Proyecciones Journal of Mathematics Vol. 33, N^o 3, pp. 259-276, September 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000300003

On Zweier I-convergent sequence spaces

Vakeel A. Khan Khalid Ebadullah and Yasmeen Aligarh Muslim University, India Received : February 2014. Accepted : April 2014

Abstract

In this article we introduce the Zweier I-convergent sequence spaces $\mathcal{Z}^{I}, \mathcal{Z}^{I}_{0}$ and \mathcal{Z}^{I}_{∞} . We prove the decomposition theorem and study topological, algebraic properties and have established some inclusion relations of these spaces.

2000 Mathematics Subject Classification: 40C05, 40J05, 46A45.

Keywords and phrases : Ideal, filter, I-convergence field, monotone, solid, Lipschitz function, Zweier Space, Statistical convergence, Banach space.

1. Introduction

Let \mathbf{N}, \mathbf{R} and \mathbf{C} be the sets of all natural, real and complex numbers respectively. We write

$$\omega = \{ x = (x_k) : x_k \in \mathbf{R} \text{ or } \mathbf{C} \},\$$

the space of all real or complex sequences.

Let ℓ_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences respectively normed by

$$||x||_{\infty} = \sup_{k} |x_k|.$$

A sequence space λ with linear topology is called a K-space provided each of maps $p_i \longrightarrow \mathbf{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbf{N}$.

A K-space λ is called an FK-space provided λ is a complete linear metric space.

An FK-space whose topology is normable is called a BK-space.

Let λ and μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers (a_{nk}) , where $n, k \in \mathbf{N}$. Then we say that A defines a matrix mapping from λ to μ , and we denote it by writting $A : \lambda \longrightarrow \mu$.

If for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A transform of x is in μ , where

(1.1)
$$(Ax)_n = \sum_k a_{nk} x_k, \ (n \in \mathbf{N})$$

By $(\lambda : \mu)$, we denote the class of matrices A such that $A : \lambda \longrightarrow \mu$. Thus, $A \in (\lambda : \mu)$ if and only if series on the right side of (1) converges for each $n \in \mathbf{N}$ and every $x \in \lambda$.

The approach of constructing new sequence spaces by means of the matrix domain of a particular limitation method have recently been employed by Altay,Başar and Mursaleen [1], Başar and Altay [2], Malkowsky [13], Ng and Lee [14], and Wang [21]. Sengönül[18] defined the sequence $y = (y_i)$ which is frequently used as the Z^p transform of the sequence $x = (x_i)$ i. e.,

$$y_i = px_i + (1-p)x_{i-1}$$

where $x_{-1} = 0, 1 and <math>Z^p$ denotes the matrix $Z^p = (z_{ik})$ defined by

$$z_{ik} = \begin{cases} p, (i = k), \\ 1 - p, (i - 1 = k); (i, k \in \mathbf{N}), \\ 0, \text{ otherwise.} \end{cases}$$

Following Başar and Altay[2], Şengönül[18] introduced the Zweier sequence spaces \mathcal{Z} and \mathcal{Z}_0 as follows :

$$\mathcal{Z} = \{ x = (x_k) \in \omega : Z^p x \in c \}$$
$$\mathcal{Z}_0 = \{ x = (x_k) \in \omega : Z^p x \in c_0 \}.$$

Here we list below some of the results of Şengönül [18] which we will need as a reference in order to establish analogously some of the results of this article.

Theorem 1.1. The sets \mathcal{Z} and \mathcal{Z}_0 are linear spaces with the co-ordinate wise addition and scalar multiplication which are the BK-spaces with the norm

 $||x||_{\mathcal{Z}} = ||x||_{\mathcal{Z}_0} = ||Z^p x||_c$ [See (Theorem 2.1. [18])].

Theorem 1.2. The sequence spaces \mathcal{Z} and \mathcal{Z}_0 are linearly isomorphic to the spaces c and c_0 respectively, i.e $\mathcal{Z} \cong c$ and $\mathcal{Z}_0 \cong c_0$ [See (Theorem 2.2.[18])]

Theorem 1.3. The inclusions $\mathcal{Z}_0 \subset \mathcal{Z}$ strictly hold for $p \neq 1$. [See (Theorem 2.3. [18])].

Theorem 1.4. \mathcal{Z}_0 is solid.[See (Theorem 2.6.[18])].

Theorem 1.5. \mathcal{Z} is not a solid sequence space. [See (Theorem 3.6. [18])].

The concept of statistical convergence was first introduced by Fast [7] and also independently by Buck [3] and Schoenberg [17] for real and complex sequences. Further this concept was studied by Connor [4, 5], Connor,

Fridy and Kline [6] and many others. Statistical convergence is a generalization of the usual notion of convergence that parallels the usual theory of convergence. A sequence $x = (x_k)$ is said to be statistically convergent to L if for a given $\varepsilon > 0$

$$\lim_{k} \frac{1}{k} |\{i : |x_i - L| \ge \varepsilon, i \le k\}| = 0.$$

The notion of I-convergence generalizes and unifies different notions of convergence including the notion of statistical convergence. At the initial stage it was studied by Kostyrko, Šalát, Wilczyński [12]. Later on it was studied by Šalát, Tripathy, Ziman [15, 16]. Recently further it was studied by Tripathy [19, 20, 21, 22, 23, 24, 25, 26, 27], and V. A.Khan and Khalid Ebadullah [9-11].

Here we give some preliminaries about the notion of I-convergence.

Let X be a non empty set. Then a family of sets $I \subseteq 2^X (2^X$ denoting the power set of X) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup$ $B \in I$ and hereditary i.e $A \in I, B \subseteq A \Rightarrow B \in I$.

A non-empty family of sets $\mathcal{L}(I) \subseteq 2^X$ is said to be filter on X if and only if $\emptyset \notin \mathcal{L}(I)$, for A, B $\in \mathcal{L}(I)$ we have A \cap B $\in \mathcal{L}(I)$ and for each A $\in \mathcal{L}(I)$ and A \subseteq B implies B $\in \mathcal{L}(I)$.

An Ideal I $\subseteq 2^X$ is called non-trivial if I $\neq 2^X$.

A non-trivial ideal $I \subseteq 2^X$ is called admissible if $\{\{x\} : x \in X\} \subseteq I$. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I, there is a filter $\pounds(I)$ corresponding to I. i.e.

 $\pounds(I) = \{ K \subseteq N : K^c \in I \}, \text{ where } K^c = N - K.$

Definition 1.6. A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if for every $\varepsilon > 0$.

$$\{k \in N : |x_k - L| \ge \varepsilon\} \in I.$$

In this case we write $I - \lim x_k = L$. The space c^I of all I-convergent sequences to L is given by

$$c^{I} = \{(x_{k}) \in \omega : \{k \in \mathbf{N} : |x_{k} - L| \ge \varepsilon\} \in I, \text{ for some } L \in \mathbf{C} \}.$$

Definition 1.7. A sequence $(x_k) \in \omega$ is said to be I-null if L = 0. In this case we write $I - \lim x_k = 0$.

Definition 1.8. A sequence $(x_k) \in \omega$ is said to be I-Cauchy if for every $\varepsilon > 0$ there exists a number $m = m(\varepsilon)$ such that

$$\{k \in N : |x_k - x_m| \ge \varepsilon\} \in I.$$

Definition 1.9. A sequence $(x_k) \in \omega$ is said to be I-bounded if there exists M > 0 such that

$$\{k \in N : |x_k| > M\} \in I.$$

Example 1.10. Take for I the class I_f of all finite subsets of **N**. Then I_f is a non-trivial admissible ideal and I_f convergence coincides with the usual convergence with respect to the metric in X. (see [12]).

Definition 1.11. For $I = I_{\delta}$ and $A \subset \mathbf{N}$ with $\delta(A) = 0$ respectively. I_{δ} is a non-trivial admissible ideal, I_{δ} -convergence is said to be logarithmic statistical convergence(see[12]).

Definition 1.12. A map \hbar defined on a domain $D \subset X$ i.e $\hbar : D \subset X \to \mathbf{R}$ is said to satisfy Lipschitz condition if

$$|\hbar(x) - \hbar(y)| \le K|x - y|,$$

where K is known as the Lipschitz constant. The class of K-Lipschitz functions defined on D is denoted by $\hbar \in (D, K)(\text{see}[15, 16])$.

Definition 1.13. A convergence field of I-covergence is a set

 $F(I) = \{ x = (x_k) \in l_{\infty} : \text{there exists } I - \lim x \in \mathbf{R} \}.$

The convergence field F(I) is a closed linear subspace of l_{∞} with respect to the supremum norm, $F(I) = l_{\infty} \cap c^{I}$ (See [15,16]).

Define a function $\hbar : F(I) \to \mathbf{R}$ such that $\hbar(x) = I - \lim x$, for all $x \in F(I)$, then the function $\hbar : F(I) \to \mathbf{R}$ is a Lipschitz function. (see [15, 16]).

Definition 1.14. Let $(x_k), (y_k)$ be two sequences. We say that $(x_k) = (y_k)$ for almost all k relative to I (a.a.k.r.I), if

$$\{k \in \mathbf{N} : x_k \neq y_k\} \in I(see[19, 20]).$$

The following Lemmas will be used for establishing some results of this article :

Lemma 1.15. Let E be a sequence space. If E is solid then E is monotone.(see [8],page 53).

Lemma 1.16. If $I \subset 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$. (see [19,20]).

2. Main Results

264

In this section we introduce the following classes of sequence spaces :

$$\mathcal{Z}^{I} = \{ x = (x_{k}) \in \omega : \{ k \in \mathbf{N} : I - \lim Z^{p}x = L, \text{ for some } \mathbf{L} \in \mathbf{C} \} \};$$
$$\mathcal{Z}_{0}^{I} = \{ x = (x_{k}) \in \omega : \{ k \in \mathbf{N} : I - \lim Z^{p}x = 0 \} \};$$
$$\mathcal{Z}_{\infty}^{I} = \{ x = (x_{k}) \in \omega : \{ k \in \mathbf{N} : \sup_{k} |Z^{p}x| < \infty \} \}.$$

We also denote by

$$m_{\mathcal{Z}}^I = \mathcal{Z}_{\infty} \cap \mathcal{Z}^I$$

and

$$m_{\mathcal{Z}_0}^I = \mathcal{Z}_\infty \cap \mathcal{Z}_0^I.$$

Throughout the article, for the sake of convenience now we will denote by $Z^p(x_k) = x^{/}, Z^p(y_k) = y^{/}, Z^p(z_k) = z^{/}$ for $x, y, z \in \omega$.

Theorem 2.1. The classes of sequences $\mathcal{Z}^I, \mathcal{Z}_0^I, m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ are linear spaces.

Proof. We shall prove the result for the space \mathcal{Z}^I .

The proof for the other spaces will follow similarly.

Let $(x_k), (y_k) \in \mathcal{Z}^I$ and let α, β be scalars. Then

$$I - \lim |x_k' - L_1| = 0$$
, for some $L_1 \in \mathbf{C}$;

$$I - \lim |y_k' - L_2| = 0, \text{ for some } L_2 \in \mathbf{C};$$

That is for a given $\varepsilon > 0$, we have

(2.1)
$$A_{1} = \{k \in N : |x_{k}^{\prime} - L_{1}| > \frac{\varepsilon}{2}\} \in I,$$
$$A_{2} = \{k \in N : |y_{k}^{\prime} - L_{2}| > \frac{\varepsilon}{2}\} \in I.$$

we have

$$\begin{aligned} |(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)| &\leq |\alpha|(|x_k' - L_1|) + |\beta|(|y_k' - L_2|) \\ &\leq |x_k' - L_1| + |y_k' - L_2| \\ \text{Now, by (1) and (2), } \{k \in \mathbb{N} : |(\alpha x_k' + \beta y_k') - (\alpha L_1 + \beta L_2)| > \epsilon\} \subset A_1 \cup A_2 \\ \text{Therefore } (\alpha x_k + \beta y_k) \in \mathcal{Z}^I \end{aligned}$$

Hence \mathcal{Z}^I is a linear space.

Theorem 2.2. The spaces $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ are normed linear spaces, normed by

(2.2)
$$||x_k'||_* = \sup_k |Z^p(x)|,$$

where $x_k^{/} = Z^p(x)$.

Proof: It is clear from Theorem 2.1 that $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$ are linear spaces.

It is easy to verify that (3) defines a norm on the spaces $m_{\mathcal{Z}}^I$ and $m_{\mathcal{Z}_0}^I$.

Theorem 2.3. A sequence $x = (x_k) \in m_{\mathcal{Z}}^I$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbf{N}$ such that

(2.3)
$$\{k \in \mathbf{N} : |x_k^{/} - x_{N_{\epsilon}}^{/}| < \varepsilon\} \in m_{\mathcal{Z}}^I$$

Proof. Suppose that $L = I - \lim x^{/}$. Then

$$B_{\varepsilon} = \{k \in \mathbf{N} : |x_k^{/} - L| < \frac{\varepsilon}{2}\} \in m_{\mathcal{Z}}^I \text{ for all } \varepsilon > 0$$

. Fix an $N_{\varepsilon} \in B_{\varepsilon}$. Then we have

$$|x'_{N_{\varepsilon}} - x'_{k}| \le |x'_{N_{\varepsilon}} - L| + |L - x'_{k}| < \frac{\epsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which holds for all $k \in B_{\varepsilon}$.

Hence $\{k \in \mathbf{N} : |x_k^{/} - x_{N_{\varepsilon}}^{/}| < \varepsilon\} \in m_{\mathcal{Z}}^I$.

Conversely, suppose that $\{k \in \mathbf{N} : |x_k' - x_{N_{\varepsilon}}'| < \varepsilon\} \in m_{\mathcal{Z}}^I$. That is $\{k \in \mathbf{N} : |x_k' - x_{N_{\varepsilon}}'| < \varepsilon\} \in m_{\mathcal{Z}}^I$ for all $\varepsilon > 0$. Then the set

$$C_{\varepsilon} = \{k \in \mathbf{N} : x_k^{\prime} \in [x_{N_{\varepsilon}}^{\prime} - \varepsilon, x_{N_{\varepsilon}}^{\prime} + \varepsilon]\} \in m_{\mathcal{Z}}^I \text{ for all } \varepsilon > 0.$$

Let $J_{\varepsilon} = [x'_{N_{\varepsilon}} - \varepsilon, x'_{N_{\varepsilon}} + \varepsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in m_{\mathcal{Z}}^{I}$ as well as $C_{\frac{\varepsilon}{2}} \in m_{\mathcal{Z}}^{I}$. Hence $C_{\varepsilon} \cap C_{\frac{\varepsilon}{2}} \in m_{\mathcal{Z}}^{I}$. This implies that

$$J = J_{\varepsilon} \cap J_{\frac{\varepsilon}{2}} \neq \phi$$

that is

$$\{k \in \mathbf{N} : x_k^{/} \in J\} \in m_{\mathcal{Z}}^I$$

that is

$$diamJ \leq diamJ_{\epsilon}$$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

$$J_{\varepsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq Z_k \supseteq \dots$$

with the property that $diamI_k \leq \frac{1}{2} diamI_{k-1}$ for (k=2,3,4,....) and

$$\{k \in \mathbf{N} : x_k^{/} \in I_k\} \in m_{\mathcal{Z}}^I \text{ for } (k=1,2,3,4,....)$$

Then there exists a $\xi \in \cap I_k$ where $k \in \mathbb{N}$ such that $\xi' = I - \lim x'$, that is $L = I - \lim x'$.

Theorem 2.4.Let I be an admissible ideal. Then the following are equivalent.

(a) $(x_k) \in \mathcal{Z}^I;$

(b) there exists $(y_k) \in \mathbb{Z}$ such that $x_k = y_k$, for a.a.k.r.I;

(c) there exists $(y_k) \in \mathbb{Z}$ and $(z_k) \in \mathbb{Z}_0^I$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and $\{k \in \mathbb{N} : |y_k - L| \ge \epsilon\} \in I$;

(d) there exists a subset $K = \{k_1 < k_2....\}$ of **N** such that $K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |x_{k_n} - L| = 0$.

Proof.(a) implies (b). Let $(x_k) \in \mathcal{Z}^I$. Then there exists $L \in \mathbf{C}$ such that

$$\{k \in \mathbf{N} : |x_k^{/} - L| \ge \varepsilon\} \in I$$

Let (m_t) be an increasing sequence with $m_t \in \mathbf{N}$ such that

$$\{k \le m_t : |x_k' - L| \ge \frac{1}{t}\} \in I.$$

Define a sequence (y_k) by

$$y_k = x_k$$
, for all $k \le m_1$.

For $m_t < k \leq m_{t+1}, t \in \mathbf{N}$.

$$y_k = \begin{cases} x_k, & \text{if } |x_k' - L| < t^{-1}, \\ L, \text{otherwise.} \end{cases}$$

Then $(y_k) \in \mathcal{Z}$ and form the following inclusion

$$\{k \le m_t : x_k \ne y_k\} \subseteq \{k \le m_t : |x_k' - L| \ge \epsilon\} \in I.$$

We get $x_k = y_k$, for a.a.k.r.I. (b) implies (c).For $(x_k) \in \mathcal{Z}^I$.

Then there exists $(y_k) \in \mathcal{Z}$ such that $x_k = y_k$, for a.a.k.r.I.

Let $K = \{k \in \mathbf{N} : x_k \neq y_k\}$, then $K \in I$.

Define a sequence (z_k) by

$$z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, \text{otherwise.} \end{cases}$$

Then $z_k \in \mathcal{Z}_0^I$ and $y_k \in \mathcal{Z}$.

(c) implies (d).Let
$$P_1 = \{k \in \mathbf{N} : |z_k| \ge \varepsilon\} \in I$$
 and
 $K = P_1^c = \{k_1 < k_2 < k_3 < ...\} \in \pounds(I)$

. Then we have $\lim_{n \to \infty} |x_{k_n} - L| = 0.$

(d) implies (a). Let $K = \{k_1 < k_2 < k_3 < ...\} \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |x_{k_n} - L| = 0$.

Then for any $\epsilon > 0$, and by Lemma , we have

$$\{k \in \mathbf{N} : |x_k^{/} - L| \ge \epsilon\} \subseteq K^c \cup \{k \in K : |x_k^{/} - L| \ge \epsilon\}.$$

Thus $(x_k) \in \mathcal{Z}^I$.

Theorem 2.5. The inclusions $\mathcal{Z}_0^I \subset \mathcal{Z}^I \subset \mathcal{Z}_\infty^I$ are proper.

Proof: Let $(x_k) \in \mathcal{Z}^I$. Then there exists $L \in C$ such that

$$I - \lim |x_k^/ - L| = 0$$

We have $|x_k^{\prime}| \leq \frac{1}{2}|x_k^{\prime} - L| + \frac{1}{2}|L|$. Taking the supremum over k on both sides we get $(x_k) \in \mathcal{Z}_{\infty}^I$. The inclusion $\mathcal{Z}_0^I \subset \mathcal{Z}^I$ is obvious.

Theorem 2.6. The function $\hbar : m_{\mathcal{Z}}^I \to \mathbf{R}$ is the Lipschitz function, where $m_{\mathcal{Z}}^I = \mathcal{Z}^I \cap \mathcal{Z}_{\infty}$, and hence uniformly continuous.

Proof:Let $x, y \in m_{\mathcal{Z}}^{I}$, $x \neq y$. Then the sets

$$A_x = \{k \in \mathbf{N} : |x_k' - \hbar(x')| \ge ||x' - y'||_*\} \in I,$$

$$A_y = \{k \in \mathbf{N} : |y_k' - \hbar(y')| \ge ||x' - y'||_*\} \in I.$$

Thus the sets,

$$B_x = \{k \in \mathbf{N} : |x_k^{/} - \hbar(x^{/})| < ||x^{/} - y^{/}||_*\} \in m_{\mathcal{Z}}^I,$$
$$B_y = \{k \in \mathbf{N} : |y_k^{/} - \hbar(y^{/})| < ||x^{/} - y^{/}||_*\} \in m_{\mathcal{Z}}^I.$$

Hence also $B = B_x \cap B_y \in m_{\mathcal{Z}}^I$, so that $B \neq \phi$.

Now taking k in B,

$$|\hbar(x') - \hbar(y')| \le |\hbar(x') - x'_k| + |x'_k - y'_k| + |y' - \hbar(y')| \le 3||x' - y'||_*.$$

Thus \hbar is a Lipschitz function.

For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.7. If $x, y \in m_{\mathcal{Z}}^{I}$, then $(x,y) \in m_{\mathcal{Z}}^{I}$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof: For $\epsilon > 0$

$$B_x = \{k \in \mathbf{N} : |x^{/} - \hbar(x^{/})| < \varepsilon\} \in m_{\mathcal{Z}}^I,$$
$$B_y = \{k \in \mathbf{N} : |y^{/} - \hbar(y^{/})| < \varepsilon\} \in m_{\mathcal{Z}}^I.$$

Now,

$$|x'.y' - \hbar(x')\hbar(y')| = |x'.y' - x'\hbar(y') + x'\hbar(y') - \hbar(x')\hbar(y')|$$

(2.4)
$$\leq |x'||y' - \hbar(y')| + |\hbar(y')||x' - \hbar(x')|$$

As $m_{\mathcal{Z}}^I \subseteq \mathcal{Z}_{\infty}$, there exists an $M \in \mathbf{R}$ such that |x'| < M and $|\hbar(y')| < M$.

Using eqn(5) we get

$$|x'.y' - \hbar(x')\hbar(y')| \le M\varepsilon + Mvar\varepsilon = 2M\varepsilon$$

For all $k \in B_x \cap B_y \in m_{\mathcal{Z}}^I$.

Hence $(x.y) \in m_{\mathcal{Z}}^{I}$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.8. The spaces \mathcal{Z}_0^I and $m_{\mathcal{Z}_0}^I$ are solid and monotone .

Proof: We prove the result for the case \mathcal{Z}_0^I .

Let
$$(x_k) \in \mathcal{Z}_0^I$$
. Then
(2.5) $I - \lim_k |x_k'| = 0$

Let (α_k) be a sequence of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbf{N}$. Then the result follows from (6) and the following inequality

$$|\alpha_k x_k^{\prime}| \le |\alpha_k| |x_k^{\prime}| \le |x_k^{\prime}|$$
 for all $k \in \mathbf{N}$.

That the space \mathcal{Z}_0^I is monotone follows from the Lemma 1.15.

For $m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.9. The spaces \mathcal{Z}^I and $m_{\mathcal{Z}}^I$ are neither monotone nor solid, if I is neither maximal nor $I = I_f$ in general.

Proof: Here we give a counter example.

Let $I = I_{\delta}$. Consider the K-step space X_K of X defined as follows,

Let $(x_k) \in X$ and let $(y_k) \in X_K$ be such that

$$(y_k^{/}) = \begin{cases} (x_k^{/}), \text{if } \mathbf{k} \text{ is odd,} \\ 1, otherwise. \end{cases}$$

Consider the sequence (x_k^{\prime}) defined by $(x_k^{\prime}) = k^{-1}$ for all $k \in \mathbf{N}$.

Then $(x_k) \in \mathbb{Z}^I$ but its K-stepspace preimage does not belong to \mathbb{Z}^I . Thus \mathbb{Z}^I is not monotone. Hence \mathbb{Z}^I is not solid.

Theorem 2.10. The spaces \mathcal{Z}^I and \mathcal{Z}^I_0 are sequence algebras.

Proof: We prove that \mathcal{Z}_0^I is a sequence algebra.

Let $(x_k), (y_k) \in \mathcal{Z}_0^I$. Then

 $I - \lim |x_k^{/}| = 0$

and

$$I - \lim |y_k| = 0$$

Then we have

$$I - \lim |(x_k^{/}.y_k^{/})| = 0$$

Thus $(x_k.y_k) \in \mathcal{Z}_0^I$

Hence \mathcal{Z}_0^I is a sequence algebra.

For the space \mathcal{Z}^{I} , the result can be proved similarly.

Theorem 2.11. The spaces \mathcal{Z}^I and \mathcal{Z}^I_0 are not convergence free in general.

Proof: Here we give a counter example.

Let $I = I_f$. Consider the sequence (x'_k) and (y'_k) defined by

$$x'_k = \frac{1}{k}$$
 and $y'_k = k$ for all $k \in \mathbf{N}$

Then $(x_k) \in \mathcal{Z}^I$ and \mathcal{Z}_0^I , but $(y_k) \notin \mathcal{Z}^I$ and \mathcal{Z}_0^I .

Hence the spaces \mathcal{Z}^{I} and \mathcal{Z}_{0}^{I} are not convergence free.

Theorem 2.12. If I is not maximal and $I \neq I_f$, then the spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not symmetric.

Proof: Let $A \in I$ be infinite.

 \mathbf{If}

$$x_k^{/} = \begin{cases} 1, \text{for } k \in A, \\ 0, otherwise. \end{cases}$$

Then by lemma 1.16. $x_k \in \mathcal{Z}_0^I \subset \mathcal{Z}^I$. Let $K \subset \mathbf{N}$ be such that $K \notin I$ and $\mathbf{N} - K \notin I$.Let $\phi : K \to A$ and $\psi : \mathbf{N} - K \to \mathbf{N} - A$ be bijections, then the map $\pi : \mathbf{N} \to \mathbf{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), \text{ for } k \in K, \\ \psi(k), otherwise. \end{cases}$$

is a permutation on **N**, but $x_{\pi(k)} \notin \mathbb{Z}^I$ and $x_{\pi(k)} \notin \mathbb{Z}_0^I$.

Hence \mathcal{Z}^I and \mathcal{Z}^I_0 are not symmetric.

Theorem 2.13. The sequence spaces \mathcal{Z}^I and \mathcal{Z}^I_0 are linearly isomorphic to the spaces c^I and c^I_0 respectively, i.e $\mathcal{Z}^I \cong c^I$ and $\mathcal{Z}^I_0 \cong c^I_0$.

Proof. We shall prove the result for the space \mathcal{Z}^I and c^I .

The proof for the other spaces will follow similarly.

We need to show that there exists a linear bijection between the spaces \mathcal{Z}^I and c^I . Define a map $T: \mathcal{Z}^I \longrightarrow c^I$ such that $x \to x^I = Tx$

$$T(x_k) = px_k + (1-p)x_{k-1} = x'_k$$

where $x_{-1} = 0, p \neq 1, 1 .$

Clearly T is linear.

272

Further, it is trivial that x = 0 = (0, 0, 0,), whenever Tx = 0 and hence injective.

Let $x_k^{\prime} \in c^I$ and define the sequence $x = x_k$ by

$$x_k = M \sum_{i=0}^k (-1)^{k-i} N^{k-i} x_i^{/} \quad (i \in \mathbf{N}),$$

where $M = \frac{1}{p}$ and $N = \frac{1-p}{p}$.

Then we have

$$\lim_{k \to \infty} px_k + (1-p)x_{k-1}$$

= $p \lim_{k \to \infty} M \sum_{i=0}^k (-1)^{k-i} N^{k-i} x_i^{i} + (1-p) \lim_{k \to \infty} M \sum_{i=0}^{k-1} (-1)^{k-i} N^{k-i} x_i^{i}$
= $\lim_{k \to \infty} x_k^{i}$

which shows that $x \in \mathcal{Z}^I$.

Hence T is a linear bijection.

Also we have $||x||_* = ||Z^p x||_c$.

Therefore,

$$||x||_* = \sup_{k \in \mathbf{N}} |px_k + (1-p)x_{k-1}|,$$

$$= \sup_{k \in \mathbf{N}} |pM \sum_{i=0}^{k} (-1)^{k-i} N^{k-i} x_i^{/} + (1-p) M \sum_{i=0}^{k-1} (-1)^{k-i} N^{k-i} x_i^{/}|$$
$$= \sup_{k \in \mathbf{N}} |x_k^{/}| = ||x^{/}||_{c^I}.$$

Hence $\mathcal{Z}^I \cong c^I$.

Acknowledgments: The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- [1] Altay, B., Başar, F. and Mursaleen. On the Euler sequence space which include the spaces l_p and l_{∞} , Inform.Sci., 176 (10), pp. 1450-1462, (2006).
- [2] Başar, F. and Altay, B. On the spaces of sequences of p-bounded variation and related matrix mappings. Ukrainion Math. J. 55. (2003).
- [3] Buck, R. C.: Generalized Asymptotic Density, Amer. J. Math. 75, pp. 335-346, (1953).
- [4] Connor, J. S.: it The statistical and strong P-Cesaro convergence of sequences, Analysis. 8(1988), 47-63.
- [5] Connor, J. S. : On strong matrix summability with respect to a modulus and statistical convergence, Cnad. Math. Bull. 32, pp. 194-198, (1989).
- [6] Connor, J., Fridy, J. A. and Kline, J. Statistically Pre-Cauchy sequence, Analysis. 14, pp. 311-317, (1994).
- [7] Fast, H. : Sur la convergence statistique, Colloq. Math. 2, pp. 241-244, (1951).
- [8] Kamthan, P. K. and Gupta, M. : Sequence spaces and series. Marcel Dekker Inc, New York. (1980).

- [9] Khan, V. A. and Ebadullah, K. On some I-Convergent sequence spaces defined by a modullus function. Theory and Application of Mathematiccs and Computer Science. 1 (2), pp. 22-30, (2011).
- [10] Khan, V. A., Ebadullah, K and Ahmad, A. I-Pre-Cauchy Sequences and Orlicz Function. Journal of Mathematical Analysis. 3 (1), pp. 21-26, (2012).
- [11] Khan, V.A. and Ebadullah, K.I-Convergent difference sequence spaces defined by a sequence of moduli. J. Math. Comput.Sci. 2 (2), pp. 265-273, (2012).
- [12] Kostyrko, P., Šalát, T., Wilczyński, W.I-convergence. Real Analysis Exchange, 26 (2), pp. 669-686, (2000).
- [13] Malkowsky, E. Recent results in the theory of matrix transformation in sequence spaces. Math. Vesnik. (49), pp. 187-196, (1997).
- [14] Ng, P., N. and Lee P., Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Pracc. Math. 20 (2), pp. 429-433, (1978).
- [15] Šalát,T., Tripathy, B. C., Ziman, M. On some properties of Iconvergence. Tatra Mt. Math. Publ., (28), pp. 279-286, (2004).
- [16] Salát, T., Tripathy, B. C., Ziman, M. On I-convergence field. Ital. J. Pure Appl. Math., (17), pp. 45-54 (2005).
- [17] Schoenberg, I. J. : The integrability of certain functions and related summability methods, Amer. Math. Monthly. 66 : pp. 361-375, (1959).
- [18] Şengönül, M. On The Zweier Sequence Space, DEMONSTRATIO MATHEMATICA, Vol.XL No.(1), pp. 181-196, (2007).
- [19] Tripathy, B. C. and Hazarika, B. Paranorm I-Convergent sequence spaces, Math Slovaca. 59 (4), pp. 485-494. (2009).
- [20] Tripathy, B. C. and Hazarika, B. Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica. 27 (1), pp 149-154, (2011).
- [21] Tripathy, B. C. and Hazarika, B. I -convergent sequence spaces associated with multiplier sequence spaces; Mathematical Inequalities and Appl; ications; 11 (3), pp. 543-548, (2008).

- [22] Tripathy, B. C. and Mahanta, S. On Acceleration convergence of sequences; Journal of the Franklin Institute, 347, pp. 591-598, (2010).
- [23] Tripathy,B.C. and Hazarika, B. I-monotonic and I-Convergent sequences, Kyungpook Math. Journal. 51 (2) (2011), pp. 233-239, (2011).
- [24] Tripathy, B. C. Sen, M. and Nath, S. I-Convergence in probabilistic n-normed space; Soft Comput, 16, pp. 1021-1027, (2012).
- [25] Tripathy, B. C. Hazarika, B and Choudhry, B. Lacunary I-Convergent sequences, Kyungpook Math. Journal. 52 (4), pp. 473-482, (2012).
- [26] Tripathy,B. C. and Sharma, B. On I-Convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal. 52 (2), pp. 189-200, (2012).
- [27] Tripathy, B. C. and Ray, G. C. Mixed fuzzy ideal topological spaces; Applied mathematics and Computations; 220, pp. 602-607, (2013).

Vakeel A. Khan

Department of Mathematics, Aligarh Muslim University Aligarh-202002, India e-mail: vakhanmaths@gmail.com

Khalid Ebadullah

Department of Applied Mathematics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India e-mail: khalidebadullah@gmail.com

and

Yasmeen

Department of Mathematics, Aligarh Muslim University , Aligarh-202002, India e-mail : khany9828@gmail.com