Proyecciones Journal of Mathematics
Vol. 35, No ${ }^{o}$, pp. 371-380, December 2016.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172016000400001

Totally magic cordial labeling of $m P_{n}$ and $m K_{n}$

P. Jeyanthi
Govindamal Aditanar College for Women, India
N. Angel Benseera
Sri Meenaskshi Government Arts College for Women, India
and
Ibrahim Cahit
Near East University, Turkey
Received: April 2015. Accepted : June 2016

Abstract

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i. In this paper we establish that $m P_{n}$ and $m K_{n}$ are totally magic cordial for various values of m and n.

Keywords : Binary magic total labeling; cordial labeling; totally magic cordial labeling; totally magic cordial deficiency of a graph.

AMS Subject Classification 05C78.

1. Introduction

All graphs in this paper are finite, simple and undirected. The graph G has vertex set $V=V(G)$ and edge set $E=E(G)$ and we write p for $|V|$ and q for $|E|$. A general reference for graph theoretic notions is [3]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f: V(G) \rightarrow\{0,1\}$ induces an edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)=|f(u)-f(v)|$. Such labeling is called cordial if the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{*}}(0)-e_{f^{*}}(1)\right| \leq 1$ are satisfied, where $v_{f}(i)$ and $e_{f^{*}}(i)(i=0,1)$ are the number of vertices and edges with label i, respectively. A graph is called cordial if it admits cordial labeling. Also, Cahit [2] introduced the notion of totally magic cordial labeling (TMC) based on cordial labeling.

A graph G is said to have totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow\{0,1\}$ such that $f(a)+$ $f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i. In [4] it is proved that the complete graph K_{n} is TMC if and only if
$\sqrt{4 k+1}$ has an integer value when $n=4 k$,
$\sqrt{k+1}$ or \sqrt{k} has an integer value when $n=4 k+1$,
$\sqrt{4 k+5}$ or $\sqrt{4 k+1}$ has an integer value when $n=4 k+2$,
$\sqrt{k+1}$ has an integer value when $n=4 k+3$.
Jeyanthi and Angel Benseera [5] established totally magic cordial labeling of one-point union of n-copies of cycles, complete graphs and wheels. In [7] we gave necessary condition for an odd graph to be not totally magic cordial.

In [6] we defined binary magic total labeling of a graph G as follows: A binary magic total labeling of a graph G is a function $f: V(G) \cup E(G) \rightarrow$ $\{0,1\}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$.

Also, in [6] we defined totally magic cordial deficiency of a graph as the minimum number of vertices taken over all binary magic total labeling of G, which it is necessary to add inorder that G^{\prime} become totally magic cordial is the totally magic cordial deficiency of G, denoted by $\mu_{T}(G)$. That is, $\mu_{T}(G)=\min \left\{\left|n_{f}(0)-n_{f}(1)\right|-1\right\}$ such that f is a binary magic total labeling of G. Further, we determined totally magic cordial deficiency
of complete graphs, wheels and one-point union of complete graphs and wheels.

In this paper we establish the totally magic cordial labeling of $m P_{n}$, the disjoint union of m copies of path P_{n} and $m K_{n}$, the disjoint union of m copies of complete graph K_{n}.

2. Totally magic cordial labeling of $m P_{n}$

In this section, we give some sufficient conditions for $m P_{n}$ to be TMC by means of the solution of a system which comprises an equation and an inequality.

Theorem 2.1. Let G be the disjoint union of m copies of the path P_{n} of n vertices and for $i=1,2, \ldots, k$., let f_{i} be the binary magic total labeling of P_{n}. Let $\gamma_{i}=n_{f_{i}}(0)-n_{f_{i}}(1)$ for $i=1,2, \ldots, k$ then G is TMC if the system (2.1) has a nonnegative integral solution for x_{i} 's:

$$
\begin{equation*}
\left|\sum_{i=1}^{k} \gamma_{i} x_{i}\right| \leq 1 \text { and } \sum_{i=1}^{k} x_{i}=m \tag{2.1}
\end{equation*}
$$

Proof. Suppose $x_{i}=\delta_{i}, i=1,2, \ldots, k$ is a nonnegative integral solution of the system (2.1). We label δ_{i} copies of P_{n} with $f_{i}(i=1,2, \ldots, k)$. As each copy has the property $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv C(\bmod 2)$ for all $i=1,2, \ldots, k$, the disjoint union of m copies of the path P_{n} of n vertices is TMC.

The following table shows the values of γ_{i} for distinct possible binary magic total labelings f_{i} of the path P_{n} :

i	$n_{f_{i}}(0)$	$n_{f_{i}}(1)$	γ_{i}
1	0	$2 n-1$	$-2 n+1$
2	2	$2 n-3$	$-2 n+5$
3	3	$2 n-4$	$-2 n+7$
4	4	$2 n-5$	$-2 n+9$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
$n-1$	$n-1$	n	-1
n	n	$n-1$	1

Corollary 2.2. The graph $m P_{2}$ is $T M C$ if $m \not \equiv 2(\bmod 4)$.

Proof. The two values of γ_{i} corresponding to the binary magic total labelings of P_{2} are -3 and 1. Therefore, the system (2.1) in Theorem 2.1 becomes $\left|-3 x_{1}+x_{2}\right| \leq 1$ such that $x_{1}+x_{2}=m$. When $m=4 t$, then $x_{1}=t$ and $x_{2}=3 t$ is a solution. When $m=4 t+1$, then $x_{1}=t$ and $x_{2}=3 t+1$ is a solution. When $m=4 t+2$, then the system has no solution. When $m=4 t+3$, then $x_{1}=t+1$ and $x_{2}=3 t+2$ is a solution. Hence, $m P_{2}$ is TMC if $m \not \equiv 2(\bmod 4)$.

Corollary 2.3. The graph $m P_{n}$ is $T M C$ for all $m \geq 1$ and $n \geq 3$.
Proof. For any $n \geq 3$, using the binary magic total labelings with γ_{i} values as -1 and 1 , we get the system $\left|-x_{1}+x_{2}\right| \leq 1, x_{1}+x_{2}=m$. Thus for any $m \geq 1$, the above system has solution. Hence, $m P_{n}$ is TMC for all $m \geq 1$ and $n \geq 3$.

3. Totally magic cordial labeling of $m K_{n}$

In this section, we establish the TMC labeling of the disjoint union of m copies of complete graph K_{n} using the solution of a system which comprises an equation and an inequality.

Let f_{i} be a TMC labeling of the $i^{\text {th }}$ copy of $m K_{n}$. Without loss of generality, we assume that $C=1$. Then for any edge $e=u v \in E\left(K_{n}\right)$, we have either $f_{i}(e)=f_{i}(u)=f_{i}(v)=1$ or $f_{i}(e)=f_{i}(u)=0$ and $f_{i}(v)=1$ or $f_{i}(e)=f_{i}(v)=0$ and $f_{i}(u)=1$ or $f_{i}(u)=f_{i}(v)=0$ and $f_{i}(e)=1$. Hence, under the labeling f_{i}, the complete graph can be decomposed as $K_{n}=K_{p} \cup K_{r} \cup K_{p, r}$ where K_{p} is the subgraph whose vertices and edges are labeled with $1, K_{r}$ is the subgraph whose vertices are labeled with 0 and its edges are labeled with 1 and $K_{p, r}$ is the subgraph of K_{n} with the bipartition $V\left(K_{p}\right) \cup V\left(K_{r}\right)$ in which the edges are labeled with 0 . Thus, we have $n_{f_{i}}(0)=r+p r$ and $n_{f_{i}}(1)=p+\frac{p(p-1)}{2}+\frac{r(r-1)}{2}$.
Theorem 3.1. Let G be the disjoint union of m copies of the complete graph K_{n} of n vertices and for $i=1,2, \ldots, k, f_{i}$ be the binary magic total labeling of the $i^{\text {th }}$ copy of K_{n}. Let $n_{f_{i}}(0)=\alpha_{i}$ for $i=1,2, \ldots, k$, then G is TMC if the system (3.1) has a nonnegative integral solution for x_{i} 's:

$$
\begin{equation*}
\left|\sum_{i=1}^{k}\left[2 \alpha_{i}-\frac{n^{2}+n}{2}\right] x_{i}\right| \leq 1 \text { and } \sum_{i=1}^{k} x_{i}=m \tag{3.1}
\end{equation*}
$$

Proof. Suppose $x_{i}=\delta_{i}, i=1,2, \ldots, k$ is a nonnegative integral solution of the system (3.1), then we label the δ_{i} copies of K_{n} with $f_{i}(i=1,2, \ldots, k)$. We have, $n_{f_{i}}(1)=\frac{n^{2}+n}{2}-\alpha_{i}$. Thus, $n_{f_{i}}(0)-n_{f_{i}}(1)=2 \alpha_{i}-\frac{n^{2}+n}{2}$. As each copy has the property $f_{i}(a)+f_{i}(b)+f_{i}(a b) \equiv C(\bmod 2)$, the disjoint union of m copies of the complete graph K_{n} is TMC.

Theorem 3.2. If $\sqrt{n+1}$ has an integer value then the disjoint union of m copies of $K_{n}, m K_{n}$ is TMC for all $m \geq 1$.

Proof. The system (3.1) has solution when $\alpha_{i}=\frac{n^{2}+n}{4}$. Thus if there exists a positive integer $t, 1 \leq t \leq n$ such that $t(n-t+1)=\frac{n^{2}+n}{4}$, then $m K_{n}$ is TMC. By solving the above equation we get, $t=\frac{n+1}{2} \pm \frac{\sqrt{n+1}}{2}$. Hence, if $\sqrt{n+1}$ has an integer value then $m K_{n}$ is TMC for all $m \geq 1$.

The following table shows the values of α_{i} and β_{i} for distinct possible binary magic total labelings f_{i} of the complete graph K_{n} :

i	p	r	α_{i}	β_{i}
1	0	n	n	$\frac{n^{2}-n}{2}$
2	1	$n-1$	$2 \times(n-1)$	$\frac{n^{2}-3 n+4}{2}$
3	2	$n-2$	$3 \times(n-2)$	$\frac{n^{2}-5 n+12}{2}$
4	3	$n-3$	$4 \times(n-3)$	$\frac{n^{2}-7 n+24}{2}$
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	$\left[\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)^{2}+\left(\left\lceil\frac{n+1}{2}\right\rceil\right)^{2}+\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lceil\frac{n+1}{2}\right\rceil\right]$
$\left\lfloor\frac{n+1}{2}\right\rfloor$	$\left\lfloor\frac{n-1}{2}\right\rfloor$	$\left\lceil\frac{n+1}{2}\right\rceil$	$\left\lfloor\frac{n-1}{2}\right\rfloor \times\left\lceil\frac{n+1}{2}\right\rceil$	$\frac{\lfloor }{}$

Corollary 3.3. Let f_{1} and f_{2} be binary magic total labelings of $m K_{n}$. Let $n_{f_{i}}(0)=\alpha_{i}, i=1,2$ be such that $\alpha_{1}+\alpha_{2}=\frac{n^{2}+n}{2}$, then $m K_{n}$ is TMC if and only if m is even.

Proof. Let $m=2 t$. We assume that $\alpha_{1}+\alpha_{2}=\frac{n^{2}+n}{2}$. Then
$\left|\sum_{i=1}^{k}\left[2 \alpha_{i}-\frac{n^{2}+n}{2}\right] x_{i}\right| \leq 1$ and $\sum_{i=1}^{k} x_{i}=m$ implies that
$\left|\left[2 \alpha_{1}-\frac{n^{2}+n}{2}\right] x_{1}+\left[\frac{n^{2}+n}{2}-2 \alpha_{1}\right] x_{2}\right| \leq 1$ and $x_{1}+x_{2}=2 t$. Clearly, $x_{1}=t$ and $x_{2}=t$ satisfy the above system. Also, if m is odd there is no solution. Hence, $m K_{n}$ is TMC if and only if m is even.

Corollary 3.4. The graph $m K_{j^{2}}(j \geq 1)$ is TMC if and only if m is even.
Proof. Let $j^{2}=n$. We consider the labelings f_{1} and f_{2} with $\alpha_{1}=$ $r\left(j^{2}-r+1\right)$ and $\alpha_{2}=\alpha_{1}+j$ where $r=\frac{j(j-1)}{2}$. Clearly, $\alpha_{1}+\alpha_{2}=\frac{n^{2}+n}{2}$. Hence by Corollary 3.3, $m K_{j^{2}}$ is TMC if and only if m is even.

Illustration 3.5. We consider the graph $m K_{4}$. Clearly, $j=2$ and $r=1$. Thus $\alpha_{1}=n_{f_{1}}(0)=4$ and $\alpha_{2}=n_{f_{2}}(0)=6$. Therefore, $\alpha_{1}+\alpha_{2}=\frac{4^{2}+4}{2}=$ 10. Hence, under the labeling f_{1}, all the four vertices of K_{4} can be labeled with 0 and under the labeling f_{2}, only one vertex can be labeled with 1 and the remaining vertices can be labeled with 0 . Therefore, by Corollary 3.3, $m K_{4}$ is TMC if and only if m is even.

Corollary 3.6. The graph $m K_{j^{2}+3}(j \geq 2)$ is TMC if and only if m is even.
Proof. Let $j^{2}+3=n$. We consider the labelings f_{1} and f_{2} with $\alpha_{1}=r\left(j^{2}-r+4\right)$ and $\alpha_{2}=\alpha_{1}+2 j$ where $r=\frac{j(j-1)}{2}+1$. Clearly, $\alpha_{1}+\alpha_{2}=\frac{n^{2}+n}{2}$. Thus by Corollary 3.3, $m K_{j^{2}+3}$ is TMC if and only if m is even.

Corollary 3.7. The graph $m K_{j^{2}+8}(j \geq 1)$ is TMC if and only if m is even.
Proof. Let $j^{2}+8=n$. We consider the labelings f_{1} and f_{2} with $\alpha_{1}=\frac{3 j}{2}+\frac{n^{2}+n}{4}$ and $\alpha_{2}=\frac{n^{2}+n}{4}-\frac{3 j}{2}$. Clearly, $\alpha_{1}+\alpha_{2}=\frac{n^{2}+n}{2}$. Hence by Corollary 3.3, $m K_{j^{2}+8}$ is TMC if and only if m is even.

Corollary 3.8. Let $f_{i}, i=1,2,3,4$ be the binary magic total labelings of $m K_{n}$. Let $n_{f_{i}}(0)=\alpha_{i}, i=1,2,3,4$ be such that $\sum_{i=1}^{4} \alpha_{i}=n^{2}+n$, then $m K_{n}$ is $T M C$ if and only if $m \equiv 0(\bmod 4)$.

Proof. Let $m=4 t$. We assume that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=n^{2}+n$. Then $\left|\sum_{i=1}^{4}\left[2 \alpha_{i}-\frac{n^{2}+n}{2}\right] x_{i}\right| \leq 1$ such that $\sum_{i=1}^{4} x_{i}=4 t$. Clearly, $x_{1}=x_{2}=x_{3}=$ $x_{4}=t$ is a solution of the above system. Also when $m \not \equiv 0(\bmod 4)$ the system has no solution. Thus $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Corollary 3.9. The graph $m K_{j^{2}+2}(j \geq 2)$ is TMC if and only if $m \equiv$ $0(\bmod 4)$.

Proof. Let $j^{2}+2=n$. We consider the labelings f_{1} and f_{2} with $\alpha_{1}=r(n-r+1)$ and $\alpha_{2}=\alpha_{1}+2 j-2$ where $r=\frac{j^{2}-j+2}{2}$. We can easily prove that $\alpha_{1}+\alpha_{2}=n^{2}+n$. Hence, $x_{1}=3 t$ and $x_{2}=t$ is a solution of the system (3.1). Thus, $m K_{j^{2}+2}$ is TMC if $m \equiv 0(\bmod 4)$.

Theorem 3.10. The graph $m K_{j^{2}+4}(j \geq 2)$ is TMC if and only if $m \equiv$ $0(\bmod 4)$.

Proof. Let $j^{2}+4=n$. We consider the labelings f_{1}, f_{2}, f_{3} and f_{4} with $\alpha_{1}=r(n-r+1), \alpha_{2}=\alpha_{1}+j+2, \alpha_{3}=\alpha_{1}+2 j+2$ and $\alpha_{4}=\alpha_{1}+3 j$. We can easily prove that $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=n^{2}+n$. Hence by Corollary 3.8, $m K_{j^{2}+4}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Theorem 3.11. If $m K_{n}$ and $m^{\prime} K_{n}$ are TMC and m or m^{\prime} is even, then $\left(m+m^{\prime}\right) K_{n}$ is $T M C$.

Proof. Let f and f^{\prime} be the TMC labelings of $m K_{n}$ and $m^{\prime} K_{n}$ respectively with $C=1$. We assume that m is even. Then, $n_{f}(0)=n_{f}(1)$. For $m^{\prime} K_{n}$, we have $n_{f^{\prime}}(0)=n_{f^{\prime}}(1), n_{f^{\prime}}(0)=n_{f^{\prime}}(1)+1$ or $n_{f^{\prime}}(0)=n_{f^{\prime}}(1)-1$. Let $f^{\prime \prime}$ be a binary magic total labeling of $\left(m+m^{\prime}\right) K_{n}$ with $C=1$. Clearly, $n_{f^{\prime \prime}}(0)=n_{f}(0)+n_{f^{\prime}}(0)$ and $n_{f^{\prime \prime}}(1)=n_{f}(1)+n_{f^{\prime}}(1)$. Therefore, $n_{f^{\prime \prime}}(0)=n_{f^{\prime \prime}}(1)$ or $n_{f^{\prime \prime}}(0)=n_{f^{\prime \prime}}(1)+1$ or $n_{f^{\prime \prime}}(0)=n_{f^{\prime \prime}}(1)-1$ are derived from $n_{f^{\prime}}(0)=n_{f^{\prime}}(1)$ or $n_{f^{\prime}}(0)=n_{f^{\prime}}(1)+1$ or $n_{f^{\prime}}(0)=n_{f^{\prime}}(1)-1$ respectively. Hence, $\left(m+m^{\prime}\right) K_{n}$ is TMC with $C=1$.

Theorem 3.12. [7] If G is an odd graph with $p+q \equiv 2(\bmod 4)$, then G is not TMC.

Corollary 3.13. If $m \equiv 1(\bmod 2)$ and $n \equiv 4(\bmod 8)$ then $m K_{n}$ is not TMC.

Proof. Proof follows from Theorem 3.12.
Theorem 3.14. Let $f_{i}, i=1,2,3$ be the binary magic total labelings of $m K_{n}$. Let $n_{f_{i}}(0)=\alpha_{i}, i=1,2,3$ be such that $\alpha_{1}+2 \alpha_{2}+\alpha_{3}=n^{2}+n$, then $m K_{n}$ is $T M C$ if and only if $m \equiv 0(\bmod 4)$.

Proof. Let $m=4 t$. We assume that $\alpha_{1}+2 \alpha_{2}+\alpha_{3}=n^{2}+n$. Then

$$
\left|\sum_{i=1}^{3}\left[2 \alpha_{i}-\frac{n^{2}+n}{2}\right] x_{i}\right| \leq 1
$$

such that $\sum_{i=1}^{3} x_{i}=4 t$. Clearly, $x_{1}=t, x_{2}=2 t$ and $x_{3}=t$ is a solution of the above system. When $m \not \equiv 0(\bmod 4)$ the system has no solution. Thus $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Corollary 3.15. The graph $m K_{j^{2}+1}(j \geq 2)$ is TMC if and only if $m \equiv$ $0(\bmod 4)$.

Proof. Let $j^{2}+1=n$. Consider the labelings f_{1}, f_{2} and f_{3} with $\alpha_{1}=r(n-r+1), \alpha_{2}=\alpha_{1}+j+1$ and $\alpha_{3}=\alpha_{1}+2 j$ where $r=\frac{j^{2}-j}{2}$. We can easily prove that $\alpha_{1}+2 \alpha_{2}+\alpha_{3}=n^{2}+n$. Hence by Theorem 3.14, $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Theorem 3.16. Let $f_{i}, i=1,2,3$ be binary magic total labelings of $m K_{n}$. Let $n_{f_{i}}(0)=\alpha_{i}, i=1,2,3$ be such that $\alpha_{1}+\alpha_{2}+2 \alpha_{3}=n^{2}+n$, then $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Proof. Let $m=4 t$. We assume that $\alpha_{1}+\alpha_{2}+2 \alpha_{3}=n^{2}+n$. Then

$$
\left|\sum_{i=1}^{3}\left[2 \alpha_{i}-\frac{n^{2}+n}{2}\right] x_{i}\right| \leq 1
$$

such that $\sum_{i=1}^{3} x_{i}=4 t$. Clearly, $x_{1}=t, x_{2}=t$ and $x_{3}=2 t$ is a solution of the above system. Also when $m \not \equiv 0(\bmod 4)$ the system has no solution. Thus $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

Corollary 3.17. The graph $m K_{j^{2}+5}(j \geq 3)$ is $T M C$ if and only if $m \equiv$ $0(\bmod 4)$.

Proof. Let $j^{2}+5=n$. Consider the labelings f_{1}, f_{2} and f_{3} with $\alpha_{1}=r(n-r+1), \alpha_{2}=\alpha_{1}+2 j+4$ and $\alpha_{3}=\alpha_{1}+3 j+6$ where $r=\frac{j^{2}-j+2}{2}$. We can easily prove that $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}=n^{2}+n$. Hence by Theorem 3.16, $m K_{n}$ is TMC if and only if $m \equiv 0(\bmod 4)$.

We conclude this paper with the following conjecture:
Conjecture 3.18. The graphs $m K_{j^{2}+k}(j \geq 5)$ for $k=6,7,9,10, \ldots, 2 j-1$ and $m \geq 1$ admit totally magic cordial labeling.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, pp. 201-207, (1987).
[2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22, pp. 247-258, (2002).
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., (1969).
[4] P. Jeyanthi, N. Angel Benseera and M. Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49 (1), pp. 1318, (2013).
[5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Mathematica, 34 (1), pp. 115-122, (2014).
[6] P. Jeyanthi and N. Angel Benseera, Totally magic cordial deficiency of some graphs, Utilitas Mathematica, (to appear).
[7] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, Journal of Algorithms and Computation, 46 (1), pp. 1-8, (2015).

P. Jeyanthi

Research Centre,
Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamilnadu, India
e-mail: jeyajeyanthi@rediffmail.com

N. Angel Benseera

Department of Mathematics,
Sri Meenakshi Government Arts College for Women (Autonomous), Madurai-625 002, Tamilnadu, India
e-mail: angelbenseera@yahoo.com
and

Ibrahim Cahit

Department of Computer Science and Engineering,
European University of Lefke,
Lefke, Mersin 10,
Turkey
e-mail: ica@lefke.edu.tr

