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0. Introduction

Over the years, a number of descriptions of products of fuzzy topological
spaces have appeared. As mathematicians have attempted to develop and
extend topics of general topology in various ways using the concept of
fuzzy subsets of an ordinary set, it is not surprising that searches for such
products were obtined with different degrees of success, depending on the
structure of the underlying lattice L. The aim of this paper is to give a
characterization of arbitrary products of LF -topological spaces, when the
underlying lattice L is a GL - Monoid with some additional structures.

The paper is organized as follows: After some lattice-theoretical pre-
requisites, where we briefly recall the concept of a GL-monoid, we present
the concept of uniform structures on GL-monoids in order to get condi-
tions for the existence of arbitrary products of elements of a GL-monoid
(section 2). Then, in section 3, we shall build the LF -topology product
of a given family of LF -topological spaces. Finally in sections 4, 5 and 6
we define Kolmogoroff and Hausdorff LF -topological spaces and we show
that these properties are inherited by the product LF -topology from their
factors, together with the separation concepts in this context.

1. GL - Monoids

The basic facts needed are presented in this section. We are mainly in-
terested in the basic ideas about GL-monoids. Let (L, ) be a complete
infinitely distributive lattice, i. e. (L, ) is a partially ordered set such that
for every subset A ⊂ L the join

W
A and the meet

V
A are defined, and for

every α ∈ L we have:³_
A
´
∧ α =

_
{a ∧ α | a ∈ A},

³^
A
´
∨ α =

^
{a ∨ α | a ∈ A}.

In particular, > :=
W
L and ⊥ :=

V
L are respectively the universal

upper and the universal lower bounds in L. We also assume that ⊥ 6= >,
i.e. L has at least two elements. A GL−monoid (cf. [9]) is a complete
lattice enriched with a further binary operation ⊗, i.e. a triple (L, ,⊗)
such that:

(1) ⊗ satisfies the isotonicity axiom i.e. for all α, β, γ ∈ L, αβ
implies α⊗ γβ ⊗ γ;

(2) ⊗ is commutative, i.e. α⊗ β = β ⊗ α, ∀α, β ∈ L,
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(3) ⊗ is associative, that is to say, α⊗(β⊗γ) = (α⊗β)⊗γ, ∀α, β, γ ∈ L;

(4) (L, ,⊗) is integral, i.e. the universal upper bound > is the unit with
respect to ⊗: α⊗> = α, ∀α ∈ L;

(5) ⊥ is the zero element in (L, ,⊗), that is to say, α⊗⊥ = ⊥, ∀α ∈ L;

(6) ⊗ is distributive over arbitrary joins, this means that
α⊗ (Wj βj) =

W
j(α⊗ βj), ∀α ∈ L, ∀{βj : j ∈ J} ⊂ L;

(7) (L, ,⊗) is divisible, i.e. for every pair (α, β) ∈ L × L with αβ there
exists γ ∈ L such that α = β ⊗ γ.

On the other hand, every GL− monoid is residuated, i.e. there exists an
additional binary operation “7−→” in L satisfying the condition:

α⊗ βγ ⇐⇒ α(β 7−→ γ) ∀α, β, γ ∈ L

for all α, β, γ ∈ L. It is clear that:

α 7−→ β =
_
{λ ∈ L | α⊗ λβ}.

The Heyting algebras and the MV -algebras are important examples
of GL-monoids. A Heyting algebra (cf. [5]), is a GL-monoid of the kind
(L, ,∧,∨,∧) (i.e. in a Heyting algebra ∧ = ⊗). A GL-monoid is a MV -
algebra if (α 7−→ ⊥) 7−→ ⊥ = α ∀α ∈ L (cf. [9]). Thus in anMV -algebra
an order reversing involution c : L→ L can be naturally defined by setting
αc := α 7−→ ⊥ ∀α ∈ L.

If X is a set and L is a GL-monoid, then the fuzzy powerset LX in an
obvious way can be pointwise endowed with a structure of a GL-monoid.
In particular the L-sets 1X and 0X defined by 1X(x) := > and 0X(x) := ⊥,
∀x ∈ X, are respectively the universal upper and lower bounds in LX .

In the sequel L denotes an arbitrary GL-monoid.

2. Infinite Products in GL-monoids

In order to get arbitrary products of elements of a GL-monoid, let us begin
with recalling the notion of infinite sums in commutative groups given by
Bourbaki in [3]. We briefly sketch his construction below.



184 Carlos Orlando Ochoa C. and Joaquín Luna-Torres

Infinite Sums in Topological Groups

Let us begin with the following data:

1. A Hausdorff commutative group (G,+, τ),

2. an index set I,

3. a family (xλ)λ∈I of points of G, indexed by I.

If Pf (I) denotes the set of finite subsets of I, and with each J ∈ Pf (I)
we associate the element sJ :=

P
i∈J xi of G, which we call the finite

partial sum of the family (xλ)λ∈I corresponding to the set J , we have thus
a mappingP

: Pf (I) −→ G

J 7−→ sJ .
Now, Pf (I) is a directed set (with respect to the inclusion relationship).

Let Φ be the section filter of the directed set Pf (I):
For each J ∈ Pf (I), the section of Pf (I) relative to the element J is the
set

S(J) = {K ∈ Pf (I)|J ⊆ K}.

Then the set

S = {S(J)|J ∈ Pf (I)}

is a filter base. The filter Φ of sections of Pf (I) is the filter generated by
S.

The family (xλ)λ∈I of points of (G,+, τ) is said to be summable if the
mappingP

: Pf (I) −→ G
J 7−→ sJ
has a limit with respect to the section filter Φ. When such limit exists, it
is denoted by

P
i∈I xi.

Infinite Products in GL-Monoids

Employing the method introduced in the previous section, and proceeding
in the same way, we discuss the closely related notion of infinite products
in GL-Monoids. Now, we need the following data:

1. A GL-monoid (L, ,⊗),
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2. an index set I,

3. a family (xλ)λ∈I of elements of L.

If Pf (I) again denotes the set of finite subsets of I, and with each
J ∈ Pf (I) we associate the element

N
i∈J xi, of L, which we call the finite

partial product of the family (xλ)λ∈I corresponding to the set J , we have
thus a mappingQ

: Pf (I) −→ L
J 7−→ Q

(J) =
N

i∈J xi.
We would like to define the “tensorial” product of the family (xλ)λ∈I

of points of L as the limit of the mappingQ
: Pf (I) −→ L

J 7−→N
i∈J xi.

with respect to the section filter Φ and some convergence structure on L.
A fundamental approach to constructing such convergence is the uniform
structure. Uniform spaces are the carriers of uniform convergence, uniform
continuity and the like.

Uniform structures on GL-Monoids

In order to get conditions for the existence of “tensorial” product on GL-
Monoids, we will now introduce a uniform structure on a GL-Monoids L,
paraphrasing W. Kotzé in [6], Bourbaki in [3], and Willard in [10]:

Definition 2.1. A mapping f : L → L is expansive if for each a ∈ L we
have that af(a), i. e. ∆Lf , where ∆L : L→ L is the identity map of L.
On the other hand we say that f : L→ L commutes with arbitrary joins if

f(
_
λ

xλ) =
_
λ

f(xλ).

for every family (xλ)λ∈I of points of L.

We denote by fLL the set of all expansive mappings f : L → L that

commute with arbitrary joins. Now we define for each f ∈ fLL the map
f̂ : L→ L by

f̂(b) =
^
{a ∈ L | b[f(a→ ⊥)→ ⊥]}, ∀b ∈ L.

Lemma 2.2. If f ∈ fLL then f̂ ∈ fLL.
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Proof. Let f ∈ fLL, in order to show that f̂ is expansive; we observe
that

ba⇔ a 7−→ cb 7−→ c and a 7−→ ⊥f(a 7−→ ⊥).

The statement bf(a 7−→ ⊥) 7−→ ⊥ is equivalent to

a 7−→ ⊥f(a 7−→ ⊥)b 7−→ ⊥,

hence we have that ba, and therefore

b
^
{a ∈ L | b[f(a→ ⊥)→ ⊥]} = f̂(b).

Now, we wish to show that the mapping f̂ commutes with arbitrary
joins. Let {xλ}λ∈Λ be a collection of elements of L and put:

B={y∈ L | Wλ∈Λ xλf(y 7−→ ⊥) 7−→ ⊥}
Aλ = {a ∈ L | xλf(a 7−→ ⊥) 7−→ ⊥}, ∀λ ∈ Λ.

Then y ∈ B if and only if

f(y 7−→ ⊥)
^
λ∈Λ

(xλ 7−→ ⊥),

that is to say,

f(y 7−→ ⊥)xλ 7−→ ⊥, ∀λ ∈ Λ.

In other words, for each λ ∈ Λ we have that xλf(y 7−→ ⊥) 7−→ ⊥
showing y ∈ Aλ, i.e. B ⊂ Aλ. We therefore have thatV

λ∈ΛAλ
V
B ⇔ f̂(xλ)f̂(

W
λ∈Λ xλ)

⇔ W
λ∈Λ f̂(xλ)f̂(

W
λ∈Λ xλ).

On the other hand, f̂(
W
λ∈Λ xλ) =

V{c ∈ L | f(c 7−→ ⊥)(Wλ∈Λ xλ) 7−→
⊥}
=
V{c ∈ L | f(c 7−→ ⊥)Vλ∈Λ(xλ 7−→ ⊥)}V{c ∈ L | f(c 7−→ ⊥)xλ 7−→ ⊥} = f̂(xλ)W
λ∈Λ f̂(xλ).
This concludes the proof. 2
Following W. Kotzé’s paper (c.f. [6])

Definition 2.3. An L-uniformity is a map U : fLL → L satisfying the
following axioms:

(lu0) U(1L) = >.

(lu1) fg implies U(f)U(g).
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(lu2) U(f)⊗ U(g) ≤ U(f ⊗ g), for all f, g ∈ fLL .

(lu3) U(f)U(f̂), for each f ∈ fLL.

(lu4) For each f ∈ fLL there exists g ∈ fLL such that g◦gf and ⊥U(g)U(f).
Now we note the set {x ∈ L | x 6= ⊥} with L0; and the foregoing

definition is reworded from [3] and[4]:

Definition 2.4. Let B : L → LL be a map; then for each p ∈ L the
image of p under B is denoted by Bp : L → L. B is an L-neighborhood
system on L iff B satisfies the following axioms

(lv0) Bp(>) = >.

(lv1) ab implies Bp(a)Bp(b).

(lv2) For all a, b ∈ L, Bp(a)⊗Bp(b)Bp(a⊗ b).

(lv3) Bp(a) ∈ L0 implies pa,

(lv4) If Bp(a) ∈ L0 then there exists b ∈ L such that Bp(a)Bp(b), and
Bq(a) ∈ L0, for all qb.

Theorem 2.5. Let U : fLL → L Be an L-uniformity and let p ∈ L. Then
Bp : L→ L given by

Bp(x) = {U
³_

{g ∈ fLL | g(p) = x}
´
, if {g ∈ fLL | g(p) = x} 6= ∅,⊥, elsewhere.

is an L-neighborhood of p on L

Proof. (lv0). Since 1L(p) = > and U(1L) = >, it follows that Bp(>) =
>

(lv1). Let a, b ∈ L such that a ≤ b. We distinguish the following cases:

Case 1: a 6= f(p) and b 6= f(p) for all f ∈ fLL; then

Bp(a) = ⊥ = Bp(b).

Case 2: a 6= f(p) for all f ∈ fLL and b = g(p) for some g ∈ fLL, then

Bp(a) = ⊥ < Bp(b) = U
³_

{g ∈ fLL | g(p) = b}
´
.

Case 3: There exists f ∈ fLL such that f(p) = a. Construct a map g : L→
L defined by g(x) = f(x) ∨ b, for each x ∈ L. We now verify that g ∈ fLL,
in fact we have that
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1. g is expansive since

x ≤ f(x) ≤ f(x) ∨ b = g(x), for each x ∈ L

2. g commutes with arbitrary joins:

g(
_
λ

xλ) = f(
_
λ

xλ) ∨ b = (
_
λ

f(xλ)) ∨ b = (
_
λ

f(xλ) ∨ b) =
_
λ

g(xλ).

Finally, a = f(p)g(p) = f(p) ∨ b = a ∨ b = b, and therefore Bp(a)Bp(b).

(lv2). For each x ∈ L, consider the set Sx := {f ∈ fLL | f(p) = x}, and
let f0 =

W
Sa, g0 =

W
Sb and h0 =

W
Sa⊗b. By (lu2) of definition 2.3, we

have that U (f0)⊗ U (g0)U (f0 ⊗ g0) then

Bp(a)⊗Bp(b) = U (f0)⊗ U (g0)U (f0 ⊗ g0)U (h0) = Bp(a⊗ b),

because f0 ⊗ g0 ∈ Sa⊗b.

(lv3). Since the elements of fLL are expansive mappings, the conclusion
is obvious.

(lv4). Suppose Bp(a) ∈ L0 and, as in (lv2), let f0 =
W
Sa. In virtue of

(lu4) of definition 2.3, there exists g ∈ fLL such that g◦gf0 and U(g) ∈ L0.

Since the elements of fLL are expansive mappings and preserve arbitrary
joins, we get

xg(x)g(g(x))f0(x), ∀x ∈ L.

Let b = g(p). It remains to show that Bq(a) ∈ L0 for all qb. Take
h : L → L defined by h(x) = g(x) ∨ a, as in the proof of (lv1) (case 3),
and note that

qb⇒ g(q)g(b)a,

and so

a = g(q) ∨ a = h(q).

Therefore h ∈ {k ∈ fLL | k(q) = a}. Consequently

U(g)U(h)Bq(a),

proving (lv4). 2

Now, we return to the existence of arbitrary product of elements of a
GL-monoid (L, ,⊗):
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Definition 2.6. Let (xλ)λ∈I be an arbitrary family of points of L, let Φ

be the section filter of the directed set Pf (I), and let U : fLL → L an
L-uniformity. A point p ∈ L is said to be a limit of the mappingQ

: Pf (I) −→ L
J 7−→ ⊗i∈Jxi.
with respect to the section filter Φ and with respect to the L-uniformity U
if
Q−1(a) ∈ Φ for each a ∈ L such that Bp(a) ∈ L0. When such limit

exists, it is denoted by
N

i∈I xi.

Some examples

Example 2.7. Let (G, ,+, τ) be a conditionally complete Hausdorff com-
mutative topological l-group (i.e. (G, ,+) is a patrially ordered commu-
tative group in which every bounded subset has a supremum and infimum
(c.f. [2]). Further let u be an element of the positive cone G+ {0} of G.
Then

(L, ), where L = {g ∈ G | 0gu},
is a complete lattice. On L we consider the binary operation ⊗ defined by

x⊗ y = (x+ y − u) ∨ 0 ∀x, y ∈ L.

Then (L, ,⊗) is a complete MV -algebra (c.f. [4]).
Let I be an index set and let (xi)i∈I be a family of point of L indexed by
I. Then

N
i∈I xi exists whenever the family (xλ)λ∈I of points of (L,+, τ)

is summable in (G, ,+, τ), (c.f. [3]) and
P

i∈I xi2u.

Example 2.8. Let (I, , Prod, τ) be the real unit interval provided with
the usual order, the usual multiplication, and the (uniform) topology of
subspace of the real line (R, τu). It is easy to see that (I, , Prod) is a
GL-monoid (c.f. [2]).

Let Λ be an index set and let (xλ)λ∈Λ be a family of point of I
indexed by Λ. Then

N
λ∈Λ xλ exists whenever the family (xλ)λ∈Λ of

points of (I, Prod, τ) is multipliable (c.f. [3]).

Example 2.9. In aGL-monoid (L, ,⊗) the product of the collection {xi}i∈I ,
where xi = > for each i ∈ I, is >, since for each J ∈ Pf (I) one has thatO

i∈J
xi = >⊗>⊗ . . .⊗>| {z }

finite factors

= >.

(This example is useful for working with products of L-Topological
Spaces).
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3. Product of LF -Topological Spaces

In this section we build the product of an arbitrary collection of LF -
topological spaces, for a GL-Monoid (L, ,⊗) (which we always assume
to be equipped with arbitrary “tensorial” products).
Given a family {(Xλ, τλ) | λ ∈ Λ} of LF -topological spaces, we want to
build the LF -topology product on the cartesian product

Λ :=
Y
λ∈Λ

Xλ = {φ : Λ→
[
λ∈Λ

Xλ | φλ ∈ Xλ, λ ∈ Λ}

associate with the LF -topologies τλ, λ ∈ Λ. ( φλ denotes the λth com-
ponent of φ, i.e. φ(λ)).

Preliminary discussion

Each projection

pα :Λ−→ Xα, α ∈ Λ, defined by pα(φ) = φα

induces the powerset operator

p←α : LXα −→ LΛ

defined by p←α (g) = g ◦ pα, for all g ∈ LXα (c. f. [8]).

Now we need to build a map such that:

1. ◦p←α = τα,

2. is a LF -topology.

3. is universal in the following sense: If η : LΛ → L is such that
η ◦ p←α = τα then Ξη (c.f. [1]).

In order to get such a mapping, we proceed as follows:

For each f ∈ LΛ let us consider

Γf = {µ ∈
Y
λ∈Λ

LXλ | µα = 1Xαfor all but finitely many indices α, and
O
α∈Λ

p←α (µα)f}.

Lemma 3.1. Let 1∆ ∈
Q

λ∈Λ L
Xλ defined by (1∆)α = 1Xα , for each α ∈ Λ.

Then 1∆ ∈ Γ1Λ .
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Proof. It follows from the fact thatO
λ∈Λ
(1∆)α ◦ pλ1Λ

2

Lemma 3.2. Let µ ∈ Qλ∈Λ L
Xλ and suppose that Xλ = X for all λ ∈ Λ.

Then O
λ∈Λ

(µλ ◦ pλ) = (
O
λ∈Λ

µλ) ◦ pλ.

Proof. Since (
N

λ∈Λ µλ)(t) =
N

λ∈Λ(µλ(t)), for each t ∈ X, and
(µ ◦ pλ)(r) = µ(rλ), for all r ∈Λ, we have that [(

N
λ∈Λ µλ) ◦ pλ](r) =

(
N

λ∈Λ µλ)(rλ)
=
N

λ∈Λ(µλ(rλ))
=
N

λ∈Λ(µλ(pλ(r)))
=
N

λ∈Λ(µλ ◦ pλ)(r).
Thus O

λ∈Λ
(µλ ◦ pλ) = (

O
λ∈Λ

µλ) ◦ pλ.

2

Lemma 3.3. If µ ∈ Γf and η ∈ Γg then
N

λ∈Λ p
←
λ (µλ ⊗ ηλ)f ⊗ g.

Proof. Since O
α∈Λ

(µα ◦ pα)f and
O
λ∈Λ
(ηλ ◦ pλ)g,

then O
α∈Λ

(µα ◦ pα)⊗
O
λ∈Λ
(ηλ ◦ pλ)f ⊗ g.

On the other hand, since ⊗ is associative and commutative,O
λ∈Λ
[(µλ ◦ pλ)⊗ (ηλ ◦ pλ)]f ⊗ g.

Applying lemma 3.2, yieldsO
λ∈Λ
[(µλ ⊗ ηλ) ◦ pλ]f ⊗ g

and the proof is complete. 2
Now we have
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Theorem 3.4. The map : LΛ → L defined by

(f) =
_
{
O
λ∈Λ

τλ(µλ) | µ ∈ Γf}.

is an LF -topology on Λ.

Proof.

1. Using lemma 3.1 we check the first fuzzy topological axiom:

(1Λ) =
_
{
O
λ∈Λ

τλ(µλ) | µ ∈ Γ1Λ} = >.

2. Let f, g ∈ LΛ , we must verify the second fuzzy topological axiom:
(f)⊗ (g)(f ⊗ g). Since

(f) =
_
{
O
λ∈Λ

τλ(µλ) | µ ∈ Γf} , (g) =
_
{
O
λ∈Λ

τλ(νλ) | ν ∈ Γg}

and ⊗ commutes with arbitrary joins, from lemma 3.3 it follows,

(f)⊗(g) = W{Nλ∈Λ τλ(µλ)⊗
N

α∈Λ τα(να) | µ ∈ Γf , ν ∈ Γg}W{τλ(Nλ∈Λ µλ)⊗ τα(
N

α∈Λ να) | µ ∈ Γf , ν ∈ Γg}W{Nλ∈Λ τλ(rλ) | Γf⊗g}
= (f ⊗ g).

3. Let {fj | j ∈ J} ⊆ LΛ . As follows, we check the third fuzzy topological
axiom: ^

j∈J
(fj)(

_
j∈J

fj).

We have
V
j∈J(fj) =

V
j∈J

W{Nλ∈Λ τλ((µj)λ) | µj ∈ Γfj}W
[
V
j∈J{

N
λ∈Λ τλ((µj)λ) | µj ∈ Γfj}]W{Nλ∈Λ τλ(
V
j∈J((µj)λ)) | µj ∈ Γfj}].

On the other hand, since

(
_
j∈J

fj) =
_
{
O
λ∈Λ

τλ(ρλ) | ρ ∈ ΓW
j∈J fj

},

the result follows.

2

Theorem 3.5. The βth projection map pβ :Λ−→ Xβ is continuous.
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Proof. Let gβ ∈ LXβ . We need to check that τβ(gβ)(gβ ◦ pβ). Define
g :Λ−→ L by

gµ = { g β , if µ = β1Xµ , if µ 6= β.

It follows that µ ∈ Γgβ◦pβ , and thus that (gβ ◦ pβ)τβ(gβ). 2

Theorem 3.6. : LΛ → L is the weakest LF -topology on Λ for which each
projection map pβ :Λ−→ Xβ is continuous.

Proof. Let : LΛ → L be an LF -topology for which each projection pβ
is continuous, i.e. τβ(gβ)(gβ ◦ pβ), ∀ gβ ∈ LXβ . We need to check that
(gβ ◦ pβ)(gβ ◦ pβ).

For each β ∈ Λ, and for each gβ ∈ LXβ ,_
{
O
β∈Λ

τβ(ρβ) | ρ ∈ Γgβ◦pβ}(gβ ◦ pβ).

Thus (gβ ◦ pβ)(gβ ◦ pβ). 2

4. Products of Kolmogoroff and Hausdorff LF -topological
Spaces

Kolmogoroff L-topological Spaces have been considered by U. Höhle, A.
Šostak in [4]. In this section we shall define the notion of Kolmogoroff
LF -topological space. We shall show then that the Kolmogoroff property
is inherited by the product LF -topological Space from the coordenate LF -
topological Spaces.

Definition 4.1. Let (X, τ) be an LF -topological space. (X, τ) is a Kol-
mogoroff LF -space (i.e. fulfills the T0 axiom)if for every pair (p, q) ∈ X×X
with p 6= q, there exists g ∈ LX such that

• τ(g) ∈ L0 := L−⊥,

• g(p) 6= g(q).

Theorem 4.2. Let (Xλ, τλ)λ∈Λ be a nonempty family of Kolmogoroff LF -
topological spaces. Then (Λ, ) is also a Kolmogoroff LF -topological space.
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Proof. If α, β ∈Λ with α 6= β, then αλ 6= βλ for some λ ∈ Λ. By
hypothesis there exists gλ ∈ LXλ such that

• τλ(gλ) ∈ L0,

• gλ(αλ) 6= gλ(βλ),

in other words,

(gλ ◦ pλ)(α) = gλ(αλ) 6= gλ(βλ) = (gλ ◦ pλ)(β).

Thus, for
ĝ := gλ ◦ pλ ∈ LΛ

define g :Λ−→ L by

gµ := { g λ , if µ = λ1Xλ
, if µ 6= λ.

It follows that g ∈ Γĝ, because λ 6= µ implies

(gµ ◦ pµ)⊗ (1Xλ
◦ pλ)gλ ◦ pλ.

Therefore (ĝ) =
W{Nν∈Λ τν(hν) | h ∈ Γĝ}

≥
³N

ν 6=λ τν(1Xν )
´
⊗ τλ(gλ)

= >⊗ τλ(gλ)
= τλ(gλ) ∈ L0, showing

(ĝ) ∈ L0.

2

Hausdorff LF -topological Spaces

Hausdorff L-topological Spaces were considered in [4]. In this section we
seek generalizations of their results to LF -topological Spaces. Finally, we
shall show that the Hausdorff property is inherited by the product LF -
topological Space from their factors.

Let (X, τ) be an LF -topological space. For each g ∈ LX , such that
τ(g) ∈ L0, define g∗ ∈ LX by

g∗ :=
_
{h ∈ LX | τ(h) ∈ L0 y h⊗ g = 0X}.

Definition 4.3. (X, τ) is a Hausdorff LF -topological Space (i.e. fulfills
the T2 axiom) iff whenever p and q are distint points of X, there exists
g ∈ LX satisfying:
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• τ(g) ∈ L0,

• τ(g∗) ∈ L0, and,

• g(q)⊗ g∗(p) 6= ⊥.

Theorem 4.4. Let (Xλ, τλ)λ∈Λ be a nonempty family of Hausdorff LF -
topological spaces. Then (Λ, ) is also a Hausdorff LF -topological space.

Proof. If x = (xλ)λ∈Λ and y = (yλ)λ∈Λ are distint points of Λ, then
there exists i ∈ Λ such that xi 6= yi. Since (Xi, τi) is a Hausdorff LF -
topological space, there exists gi ∈ LXi satisfying:

• τi(gi) ∈ L0,

• τi(g
∗
i ) ∈ L0, y,

• gi(yi)⊗ g∗i (xi) 6= >.

Consider the element

g =
O
λ∈Λ

hλ ◦ pλ in LΛ

where
hλ = { 1Xλ

, if λ 6= igi, if λ = i.

Since
Γg = {f ∈Λ |

O
λ∈Λ

fλ ◦ pλg}

we have that (g)=
W{Nλ∈Λ τλ(fλ) | f ∈ Γg}

≥
³N

λ6=i τλ(1Xλ
)
´
⊗ τi(gi)

= τi(gi) 6= ⊥
i.e, (g) ∈ L0.
On the other hand, g∗ =

W{f ∈ LΛ | (f) ∈ L0 y f ⊗ g0X ⊗ 1Λ}
=
W{f ∈ LΛ | (f) ∈ L0 y f ⊗ (Nλ∈Λ hλ ◦ pλ) = 0X}

=
W{f ∈ LΛ | (f) ∈ L0 y f ⊗ (gi ◦ pi) = 0X} and

Γ∗g = {f ∈Λ |
O
λ∈Λ

fλ ◦ pλg∗}

therefore, (g∗) =
W{Nλ∈Λ τλ(fλ) | f ∈ Γ∗g}

≥
³N

λ6=i τλ(1Xλ
)
´
⊗ τi(g

∗
i )

= τi(g
∗
i ) 6= ⊥, showing, (g∗) ∈ L0.
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Finally, g(y)=
N

λ∈Λ hλ ◦ pλ(y)
=
³N

λ6=i 1Xλ
(yλ)

´
⊗ gi(yi)

= >⊗ gi(yi)
= gi(yi)
and

g∗(x) =
¡W{f ∈ LΛ | (f) ∈ L0 y f ⊗ (gi ◦ pi) = 0X}

¢
(x)

≥ (g∗i ◦ pi) (x)
= g∗i (xi).

It follows that

g∗(x)⊗ g(y) ≥ g∗i (xi)⊗ gi(yi) 6= ⊥.

Hence (Λ, ) is a Hausdorff LF -topological space. 2

5. From the Quasi-coincident Neigborhoods

Let x ∈ X and λ ∈ L be, the L-point xλ is the L-set xλ : X → L
defined as

xλ(y) = {λ if y = x⊥ if y 6= x

We note the set of L-points of X with pt(LX).
We say that xλ quasi-coincides with f ∈ LX or say that xλ is quasi-

coincident with f (cf [7], [11]) when

1. λ ∨ f(x) = > and

2. λ ∧ f(x) > ⊥,

if xλ quasi-coincides with f , we denote this xλqf ; relation xλ does not
quasi-coincide with f or xλ is not quasi-coincident with f is denoted by
xλ¬qf .

Let (X, τ) be an LF -topological space and xλ ∈ pt(LX), and define
Qxλ : L

X → L by

Qxλ(f) = {
W

xλqgg≤f τ(g), si xλqf⊥, si xλ¬qf

The set
Q = {Qxλ | xλ ∈ pt(LX)}

is called the LF -quasi-coincident neigborhood system of τ . Certainly we
can think Qxλ(f) as degree to which f is a quasi-coincident neigborhood
of xλ.
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Proposition 5.1. Let (X, τ) be a LF-topological space, then

1. Qxλ(1X) = > for all xλ ∈ pt(LX),

2. Qxλ(0X) = ⊥ for all xλ ∈ pt(LX),

3. If Qxλ(f) > ⊥ then xλqf ,

4. Qxλ(f ∧ g) = Qxλ(f) ∧ Qxλ(g) for all xλ ∈ pt(LX) and for all pair
f, g ∈ LX ,

5. For each xλ ∈ pt(LX) and for all f ∈ LX ,

Qxλ(f) =
_

xλqgg≤f

^
yµqg

Qyµ(g),

6. For each f ∈ LX ,
τ(f) =

^
xλqf

Qxλ(f).

Proof. Let (X, τ) an LF-topological space and xλ ∈ pt(LX), we have
that,

1. From 1X(x) = > and λ ∨ > = > we obtain that xλq1X ; on the
other hand, for each f ∈ LX we have that f ≤ 1X and we obtain

Qxλ(1X) =
_
xλqf

τ(f) = τ(1X) = >.

2. From 0X(x) = ⊥, λ ∨ ⊥ = λ, λ ∧⊥ = ⊥ and 0X ≤ f we obtain:

Qxλ(0X) = ⊥.

3. If xλ¬qf then Qxλ(f) = ⊥ consequently, Qxλ(f) > ⊥ implies
xλqf .

4. Let f, g ∈ LX by,

Qxλ(f ∧ g) =
_

xλqhh≤f∧g
τ(h) ≤

_
xλqhh≤f

τ(h) = Qxλ(f)

also, Qxλ(f ∧ g) ≤ Qxλ(g); then

Qxλ(f ∧ g) ≤ Qxλ(f) ∧Qxλ(g);
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on the other hand, Qxλ(f)∧Qxλ(g) =

µ W
xλqhh≤f

τ(h)

¶
∧
µ W
xλqkk≤g

τ(k)

¶
=

W
xλqh; h≤fxλqk; k≤g

µ
τ(h) ∧ τ(k)

¶
≤ W

xλqh; h≤fxλqk; k≤g
τ(h ∧ k) = W

xλqh∧kh∧k≤f∧g
τ(h ∧ k)

= Qxλ(f ∧ g), i. e., Qxλ(f ∧ g) = Qxλ(f) ∧Qxλ(g).

5. For each xλ ∈ pt(LX) and for all f ∈ LX ,

Qxλ(f) =
_

g≤f ;xλqg

^
yµqg

Qyµ(g),

6. For each f ∈ LX ,
τ(f) =

^
xλqf

Qxλ(f).

2

6. Separation Degrees

In contrast with the classical topology, we shall introduce a kind of separa-
tion where the topological spaces have separation degrees; these topics are
due to how many or how much two L-points are separated, this question is
naturally extended to the LF-topological space ambience. These ideas are
inspired in [11] where the development of theoretical elements is applied on
the lattice I, the unitary interval.

Let (X, τ) be a LF-topological space,

1. Given xλ, xµ ∈ pt(LX), i. e. L-points with the same support; the
degree in which the points xλ, xµ are quasi-T0 is

q − T0(xλ, xµ) =

µ _
xλ¬qf

Qxµ(f)

¶
∨
µ _
xµ¬qg

Qxλ(g)

¶

2. The degree to which (X, τ) is quasi-T0 is

q − T0(X, τ) =
^
{q − T0(xλ, xµ) | x ∈ X, λ 6= µ}

We emphasize that the degree quasi-T0 is defined on L-points with
the same support.
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3. Given xλ, yµ L-points with different support, i. e. x 6= y, the degree
for which, xλ, yµ are T0 is

T0(xλ, yµ) =

µ _
xλ¬qf

Qyµ(f)

¶
∨
µ _
yµ¬qg

Qxλ(g)

¶

4. Now, the degree to which (X, τ) is T0 is

T0((X, τ)) =
^
{T0(xλ, yµ) | xλ, yµ ∈ pt(LX), x 6= y}.

5. The degree to which xλ, yµ ∈ pt(LX) with x 6= y are T1 is

T1(xλ, yµ) =

µ _
xλ¬qf

Qyµ(f)

¶
∧
µ _
yµ¬qg

Qxλ(g)

¶

6. The degree to which (X, τ) is T1 is

T1((X, τ)) =
^
{T1(xλ, yµ) | xλ, yµ ∈ pt(LX), x 6= y}.

7. The degree to which xλ, yµ ∈ pt(LX) with x 6= y are T2 is

T2(xλ, yµ) =
_

f∧g=0X

µ
Qyµ(f) ∧Qxλ(g)

¶
,

8. The degree to which (X, τ) is T2 is

T2((X, τ)) =
^
{T2(xλ, yµ) | xλ, yµ ∈ pt(LX), x 6= y}.

Proposition 6.1. For each LF-topological space (X, τ) we have that

T0((X, τ)) ≥ T1((X, τ)) ≥ T2((X, τ)).

7. Concluding Remarks

One of the most pervasive and widely applicable constructions in mathe-
matics is that of products. We hope that the results outlined in this paper
have exhibited the main properties of products of LF -topological spaces.
Clearly, there is much work remaining to be done in this area. Here are
some things that might deserve further attention:

1. Describe the relation between products of LF -topological spaces and
compact of LF -topological spaces (Tychonoff Theorem).

2. Describe the products of variable-basis fuzzy topological spaces.

3. Examine the relation between products of LF -topological spaces and
further separation axioms.
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[9] A P. Šostak, Fuzzy functions and an extension of the category L-
Top of Chang-Goguen L-topological spaces, Proceedings of the Ninth
Prague Topological Symposium, Prague, Czech Republic, (2001).

[10] S. Willard, General Topology, Addison-Wesley Publishing Company,
Massachusetts, (1970).

[11] Yueli Yue, Jinming Fang, On Separation axioms in I-fuzzy topo-
logical spaces, Fuzzy sets and systems, Elsevier, (2005).



Products of LF-Topologies and separation in LF-top 201

Carlos Orlando Ochoa C.
Proyecto Curricular de Matemáticas
Facultad de Ciencias y Educación
Universidad Distrital Francisco José de Caldas
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