) \rightarrow A$ as follows:
$f\left(v_{1}\right)=1, f\left(v_{i}\right)=2\left(m_{1}+m_{2}+\ldots+m_{i-1}\right)+1$ if $2 \leq i \leq n, f\left(u_{1 j}\right)=2 j-1$ if $1 \leq j \leq m_{1}$ and $f\left(u_{i j}\right)=f\left(v_{i}\right)+2 j-2$ if $2 \leq i \leq n-1,1 \leq j \leq m_{i}$.

Therefore the induced edge labels of G are $2,4, \ldots, 4\left(m_{1}+m_{2}+\ldots+\right.$ $\left.m_{n-1}\right)$ and $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of G. Thus, arbitrary super subdivision of any path is an odd vertex equitable even graph.

References

[1] I. Cahit, On cordial and 3-equitable labeling of graphs, Util. Math., 37, pp. 189-198, (1990).
[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2015), \#DS6.
[3] F. Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).
[4] S. M. Hegde, and Sudhakar Shetty,On Graceful Trees, Applied Mathematics E- Notes, 2, pp. 192-197, (2002).
[5] A. Lourdusamy and M. Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences \& Cryptography, 11(6), pp. 727-735, (2008).
[6] K. Manickam and M. Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1), pp. 149-153, (2006).
[7] G. Sethuraman and P. Selvaraju, Gracefulness of Arbitrary Super Subdivision of Graphs, Indian J. Pure Appl. Math., 32 (7), pp. 1059-1064, (2001).
[8] . S.Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26, pp. 210-213, (2003).

P. Jeyanthi

Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamilnadu,
India
e-mail: jeyajeyanthi@rediffmail.com

A. Maheswari

Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar, Tamilnadu,
India
e-mail: bala_nithin@yahoo.co.in
and

M.Vijayalakshmi

Department of Mathematics
Dr. G. U. Pope College of Engineering
Sawyerpuram,Tamilnadu,
India
e-mail: viji_mac@rediffmail.com

