Proyecciones Journal of Mathematics Vol. 28, N^o 2, pp. 111–123, August 2009. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172009000200001

θ-GENERALIZED SEMI-OPEN AND θ-GENERALIZED SEMI-CLOSED FUNCTIONS

GOVINDAPPA NAVALAGI G. H COLLEGE, INDIA and Md. HANIF PAGE B. V. B. COLLEGE OF ENG. AND TECH., INDIA Received : March 2008. Accepted : March 2009

Abstract

In this paper, we introduce and study the notions of θ -generalizedsemi-open function, θ -generalized- semi-closed function, pre- θ -generalizedsemi-open function, pre- θ -generalized-semi-closed function, contra pre- θ -generalized-semi-open, contra pre- θ -generalized-semi-closed function and θ -generlized-sem-homeomorphism in topological spaces and study their properties.

2000 Mathematics Subject Classification : 54A05, 54C10, 54D10; Secondary: 54C08

Keywords : θ gs-closed, θ gs-open, pre θ gs-open, pre θ gs-closed, θ gs-closed function, θ gs-open function, θ gs-homeomorphism, θ gsc-homeomorphism.

1. INTRODUCTION

In 1970, Levine [10] first considered the concept of generalized closed (briefly, g-closed) sets were defined and investigated Arya and Nour [1] defined generalized semi-open (briefly, gs-open) sets using semi openness and obtained some characterization of s-normal space. The generalizations of generalized closed and generalized continuity were intensively studied in recent years by Balachandran, Devi ,Maki and Sundaram[2].Recently in [12] the notion of θ -generalized semi closed (briefly, θ gs-closed) set was introduced. The aim of this paper is to introduce the notions of θ -generalized semi open (briefly, θ gs-open) function, θ -generalized semi closed (briefly, θ gs-closed) function, θ -generalized-semi-homeomorphisms and study their simple properties.

2. PRELIMINARIES

Through out this paper (X, τ) and (Y, σ) (or simply X and Y) denote the spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

Definition 2.1 : A subset A of a topological space X is called (i) a semi-open set[9] if $A \subset Cl(Int(A))$, (ii) a semi-closed set[5] if $A \subset Int(Cl(A))$.

Definition 2.2 : The semi-closure [5] of a subset of X is the intersection of all semiclosed sets that contain A and is denoted by sCl(A).

Definition 2.3 : The θ -closure of a set A is denoted by $Cl_{\theta}(A)[16]$ and is defined by $Cl_{\theta}(A) = \{x \in X : Cl(U) \cap A \neq \phi, U \in \tau, x \in U\}$ and a set A is θ -closed if and only if $A = Cl_{\theta}(A)$.

Definition 2.4 : A point $x \in X$ is called a semi- θ -cluster point of A if $sCl(U) \cap A \neq \phi$, for each semi-open set U containing x.

Definition 2.5 : The set of all semi- θ -cluster point of A is called semi- θ closure of A and is denoted by $sCl_{\theta}(A)$. A subset A is called semi- θ -closed set if $sCl_{\theta}(A) = A$. The complement of semi- θ -closed set is semi- θ -open set. **Definition 2.6 :** A subset A of a space (X, τ) is called a generalized closed set (briefly g-closed) [10] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.7 : A map $f : X \to Y$ is called

(i) a generalized continuous (briefly g-continuous)[2] if $f^{-1}(F)$ is g-closed in X for every closed set F of Y.

(ii) a gc-irresolute [2] if $f^{-1}(V)$ is g-closed set of X for every g- closed set V of Y.

Definition 2.8 : A function $f : X \to Y$ is called (i) *g*-homeomorphism [11] if *f* is *g*-continuous and *g*-open. (ii) *gc*-homeomorphism [11] if *f* and f^{-1} are *gc*-irresolute.

Definition 2.9 : A subset A of a topological space X is called θ -generalizedsemi closed (briefly, θ gs-closed) [12] if $sCl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is open. The complement of θ gs-closed set is θ generalized-semi open (briefly, θ gs-open).

We denote the family of θ gs-closed sets of X by θ GSC (X, τ) and θ gs-open sets by θ GSO (X, τ) .

Definition 2.10 : For every set $A \subseteq X$, we define θ gs-closure of A [12]to be the intersection of all θ gs-closed sets containing A and is denoted by θ gsCl (A).

In symbol, $\theta gsCl(A) = \{ \cap F: A \subseteq FwhereFis\theta gs - closedinX \}.$

Since every θ -g-closed set as well as semi- θ -closed set is θ gs-closed set and hence we have, $A \subset \theta gsCl(A) \subset Cl_{\theta}(A)$ and $A \subset \theta gsCl(A) \subset sCl_{\theta}(A) \subset Cl_{\theta}(A)$. A is θ gs-closed set, if $A = \theta gsCl(A)$.

Definition 2.11 : A function $f: (X, \tau) \to (Y, \sigma)$ is called: (i) θ -semi-generalized-irresolute (briefly, θ -sg-irresolute)[14] if $f^{-1}(F)$ is θ sg-closed in (X, τ) for every θ -sg-closed set F of (Y, σ) , (ii) θ -semi-generalized-continuous (briefly, θ -sg-continuous) if $f^{-1}(F)$ is θ sg-closed in (X, τ) for every closed set F of (Y, σ) ,

Definition 2.12: A space X is called $T_{\theta gs}$ -space [13] if every θ gs-closed set in it is closed set.

Theorem 2.13[13]: Intersection of arbitrary collection of θ gs-closed sets is θ gs-closed set.

Remark 2.14 :

114

(i) Any intersection of θ gs-closed sets is θ gs-closed set. Hence, by complement, any union of θ gs-open sets is θ gs-open.

(ii) Union of θ gs-closed sets may fail to be θ gs-closed set.

Definition 2.15[15]: A topological space (X, τ) is called

(i) $\theta gs-T_0$ if for any pair of distinct points x and y of X, there exists a θgs -open set containing x but not y or a θgs -open set containing y but not x.

(ii) θ gs- T_1 if for every pair of distinct points x and y of X, there exists a θ gs-open set containing x but not y and a θ gs-open set containing y but not x.

(iii) θ gs- T_2 if for each pair of distinct points x and y of X, there exist disjoint θ gs-open sets, one containing x and the other containing y.

3. θ gs-OPEN and θ gs-CLOSED FUNCTIONS

Definition 3.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be θ gs-open (resp., θ gs-closed) if f(V) is θ gs-open (resp., θ gs-closed) in Y for every open set (resp., closed) V in X.

Theorem 3.2: A function $f: X \to Y$ is θ gs-closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a θ gs-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Assume that f is θ gs-closed. Let S be a subset of Y and U be an open set of X such that $S \subseteq f(U)$, that is, $f^{-1}(S) \subseteq U$. Now, U^C is closed set in Y. Then $f(U^C)$ is θ gs-closed in X, since f is θ gs-closed. So, $Y \setminus f(U^C)$ is θ gs-open in. Thus $V = Y \setminus f(U^C)$ is a θ gs-open set containing S such that $f^{-1}(V) \subseteq U$.

Conversely, suppose that F is a closed set in X. Then $f^{-1}(Y \setminus f(F)) \subseteq X \setminus F$ and $X \setminus F$ is open. By hypothesis, there is a θ gs-open set V of Y such that $Y \setminus f(F) \subseteq V$ and $f^{-1}(V) \subseteq X \setminus F$ and so $F \subseteq X \setminus f^{-1}(V)$. Hence $Y \setminus V \subseteq f(F) \subseteq f(X \setminus f^{-1}(V) \subseteq Y \setminus V$ which implies $f(F) = Y \setminus V$. Since $Y \setminus V$ is θ gs-closed, f (F) is θ gs-closed and thus f is θ gs-closed.

Theorem 3.3 : If $f: X \to Y$ is bijective, θ gs-open function. If X is $\theta gs - T_1$ space and $T_{\theta qs} - space$, then Y is $\theta gs - T_1$ space.

Proof: Let y_1 and y_2 be two distinct points of Y. Since f is bijective, there exists distinct points x_1 and x_2 of X such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is a $\theta gs - T_1$ space, there exists θgs -open sets G and H such that $x_1 \in G$ and $x_2 \notin G$ and $x_2 \in H$ and $x_1 \notin H$. Again since X is $T_{\theta gs}$ -space, G and H are open sets in X. As f is θgs -open function, f(G) and f(H) are θgs -open sets such that $y_1 = f(x_1) \in f(G), y_2 = f(x_2) \notin f(G)$ and $y_1 = f(x_1) \notin f(H)$, $y_2 = f(x_2) \in f(H)$. Hence Y is $\theta gs - T_1$ space.

Definition 3.4 : A function $f: X \to Y$ is called pre- θ gs-closed (resp.,pre- θ gs-open) if f(V) is θ gs-closed (resp., θ gs-open) in Y for every θ gs-closed (resp., θ gs-open) set V of X.

Theorem 3.5: If $f: X \to Y$ is continuous, pre- θ gs-closed and A is θ gsclosed subset of X, then f(A) is θ gs-closed

Proof: Let U be an open set such that $f(A) \subseteq U$. Since f is continuous $f^{-1}(U)$ is an open set containing A, that is $A \subseteq f^{-1}(U)$.Hence $sCl_{\theta}(A) \subseteq f^{-1}(U)$ as A is θ gs-closed set in X. Since f is pre- θ gs-closed, $f(sCl_{\theta}(A))$ is θ gs-closed set. So, f $(sCl_{\theta}(A))$ is θ gs-closed set contained in an open set U, that is, $f(sCl_{\theta}(A)) \subseteq U$. Now $sCl_{\theta}(f(A)) \subseteq sCl_{\theta}(f(\theta gsCl(A))) \subseteq SCl_{\theta}(f(sCl_{\theta}(A))) = f(sCl_{\theta}(A)) \subseteq U$. Hence $sCl_{\theta}(f(A)) \subseteq U$. Therefore f (A) is a θ gs-closed set in Y.

Theorem 3.6 : The property of a space being $\theta gs - T_0$ space is preserved under one-one , onto , pre- θ gs-open function and hence is a topological property.

Proof : Let X be a $\theta gs - T_0$ space and Y be any other topological space. Let $f: X \to Y$ be one-one, onto, pre- θgs -open function from X to Y. Let y_1 , $y_2 \in Y$ with $y_1 \neq y_2$ and since f is one-one, onto, there exists distinct points $x_1, x_2 \in X$ such that $f(x_1) = y_1, f(x_2) = y_2$. Since X is $\theta gs - T_0$ space, there exists a θgs -open set G in X such that $x_1 \in G$ but $x_2 \notin G$. Since f is pre- θgs -open, f(G) is θgs -open set containing $f(x_1)$ but not containing $f(x_2)$. Thus there exists a θgs -open set f(G) in Y such that $(y_1) \in f(G)$ but $(y_2) \notin f(G)$ and hence Y is $\theta gs - T_0$ space. Again as the property of being $\theta gs - T_0$ is preserved under one-one, onto mapping, it is also preserved under homeomorphism and hence is a topological property.

Theorem 3.7 : Let $f: X \to Y$ be a θgs -closed and $g: Y \to Z$ pre- θgs -closed and continuous, then their composition $gof: X \to Z$ is θgs -closed.

Proof: Let A be a closed set of X. Then by hypothesis f(A) is θ gs-closed set in Y. Since g is pre- θ gs-closed and continuous, by Theorem 3.5 g(f(A) = (gof)(A) is θ gs-closed in Z. Hence (gof) is θ gs-closed.

4. CONTRA PRE-θgs-CLOSED and CONTRA PRE-θgs-OPEN FUNCTIONS

Definition 4.1 : A function $f: X \to Y$ is called contra pre- θ gs-open if for every θ gs-open set F of X, f (F) is θ gs-closed in Y.

Definition 4.2: A function $f: X \to Y$ is called contra pre- θ gs-closed if for every θ gs-closed set F of X, f (F) is θ gs-open in Y.

The following example shows that contra pre- θ gs-closedness and contra pre- θ gs-openness are independent.

Example 4.3 : Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \{a\}, \{b\}, \{a, b\}\}$. We have θ gs-open sets in X are $\{X, \{a\}, \{b, c\}\}$ and θ gs-open sets in Y are $\{Y, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$. Let $f: X \to Y$ is defined by f(a) = f(c) = c, f(b) = b and $g: X \to Y$ is by g(a) = g(b) = a, g(c) = b. Then f is contra pre- θ gs-open but not contra pre- θ gs-closed and g is contra pre- θ gs-closed but not contra pre- θ gs-open.

Remark 4.4 : Contra pre- θ gs-closedness and contra pre- θ gs-openness are equivalent if the function is bijective.

Theorem 4.5 : For a function $f: X \to Y$ the following properties are equivalent.

(i) f is contra pre- θ gs-open.

(ii) For every subset B of Y and every θ gs-closed subset F of X with $f^{-1}(B) \subseteq F$, there exists a θ gs-open subset O of Y with $B \subseteq O$ and $f^{-1}(O) \subseteq F$.

(iii) For every point $y \in Y$ and every θ gs-closed subset F of X with $f^{-1}(y) \subseteq F$, there exists a θ gs-open subset O of Y with $y \in O$ and $f^{-1}(O) \subseteq F$.

Proof: $(i) \to (ii)$. Let B be a subset of Y and F be a θ gs-closed subset of X with $f^{-1}(B) \subseteq F$. For the case $B \neq \phi$, put $O = [f(F^C)^C$. Then

 $f^{-1}(O) = [f^{-1}(F^C)]^C \subseteq F$ and O is a θ gs-open subset of Y. We claim that $B \subseteq O$. There are two cases to be considered:

Case $1:f^{-1}(B) \neq \phi$. Since $f^{-1}(B) \subseteq F$, we have $f(F^C) \subseteq B^C$ and $B \subseteq O$.

Case 2: $f^{-1}(B) = \phi$. Since $f^{-1}(B) = \phi \subseteq F$, we have $f(F^C) \subseteq f(X)$. We have $B \cap f(X) = \phi$, because $f^{-1}(B) = \phi$ and $B \neq \phi$. Thus $B \subseteq [f(X)]^C \subseteq [f(F^C)^C = O$. For the case $B = \phi$, put $O = \phi$. Then the set O is required θ gs-open set of Y.

 $(ii) \rightarrow (iii)$. It suffices to put B = y in (ii)

 $(iii) \to (i)$. Let A be a θ gs-open subset of X. Then $y \in [f(A)]^C$ and $F = A^C$. First we claim that $f^{-1}(y) \subset F$. For non empty set $f^{-1}(y)$, let $z \in f^{-1}(y)$; $f(z) = y \notin f(A)$ Suppose that $z \notin A$ and so $y = f(z) \in f(A)$. By contradiction, $z \in F$ for any $z \in f^{-1}(y)$, that is $f^{-1}(y) = \phi \subseteq F$. For the case where $f^{-1}(y) = \phi$, we have $f^{-1}(y) = \phi \subseteq F$. For both cases, we can use (iii) and get the following: there exists a θ gs-open set $O_y \subseteq Y$ such that $y \in O_y$ and $f^{-1}(O_y) \subseteq F = A^C$. Namely, (*) $f^{-1}(O_y) \cap A = \phi$ holds for each $y \in [f(A)]^C$. Finally we claim that $[f(A)]^C = \cup \{O_y : y \in [f(A)]^C\}$.

Conversely, let $z \in \bigcup \{O_y : y \in [f(A)]^C\}$. Then there exists a point $w \in [f(A)]^C$ such that $z \in O_w$. Suppose that $z \notin [f(A)]^C$. Then $z \in f(A)$ and there exists a point $b \in A$ such that f(b) = z. Thus we have that $f(b) \in O_w$ and so $b \in f^{-1}(O_w)$. We have a contradiction to (*) above, that is, $b \in f^{-1}(O_w) \cap A$. Hence, we show that $\bigcup \{O_y : y \in [f(A)]^C\} \subseteq [f(A)]^C$ and so $[f(A)]^C = \bigcup \{O_y : y \in [f(A)]^C\}$. Consequently, by Remark 2.12 (i), f(A) is a θ gs-closed subset of Y.

Theorem 4.6 :

Let (1), (2) and (3) be properties of a function $f: X \to Y$ as follows.

- 1. f is contra pre- θ gs-closed.
- 2. For every set B of Y and every θ gs-open subset O of X with $f^{-1}(B) \subseteq$, there exists a θ gs-closed subset O of Y with $B \subseteq O$ and $f^{-1}(O) \subseteq F$.
- 3. For every point $y \in Y$ and every θ gs-open subset O of X with $f^{-1}(y) \subseteq O$, there exists a θ gs-closed subset F of Y with $y \in F$ and $f^{-1}(F) \subseteq O$. Then
- (i) The implications $(1) \rightarrow (2) \rightarrow (3)$ hold.

(ii) Suppose $\theta GSC(Y, \sigma)$ is closed under arbitrary unions (i.e., union of any collection of θ gs-closed sets is θ gs-closed set). Then the implication $(3) \rightarrow (1)$ holds.

Proof: (i)(1) \rightarrow (2). Let *B* be the subset of *Y* and *O* be a θ gs-open subset of *X* with $f^{-1}(B) \subseteq O$. Put $F = [F(O^C)]^C$. Since *f* is contrapre- θ gs-closed, then *F* is θ gs-closed set of *Y*. By $f^{-1}(B) \subseteq O$, we have $f(O^C) \subseteq B^C$. Moreover, $f^{-1}(F) \subseteq O$.

(2) \rightarrow (1). Let *E* be a θ gs-closed subset of *X*. Put $B = [f(E^C)]^C \subseteq E^C = O$. Hence $f^{-1}(B) = f^{-1}(f(E))^C = [f^{-1}(f(E))]^C \subseteq E^C = O$. By assumption there exists a θ gs-closed set $F \subseteq Y$ for which $B \subseteq F$ and $f^{-1}(F) \subseteq O$. It follows that B = F. If $y \in F$ and $y \notin B$, $y \in f(E)$. Therefore y = f(x) for some $x \in E$ and we have that $x \in f^{-1}(F) \subseteq O = E^C$, which is a contrdiction. Since $B = F(i.e, [f(E)^C] = F)$, f(E) is a θ gs-open and hence f is contra pre- θ gs-closed.

 $(2) \rightarrow (3)$. It suffices to put B = y for some $y \in Y$.

(ii)(3) \rightarrow (1). Let A be a θ gs-closed subset of X. Let $y \in [f(A)]^C$. Then we have $f^{-1}(y) \subseteq A^C$. By (3) there exists a θ gs-closed set $F_y \subseteq Y$ such that $y \in F_y$ and $f^{-1}(F_y) \subseteq A^C$. Namely $f^{-1}(y) \cap A = \phi$ holds for each $y \in [f(A)]^C$. By an arrangement similar to that $[f(A)]^C = \cup \{F_y : y \in [f(A)]^C\}$ holds. Consequently, using assumption in (iii), f(A)is θ gs-open in Y.

Theorem 4.7: Let $f: X \to Y$ and $g: Y \to Z$ are θ gs-closed functions and Y be $T_{\theta gs} - space$. Then their composition gof is θ gs-closed.

Proof: Let A be a closed set of X. Then by hypothesis f (A) is a θ gs-closed set in Y. Since Y is $T_{\theta gs} - space$, f (A) is closed in Y. Since g is θ gs-closed, g(f(A)) is θ gs-closed in Z. But g(f(A)) = (gof)(A). Hence gof is θ gs-closed.

Theorem 4.8 : The composition of a closed functions $f : X \to Y$ and $g: Y \to Z$ is θ gs-closed function from X to Z.

Proof : Trivial.

Theorem 4.9 : Let $f : X \to Y$ and $g : Y \to Z$ be two functions such that their composition $gof : X \to Z$ is θ gs-closed function. Then the following statements holds;

i) If f is continuous and surjective, then g is θ gs-closed.

ii) If g is θ gs-irresolute and injective, then f is θ gs-closed.

Proof: (i) Let A be a closed set in Y. Then $f^{-1}(A)$ is closed in X as f is continuous. Since gof is θ gs-closed and if f is surjective, $(gof)(f^{-1}(A)) = g(f(f^{-1}(A))) = g(A)$ is θ gs-closed in Z. Therefore g is a θ gs-closed function in X.

(ii) Let H be a closed set of X. Since gof is θ gs-closed, (gof) (H) is θ gs-closed set in Z. Since g is θ gs-irresolute, $g^{-1}(gof)(H)) = g^{-1}(g(f(H))) = f(H)$ is θ gs-closed in Y, since g is injective. Thus f is θ gs-closed function in X.

Theorem 4.10: For any bijection $f : X \to Y$, the following statements are equivalent (i) Inverse of f is θ gs-continuous.

(ii) f is a θ gs-open function.

(iii) f is a θ gs-closed function.

Proof: (i) \rightarrow (ii). Let U be an open set of X. By assumption θ gs-continuous, $(f^{-1})^{-1}(U) = f(U)$ is θ gs-open in Y and so f is θ gs-open function.

(ii) \rightarrow (iii). Let F be a closed set of X. Then F^C is open in X. By assumption $f(F^C)$ is θ gs-open in Y, that is , $f(F^C) = (f(F))^C$ is θ gs-open in Y and therefore f(F) is θ gs-closed in Y. Hence f is θ gs-closed.

(iii) \rightarrow (i). Let F be a closed set in X. By assumption f (F) is θ gs-closed in Y. But $f(F) = (f^{-1})^{-1}(F) = f(F)$ is θ gs-closed and therefore inverse image of f is θ gs-continuous.

5. θ gs-HOMEOMORPHISMS

Definition 5.1 : A bijection $f : X \to Y$ is called θ -generalized-semihomeomorphism (briefly, θ gs-homeomorphism) if f is both θ gs-continuous and θ gs-open.

Remark 5.2: Every g-homeomorphism is θ gs-homeomorphism.

But the converse is not always true by the following example.

Example 5.3 : Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, c\}\}$ and θ gs-open sets in Y are $\{Y, \phi, \{b\}, \{c\}, \{b, c\}\}, g - open$ sets are $\{Y, \phi, \{b, c\}, \{a, c\}, \{b\}\}$. Let $f : X \to Y$ be a function defined by f(a) = b, f(b) = c, f(c) = a. It is easy to verify that f is θ gs-homeomorphism but not a g-homeomorphism since b is open in X, while f(b) = c is not g-open in Y.

Theorem 5.4 : Let $f : X \to Y$ be a bijective and θ gs-continuous function. Then the following statements are equivalent

(i) f is θ gs-open

(ii) f is θ gs-homeomorphism.

(iii) f is θ gs-closed.

Theorem 5.5: (i) \rightarrow (ii). By assumption, f is bijective, θ gs-continuous and θ gs-open. Then by definition f is a θ gs-homeomorphism.

(ii) \rightarrow (iii). By assumption f is θ gs-open and bijective. By Theorem 4.10, f is θ gs-closed.

(iii) \rightarrow (iv).By assumption f is bijective and θ gs-closed. By Theorem 4.10, f is θ gs-open.

Now we introduce the class of functions which included in the class of θ gs-homeomorphism.

Definition 5.6 : A bijective $f : X \to Y$ is called θ gsc-homeomorphism if f and f^{-1} are θ gs-irresolute.

We say that the topological spaces X and Y are θ gsc-homeomorphismic, if there exists a θ gsc-homeomorphism from X onto Y.

Remark 5.7: Every θ gsc-homeomorphism is θ gs-homeomorphism.

However the converse is not true as shown by the following example.

Example 5.8 : Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, c\}\}$. We have θ gs-closed sets in X are $\{X, \phi, \{a\}, \{b, c\}\}$ and θ gs-closed sets in Y are $\{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Let $f : X \to Y$ be a function defined by f(a) = b, f(b) = c, f(c) = a. It is easy to verify that f is θ gs-homeomorphism but not a θ gsc-homeomorphism since $\{a, b\}$ is θ gs-closed set in Y, while $f^{-1}(\{a, b\}) = \{a, c\}$ is not θ gs-closed set in X.

Theorem 5.9: Every homeomorphism is a θ gsc-homeomorphism.

Proof: Let $f: X \to Y$ be a homeomorphism. To prove that f is θ gs-irresolute, let A be a θ gs-closed set of Y. Let U be an open set of X such that $f^{-1}(A) \subseteq U$. Then, $A = fof^{-1}(A) \subseteq f(U)$ and $f(U) \in \sigma$. Since A is θ gs-closed in Y, we have $sCl_{\theta}(A) \subseteq f(U)$. Then $f^{-1}(sCl_{\theta}(A)) \subseteq f^{-1}of(U) = U$. So, we are done if we show that $sCl_{\theta}(f^{-1}(A)) \subseteq f^{-1}(sCl_{\theta}(A))$. Let $x \notin f^{-1}(sCl_{\theta}(A))$. Since f is bijective, then $f(x) \notin sCl_{\theta}(A)$. Hnece there exists an open set containing f(x) such that $sCl(W) \cap A = \phi$. Then $f^{-1}(sCl(W) \cap A) = f^{-1}(sCl(W)) \cap f^{-1}(A) = \phi$, since f is homeomorphism. Since $f^{-1}(W)$ is an open set containing x, we obtain that $x \notin sCl_{\theta}(f^{-1}(A))$. Thus $sCl_{\theta}(f^{-1}(A)) \subseteq f^{-1}(sCl_{\theta}(A)) \subseteq U$. Hence $f^{-1}(A)$ is θ gs-closed in X, that is , f is θ gs-irresolute. Since f^{-1} is a homeomorphism , the θ gs-irresoluteness of f^{-1} is similarly proved as above. Thus f is θ gs-homeomorphism.

However, the converse of the above Theorem need not be true as seen from the following example.

Example 5.10 : Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. We have θ gs-closed sets in X are $\{X, \phi, \{a\}, \{b, c\}\}$ and θ gs-closed sets in Y are $\{Y, \phi, \{a\}, \{b, c\}\}$. Let $f : X \to Y$ be an identity function. It is easy to verify that f is θ gsc-homeomorphism but not a homeomorphism .

References

- S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp. 717-719, (1990).
- [2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Uni. Ser.A (Math.), 12, pp. 5-13, (1991).
- [3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (3), pp. 375-382, (1987).
- [4] M. Caldas and S. Jafri, On θ-semi generalized closed sets in topology, Kyngpook Math. J., 43, pp. 135-148, (2003).

- [5] S. G. Crossely and S.K. Hildbrand, On semi-closure. Texas J. Sci, 22, pp. 99-112, (1971).
- [6] R. Devi, K. Balachandran and H. Maki, Semi-generalized and generalized semi maps, Mem. Fac. Sci. Kochi. Uni. Ser. A (Math.), 14, pp. 41-54, (1993).
- [7] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18, pp. 226-233, (1987).
- [8] J. Dontechev and H. Maki, On θ-generalized closed sets, Internat. J. Math.and Math. Sci. 22, pp. 239-249, (1999).
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly 70, pp. 36-41, (1963).
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).
- [11] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms topological spaces, Bull. Fukuoka Univ. Ed. III, 40 (1991).
- [12] Govindappa Navalagi and Md. Hanif Page, On θ gs-Neighbiurhoods, accepted for publication, Indian Journal of Mathematics and Mathematical Sciences, Vol. 2, 2 (Dec.2007).
- [13] Govindappa Navalagi and Md. Hanif Page, On some more properties of θ gs- Neighbiurhoods (Communicated).
- [14] Govindappa Navalagi and Md. Hanif Page, On θ gs-continuity and θ gs-irresoluteness (Communicated).
- [15] Govindappa Navalagi and Md. Hanif Page, On some separation axioms via θ gs- open sets (Communicated).
- [16] N. V. Velicko, On H-closed topological spaces, Amer. Math. Soc. Transl., 78, pp. 103-118, (1968).

Govindappa Navalagi

Department of Mathematics KLE Society's G. H. College, Haveri-581 110 Karnataka, INDIA e-mail : gnavalagi@hotmail.com

and

Md. Hanif Page

Department of Mathematics B. V. B. College of Eng. and Tech. Hubli-580031, Karnataka, INDIA e-mail : hanif01@yahoo.com