Proyecciones Journal of Mathematics Vol. 35, N^o 4, pp. 371-380, December 2016. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172016000400001

Totally magic cordial labeling of mP_n and mK_n

P. Jeyanthi Govindamal Aditanar College for Women, India N. Angel Benseera Sri Meenaskshi Government Arts College for Women, India and Ibrahim Cahit Near East University, Turkey Received : April 2015. Accepted : June 2016

Abstract

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping $f : V(G) \cup E(G) \rightarrow \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper we establish that mP_n and mK_n are totally magic cordial for various values of m and n.

Keywords : Binary magic total labeling; cordial labeling; totally magic cordial labeling; totally magic cordial deficiency of a graph.

AMS Subject Classification 05C78.

1. Introduction

All graphs in this paper are finite, simple and undirected. The graph G has vertex set V = V(G) and edge set E = E(G) and we write p for |V| and q for |E|. A general reference for graph theoretic notions is [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f : V(G) \to \{0, 1\}$ induces an edge labeling $f^* : E(G) \to \{0, 1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Such labeling is called cordial if the conditions $|v_f(0) - v_f(1)| \leq 1$ and $|e_{f^*}(0) - e_{f^*}(1)| \leq 1$ are satisfied, where $v_f(i)$ and $e_{f^*}(i)(i = 0, 1)$ are the number of vertices and edges with label i, respectively. A graph is called cordial if it admits cordial labeling. Also, Cahit [2] introduced the notion of totally magic cordial labeling (TMC) based on cordial labeling.

A graph G is said to have totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)$ (i = 0, 1) is the sum of the number of vertices and edges with label i. In [4] it is proved that the complete graph K_n is TMC if and only if

 $\sqrt{4k+1}$ has an integer value when n=4k,

 $\sqrt{k+1}$ or \sqrt{k} has an integer value when n = 4k+1,

 $\sqrt{4k+5}$ or $\sqrt{4k+1}$ has an integer value when n = 4k+2,

 $\sqrt{k+1}$ has an integer value when n = 4k+3.

Jeyanthi and Angel Benseera [5] established totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels. In [7] we gave necessary condition for an odd graph to be not totally magic cordial.

In [6] we defined binary magic total labeling of a graph G as follows: A binary magic total labeling of a graph G is a function $f: V(G) \cup E(G) \rightarrow \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$.

Also, in [6] we defined totally magic cordial deficiency of a graph as the minimum number of vertices taken over all binary magic total labeling of G, which it is necessary to add inorder that G' become totally magic cordial is the totally magic cordial deficiency of G, denoted by $\mu_T(G)$. That is, $\mu_T(G) = \min\{|n_f(0) - n_f(1)| - 1\}$ such that f is a binary magic total labeling of G. Further, we determined totally magic cordial deficiency

of complete graphs, wheels and one-point union of complete graphs and wheels.

In this paper we establish the totally magic cordial labeling of mP_n , the disjoint union of m copies of path P_n and mK_n , the disjoint union of m copies of complete graph K_n .

2. Totally magic cordial labeling of mP_n

In this section, we give some sufficient conditions for mP_n to be TMC by means of the solution of a system which comprises an equation and an inequality.

Theorem 2.1. Let G be the disjoint union of m copies of the path P_n of n vertices and for i = 1, 2, ..., k., let f_i be the binary magic total labeling of P_n . Let $\gamma_i = n_{f_i}(0) - n_{f_i}(1)$ for i = 1, 2, ..., k then G is TMC if the system (2.1) has a nonnegative integral solution for x_i 's:

(2.1)
$$\left|\sum_{i=1}^{k} \gamma_i x_i\right| \le 1 \text{ and } \sum_{i=1}^{k} x_i = m$$

Proof. Suppose $x_i = \delta_i$, i = 1, 2, ..., k is a nonnegative integral solution of the system (2.1). We label δ_i copies of P_n with f_i (i = 1, 2, ..., k). As each copy has the property $f_i(a) + f_i(b) + f_i(ab) \equiv C \pmod{2}$ for all i = 1, 2, ..., k, the disjoint union of m copies of the path P_n of n vertices is TMC. \Box

The following table shows the values of γ_i for distinct possible binary magic total labelings f_i of the path P_n :

i	$n_{f_i}(0)$	$n_{f_i}(1)$	γ_i
1	0	2n - 1	-2n+1
2	2	2n-3	-2n + 5
3	3	2n-4	-2n + 7
4	4	2n - 5	-2n + 9
	•	•	•
n-1	n-1	n	-1
n	n	n-1	1

Corollary 2.2. The graph mP_2 is TMC if $m \not\equiv 2 \pmod{4}$.

Proof. The two values of γ_i corresponding to the binary magic total labelings of P_2 are -3 and 1. Therefore, the system (2.1) in Theorem 2.1 becomes $|-3x_1 + x_2| \leq 1$ such that $x_1 + x_2 = m$. When m = 4t, then $x_1 = t$ and $x_2 = 3t$ is a solution. When m = 4t + 1, then $x_1 = t$ and $x_2 = 3t + 1$ is a solution. When m = 4t + 2, then the system has no solution. When m = 4t + 3, then $x_1 = t + 1$ and $x_2 = 3t + 2$ is a solution. Hence, mP_2 is TMC if $m \not\equiv 2 \pmod{4}$. \Box

Corollary 2.3. The graph mP_n is TMC for all $m \ge 1$ and $n \ge 3$.

Proof. For any $n \geq 3$, using the binary magic total labelings with γ_i values as -1 and 1, we get the system $|-x_1 + x_2| \leq 1$, $x_1 + x_2 = m$. Thus for any $m \geq 1$, the above system has solution. Hence, mP_n is TMC for all $m \geq 1$ and $n \geq 3$. \Box

3. Totally magic cordial labeling of mK_n

In this section, we establish the TMC labeling of the disjoint union of m copies of complete graph K_n using the solution of a system which comprises an equation and an inequality.

Let f_i be a TMC labeling of the i^{th} copy of mK_n . Without loss of generality, we assume that C = 1. Then for any edge $e = uv \in E(K_n)$, we have either $f_i(e) = f_i(u) = f_i(v) = 1$ or $f_i(e) = f_i(u) = 0$ and $f_i(v) = 1$ or $f_i(e) = f_i(v) = 0$ and $f_i(e) = 1$. Hence, under the labeling f_i , the complete graph can be decomposed as $K_n = K_p \cup K_r \cup K_{p,r}$ where K_p is the subgraph whose vertices and edges are labeled with 1, K_r is the subgraph whose vertices are labeled with 0 and its edges are labeled with 1 and $K_{p,r}$ is the subgraph of K_n with the bipartition $V(K_p) \cup V(K_r)$ in which the edges are labeled with 0. Thus, we have $n_{f_i}(0) = r + pr$ and $n_{f_i}(1) = p + \frac{p(p-1)}{2} + \frac{r(r-1)}{2}$.

Theorem 3.1. Let G be the disjoint union of m copies of the complete graph K_n of n vertices and for i = 1, 2, ..., k, f_i be the binary magic total labeling of the i^{th} copy of K_n . Let $n_{f_i}(0) = \alpha_i$ for i = 1, 2, ..., k, then G is TMC if the system (3.1) has a nonnegative integral solution for x_i 's:

(3.1)
$$\left|\sum_{i=1}^{k} \left[2\alpha_i - \frac{n^2 + n}{2}\right] x_i\right| \le 1 \text{ and } \sum_{i=1}^{k} x_i = m$$

Proof. Suppose $x_i = \delta_i$, i = 1, 2, ..., k is a nonnegative integral solution of the system (3.1), then we label the δ_i copies of K_n with f_i (i = 1, 2, ..., k). We have, $n_{f_i}(1) = \frac{n^2 + n}{2} - \alpha_i$. Thus, $n_{f_i}(0) - n_{f_i}(1) = 2\alpha_i - \frac{n^2 + n}{2}$. As each copy has the property $f_i(a) + f_i(b) + f_i(ab) \equiv C \pmod{2}$, the disjoint union of m copies of the complete graph K_n is TMC. \Box

Theorem 3.2. If $\sqrt{n+1}$ has an integer value then the disjoint union of m copies of K_n , mK_n is TMC for all $m \ge 1$.

Proof. The system (3.1) has solution when $\alpha_i = \frac{n^2+n}{4}$. Thus if there exists a positive integer $t, 1 \leq t \leq n$ such that $t(n-t+1) = \frac{n^2+n}{4}$, then mK_n is TMC. By solving the above equation we get, $t = \frac{n+1}{2} \pm \frac{\sqrt{n+1}}{2}$. Hence, if $\sqrt{n+1}$ has an integer value then mK_n is TMC for all $m \geq 1$. \Box

The following table shows the values of α_i and β_i for distinct possible binary magic total labelings f_i of the complete graph K_n :

i	p	r	$lpha_i$	eta_i
1	0	n	n	$\frac{n^2-n}{2}$
2	1	n-1	$2 \times (n-1)$	$rac{n^2-3n+4}{2} \\ rac{n^2-5n+12}{2}$
3	2	n-2	$3 \times (n-2)$	$\frac{n^2-5n+12}{2}$
4	3	n-3	$4 \times (n-3)$	$\frac{\frac{n}{2}}{\frac{n^2-7n+24}{2}}$
	•		•	-
•	•	•	•	
$\left \frac{n+1}{2}\right $	$\left \frac{n-1}{2}\right $	$\left\lceil \frac{n+1}{2} \right\rceil$	$\left \frac{n-1}{2}\right \times \left[\frac{n+1}{2}\right]$	$\frac{\left[\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)^2 + \left(\left\lceil\frac{n+1}{2}\right\rceil\right)^2 + \left\lfloor\frac{n-1}{2}\right\rfloor + \left\lceil\frac{n+1}{2}\right\rceil\right]}{2}$

Corollary 3.3. Let f_1 and f_2 be binary magic total labelings of mK_n . Let $n_{f_i}(0) = \alpha_i$, i = 1, 2 be such that $\alpha_1 + \alpha_2 = \frac{n^2 + n}{2}$, then mK_n is TMC if and only if m is even.

Proof. Let m = 2t. We assume that $\alpha_1 + \alpha_2 = \frac{n^2 + n}{2}$. Then $\left| \sum_{i=1}^k \left[2\alpha_i - \frac{n^2 + n}{2} \right] x_i \right| \le 1$ and $\sum_{i=1}^k x_i = m$ implies that $\left| \left[2\alpha_1 - \frac{n^2 + n}{2} \right] x_1 + \left[\frac{n^2 + n}{2} - 2\alpha_1 \right] x_2 \right| \le 1$ and $x_1 + x_2 = 2t$. Clearly, $x_1 = t$ and $x_2 = t$ satisfy the above system. Also, if m is odd there is no solution. Hence, mK_n is TMC if and only if m is even. \Box

Corollary 3.4. The graph $mK_{j^2}(j \ge 1)$ is TMC if and only if m is even.

Proof. Let $j^2 = n$. We consider the labelings f_1 and f_2 with $\alpha_1 = r(j^2 - r + 1)$ and $\alpha_2 = \alpha_1 + j$ where $r = \frac{j(j-1)}{2}$. Clearly, $\alpha_1 + \alpha_2 = \frac{n^2 + n}{2}$. Hence by Corollary 3.3, mK_{j^2} is TMC if and only if m is even. \Box

Illustration 3.5. We consider the graph mK_4 . Clearly, j = 2 and r = 1. Thus $\alpha_1 = n_{f_1}(0) = 4$ and $\alpha_2 = n_{f_2}(0) = 6$. Therefore, $\alpha_1 + \alpha_2 = \frac{4^2+4}{2} = 10$. Hence, under the labeling f_1 , all the four vertices of K_4 can be labeled with 0 and under the labeling f_2 , only one vertex can be labeled with 1 and the remaining vertices can be labeled with 0. Therefore, by Corollary 3.3, mK_4 is TMC if and only if m is even.

Corollary 3.6. The graph mK_{j^2+3} $(j \ge 2)$ is TMC if and only if m is even.

Proof. Let $j^2 + 3 = n$. We consider the labelings f_1 and f_2 with $\alpha_1 = r(j^2 - r + 4)$ and $\alpha_2 = \alpha_1 + 2j$ where $r = \frac{j(j-1)}{2} + 1$. Clearly, $\alpha_1 + \alpha_2 = \frac{n^2 + n}{2}$. Thus by Corollary 3.3, mK_{j^2+3} is TMC if and only if m is even. \Box

Corollary 3.7. The graph mK_{j^2+8} $(j \ge 1)$ is TMC if and only if m is even.

Proof. Let $j^2 + 8 = n$. We consider the labelings f_1 and f_2 with $\alpha_1 = \frac{3j}{2} + \frac{n^2+n}{4}$ and $\alpha_2 = \frac{n^2+n}{4} - \frac{3j}{2}$. Clearly, $\alpha_1 + \alpha_2 = \frac{n^2+n}{2}$. Hence by Corollary 3.3, mK_{j^2+8} is TMC if and only if m is even. \Box

Corollary 3.8. Let f_i , i = 1, 2, 3, 4 be the binary magic total labelings of mK_n . Let $n_{f_i}(0) = \alpha_i$, i = 1, 2, 3, 4 be such that $\sum_{i=1}^4 \alpha_i = n^2 + n$, then mK_n is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let m = 4t. We assume that $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = n^2 + n$. Then $\left|\sum_{i=1}^{4} \left[2\alpha_i - \frac{n^2 + n}{2}\right]x_i\right| \leq 1$ such that $\sum_{i=1}^{4} x_i = 4t$. Clearly, $x_1 = x_2 = x_3 = x_4 = t$ is a solution of the above system. Also when $m \not\equiv 0 \pmod{4}$ the system has no solution. Thus mK_n is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

Corollary 3.9. The graph $mK_{j^2+2}(j \ge 2)$ is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let $j^2 + 2 = n$. We consider the labelings f_1 and f_2 with $\alpha_1 = r(n-r+1)$ and $\alpha_2 = \alpha_1 + 2j - 2$ where $r = \frac{j^2 - j + 2}{2}$. We can easily prove that $\alpha_1 + \alpha_2 = n^2 + n$. Hence, $x_1 = 3t$ and $x_2 = t$ is a solution of the system (3.1). Thus, mK_{j^2+2} is TMC if $m \equiv 0 \pmod{4}$. \Box

Theorem 3.10. The graph mK_{j^2+4} $(j \ge 2)$ is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let $j^2 + 4 = n$. We consider the labelings f_1, f_2, f_3 and f_4 with $\alpha_1 = r(n-r+1), \ \alpha_2 = \alpha_1 + j + 2, \ \alpha_3 = \alpha_1 + 2j + 2$ and $\alpha_4 = \alpha_1 + 3j$. We can easily prove that $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = n^2 + n$. Hence by Corollary 3.8, mK_{j^2+4} is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

Theorem 3.11. If mK_n and $m'K_n$ are TMC and m or m' is even, then $(m+m')K_n$ is TMC.

Proof. Let f and f' be the TMC labelings of mK_n and $m'K_n$ respectively with C = 1. We assume that m is even. Then, $n_f(0) = n_f(1)$. For $m'K_n$, we have $n_{f'}(0) = n_{f'}(1)$, $n_{f'}(0) = n_{f'}(1) + 1$ or $n_{f'}(0) = n_{f'}(1) - 1$. Let f'' be a binary magic total labeling of $(m + m')K_n$ with C = 1. Clearly, $n_{f''}(0) = n_f(0) + n_{f'}(0)$ and $n_{f''}(1) = n_f(1) + n_{f'}(1)$. Therefore, $n_{f''}(0) = n_{f''}(1)$ or $n_{f''}(0) = n_{f''}(1) + 1$ or $n_{f''}(0) = n_{f''}(1) - 1$ are derived from $n_{f'}(0) = n_{f'}(1)$ or $n_{f'}(0) = n_{f'}(1) + 1$ or $n_{f'}(0) = n_{f'}(1) - 1$ respectively. Hence, $(m + m')K_n$ is TMC with C = 1. \Box

Theorem 3.12. [7] If G is an odd graph with $p + q \equiv 2 \pmod{4}$, then G is not TMC.

Corollary 3.13. If $m \equiv 1 \pmod{2}$ and $n \equiv 4 \pmod{8}$ then mK_n is not TMC.

Proof. Proof follows from Theorem 3.12. \Box

Theorem 3.14. Let f_i , i = 1, 2, 3 be the binary magic total labelings of mK_n . Let $n_{f_i}(0) = \alpha_i$, i = 1, 2, 3 be such that $\alpha_1 + 2\alpha_2 + \alpha_3 = n^2 + n$, then mK_n is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let m = 4t. We assume that $\alpha_1 + 2\alpha_2 + \alpha_3 = n^2 + n$. Then

$$\left|\sum_{i=1}^{3} \left[2\alpha_i - \frac{n^2 + n}{2}\right] x_i\right| \le 1$$

such that $\sum_{i=1}^{3} x_i = 4t$. Clearly, $x_1 = t$, $x_2 = 2t$ and $x_3 = t$ is a solution of the above system. When $m \not\equiv 0 \pmod{4}$ the system has no solution. Thus mK_n is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

Corollary 3.15. The graph mK_{j^2+1} $(j \ge 2)$ is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let $j^2 + 1 = n$. Consider the labelings f_1 , f_2 and f_3 with $\alpha_1 = r(n - r + 1)$, $\alpha_2 = \alpha_1 + j + 1$ and $\alpha_3 = \alpha_1 + 2j$ where $r = \frac{j^2 - j}{2}$. We can easily prove that $\alpha_1 + 2\alpha_2 + \alpha_3 = n^2 + n$. Hence by Theorem 3.14, mK_n is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

Theorem 3.16. Let f_i , i = 1, 2, 3 be binary magic total labelings of mK_n . Let $n_{f_i}(0) = \alpha_i$, i = 1, 2, 3 be such that $\alpha_1 + \alpha_2 + 2\alpha_3 = n^2 + n$, then mK_n is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let m = 4t. We assume that $\alpha_1 + \alpha_2 + 2\alpha_3 = n^2 + n$. Then

$$\left|\sum_{i=1}^{3} \left[2\alpha_i - \frac{n^2 + n}{2}\right] x_i\right| \le 1$$

such that $\sum_{i=1}^{3} x_i = 4t$. Clearly, $x_1 = t$, $x_2 = t$ and $x_3 = 2t$ is a solution of the above system. Also when $m \not\equiv 0 \pmod{4}$ the system has no solution. Thus mK_n is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

Corollary 3.17. The graph mK_{j^2+5} $(j \ge 3)$ is TMC if and only if $m \equiv 0 \pmod{4}$.

Proof. Let $j^2 + 5 = n$. Consider the labelings f_1 , f_2 and f_3 with $\alpha_1 = r(n-r+1)$, $\alpha_2 = \alpha_1 + 2j + 4$ and $\alpha_3 = \alpha_1 + 3j + 6$ where $r = \frac{j^2 - j + 2}{2}$. We can easily prove that $\alpha_1 + 2\alpha_2 + 2\alpha_3 = n^2 + n$. Hence by Theorem 3.16, mK_n is TMC if and only if $m \equiv 0 \pmod{4}$. \Box

We conclude this paper with the following conjecture:

Conjecture 3.18. The graphs mK_{j^2+k} $(j \ge 5)$ for k = 6, 7, 9, 10, ..., 2j-1 and $m \ge 1$ admit totally magic cordial labeling.

References

- I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, pp. 201–207, (1987).
- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22, pp. 247–258, (2002).
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., (1969).
- [4] P. Jeyanthi, N. Angel Benseera and M. Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49 (1), pp. 13– 18, (2013).
- [5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Mathematica, 34 (1), pp. 115–122, (2014).
- [6] P. Jeyanthi and N. Angel Benseera, Totally magic cordial deficiency of some graphs, *Utilitas Mathematica*, (to appear).
- [7] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, *Journal of Algorithms and Computation*, 46 (1), pp. 1-8, (2015).

P. Jeyanthi
Research Centre,
Department of Mathematics,
Govindammal Aditanar College for Women,
Tiruchendur – 628 215, Tamilnadu,
India
e-mail: jeyajeyanthi@rediffmail.com

N. Angel Benseera

Department of Mathematics, Sri Meenakshi Government Arts College for Women (Autonomous), Madurai–625 002, Tamilnadu, India e-mail: angelbenseera@yahoo.com

and

380

Ibrahim Cahit

Department of Computer Science and Engineering, European University of Lefke, Lefke, Mersin 10, Turkey e-mail: ica@lefke.edu.tr