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Abstract

In this paper, the Legendre wavelet method for State analysis of
time-varying singular nonlinear systems is studied. The properties of
Legendre wavelets and its operational matrices are first presented and
then are used to convert into algebraic equations. Also the convergence
and error analysis for the proposed technique have been discussed. Il-
lustrative examples have been given to demonstrate the validity and
applicability of the technique. The efficiency of the proposed method
has been compared with Haar wavelet method and it is observed that
the Legendre wavelet method is more convenient than the Haar wavelet
method in terms of applicability, efficiency, accuracy, error, and com-
putational effort.
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1. Introduction

The development of singular nonlinear systems has been studied by New-
comb and campbell [1, 2]. In their papers, closed form solutions were not
available. In some analysis of neural networks, both singular systems [3]
and nonlinear systems [4] have been used. The multipliers and algebraic in-
terconnections between singular systems and nonlinear systems are allowed
in dynamical systems. Lewis et al. [5] studied singular bilinear systems
extensively in the literature. However, the solution due to Lewis et al. only
applies for the time-invariant case.

Recently, Haar wavelets have been applied extensively for signal pro-
cessing in communications and physics research, and proved to be a useful
mathematical tool. Chen and Hsiao [6] introduced Haar operational ma-
trix for the integrals of Haar functions and this approach was also applied
to system analysis and dynamical systems. Later, Hsiao [7] developed the
Haar product matrix and coefficient matrix which have been successfully
implemented to the solution and the optimization of time-varying systems
[8]. The main characteristic of this technique is to convert a differential
equation into an algebraic one; hence the solution and the optimization
procedures are either reduced or simplified accordingly.

Sekar et al. [9] handled Haar wavelet series method for higher order lin-
ear singular system. Murugesh et al. [10] discussed State analysis of time-
Varying singular bilinear systems using RK-Butcher Algorithms. Sepehrian
et al. [11] demonstrated the solution of time-varying singular nonlinear sys-
tems by using single term walsh series. A Generalized approach for state
analysis and parameter estimation of bilinear systems using Haar connec-
tion coefficients was studied by Garg et al. [12]. Pin-Lin Liu [13] adopted
a delay decomposition approach on stability analysis for singular systems
with time varying delay. Henrik Sandberg [14] investigated a balanced
truncation of linear time-varying systems in discrete and continuous time.
Recently, Zhou et al. [15] studied finite-time stability analysis for linear
time-varying singular impulsive systems.

Mirmomeni [16] established fuzzy neural network approach for state
analysis of discrete-time singular nonlinear Systems. A new method for
simplification of nonlinear input-output models was outlined by Nilsson
et al. [17]. The method relates to balanced truncation and uses a state
transformation followed by truncation of some states. Timescale analysis
for nonlinear dynamical systems and robust stability and stabilization of
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discrete singular systems were also studied in [18]. Very recently, Berstein
polynomial operational matrix approach was introduced by Behroozifar et
al. [19] for numerical solution of optimal control of time-varying singular
systems. Balachandran et al. [20] used the single termWalsh series (STWS)
technique for the analysis of electronic circuits. They have also analyzed
singular system of transistor circuits by STWS technique in [21].

In this paper, we apply the Legendre wavelets operational matrix of
integration for state analysis of time-varying singular nonlinear systems.
Legendre wavelets are capable of converting the given system of differen-
tial equations into system of algebraic equations. Many researchers have
employed the Legendre wavelets using operational matrix of integration
and with the help of Gaussian integration. The detailed information are
available in [22-33].

The arrangement of the paper is as follows: In section 2, we describe
the basic formulation of wavelets and Legendre wavelets required for our
subsequent development. Section 3 is devoted to the state analysis of time-
varying singular nonlinear systems. Convergence analysis and the error
bound for the proposed method have been discussed in section 4. In section
5, we demonstrate the accuracy of the proposed scheme by considering
numerical examples. Concluding remarks are given in the final section.

2. Properties of Legendre wavelets

2.1. Wavelets and Legendre wavelets

Wavelets constitute a family of functions constructed from dilation and
translation of a single function called the mother wavelet. When the dila-
tion parameter ’a’ and the translation parameter ’b’ vary continuously, we
have the following family of continuous wavelets as:

ψa,b (t) = |a|−
1
2 ψ

³
t−b
a

´
, a, b ∈ R, a 6= 0

If we restrict the parameters ’a’ and ’b’ to discrete values as a = a−k0 ,
b = nb0a

−k
0 , a0 > 1, b0 > 0 and n, k are positive integers, we have the

following family of discrete wavelets: ψk,n (t) = |a|−
1
2 ψ

³
(a0)

k t− nb0
´

where ψk,n (t) forms an orthonormal basis.

Legendre wavelets ψn,m (t) = ψ (k, n̂,m, t) have four arguements: n̂ =
2n−1, n = 1, 2, 3, ..., 2k−1, k can assume any positive integer, m is the order
of Legendre polynomials and t is the normalized time. They are defined on
the interval [0, 1) as
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ψn,m (t) =

( q
m+ 1

22
k
2Pm

³
2kt− n̂

´
, for n̂−1

2k
≤ t ≤ n̂+1

2k

0 , otherwise

)
(2.1)

where m = 0, 1, 2, ...,M − 1, n = 1, 2, 3, ..., 2k−1. The coefficient
q
m+ 1

2

is for orthonormality, the dilation parameter is a = 2−k and translation
parameter is b = n̂2−k. Here Pm(t) are well-known Legendre polynomials
of order m which are defined on the interval [-1,1], and can be determined
with the aid of the following recurrence formulae:

P0 (t) = 1, P1 (t) = t, Pm+1 (t) =
³
2m+1
m+1

´
t Pm(t)−

³
m

m+1

´
Pm−1 (t),

where m=1,2,3,...

2.2. Function Approximation

A function u(x, t) defined over [0,1) may be expanded as

f(t) =
∞X
n=1

∞X
m=0

cnmψnm (t)(2.2)

where cnm = hf (t) , ψnm (t)i, in which h., .i denotes the inner product.
If the infinite series in Eq.(2.2) is truncated, then Eq.(2.2) can be written

as

f(t) =
2k−1X
n=1

M−1X
m=0

cnmψnm(t) = CTψ(t)(2.3)

where C and ψ (t) are 2k−1M × 1 matrices given by

C =
£
c10, c11, · · · , c1M−1, c20, c21, · · · , c2M−1, · · · , c2K−10, · · · , c2K−1M−1

¤T
(2.4)

ψ (t) = [ψ10 (t) , · · · , ψ1M−1 (t) , ψ20 (t) , · · · , ψ2M−1 (t) , · · · , ψ2K−10 (t) , · · · ,

ψ2K−1M−1 (t)]
T

(2.5)
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The integration of vector ψ(t) defined in Eq. (2.3) is given byR T
0 ψ

³
t
0
´
dt

0
= Pψ (t) where P is

³
2k−1M

´
X
³
2k−1M

´
operational matrix

of integration and is given in [19] as

P =
1

2k

⎡⎢⎢⎢⎢⎢⎢⎣
L F F · · · F
O L F · · · F
...

...
...

...
...

O O · · · O L

⎤⎥⎥⎥⎥⎥⎥⎦(2.6)

In Eq.(2.6) F and L are M x M matrices given by

F =

⎡⎢⎣ 2 · · · 0
...
. . .

...
0 · · · 0

⎤⎥⎦ and

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1√
3

0 0 · · · 0 0 0
√
3
3 0

√
3

3
√
5

0 · · · 0 0 0

0
√
5

5
√
3

0
√
5

5
√
7
· · · 0 0 0

0 0
√
7

7
√
5

0 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · ·
√
2M−3

(2M−3)
√
2M−5 0

√
2M−3

(2M−3)
√
2M−1

0 0 0 0 · · · 0
√
2M−1

(2M−1)
√
2M−3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The integration of the product of two Legendre wavelet function vectors

is obtained as I =
R 1
0 ψ(t)ψ

T (t)dt where I is an identity matrix.

3. State analysis of time-varying singular nonlinear systems
using Legendre wavelets

Consider a time-varying singular nonlinear system of the following form:

E(t)Ẋ(t) = f(t, x(t), u(t)), x(0) = x0(3.1)

where

f(t, x(t), u(t)) = H(t)x(t) + U(t)(3.2)
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where the singular matrix E (t) ∈ Rn×n, the nonlinear function f ∈ Rn, the
state variable x(t) ∈ Rn, the control variable u(t) ∈ Rq. The response x(t),
0 ≤ t ≤ tf , is required to be found.

Let Ẋ(t) = Fψ(t);E(t) = eψ(t);H(t) = hψ(t);U(t) = uψ(t)

This implies X(t) =
R t
0 Fψ(t)dt

X(t) = FPψ(t) +X0 [17]

Eq.(3.1) takes the form E(t)Ẋ(t) = H(t)x(t) + U(t), becomes

e ψ(t)Fψ(t) = hψ(t)(FPψ(t) + x0) + uψ(t)

[eψ(t)F − hψ(t)FP ] = [[x0, 0, 0, · · · , 0] + g]

[e− hP ]ψF = G1 where G1 = [[x0, 0, 0, · · · , 0] + g]

The unknown matrix can be solved using Kronecker product as

(ψF )T =
h
e⊗ I − h⊗ PT

i−1
G1

T

i.e FTψT =
h
e⊗ I − h⊗ PT

i−1
G1

T

FT =
h
e⊗ I − h⊗ PT

i−1
G1

T (ψ−1)T

where FT =

⎡⎢⎢⎢⎢⎢⎢⎣
f0
f1
...

f2k−1(M−1)

⎤⎥⎥⎥⎥⎥⎥⎦ and

G1
T =

⎡⎢⎢⎢⎢⎢⎢⎣
g0
g1
...

g2k−1(M−1)

⎤⎥⎥⎥⎥⎥⎥⎦
The Kronecker product A⊗ PT is defined as in [34].
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4. Convergence Analysis

Theorem 1. [26]
The sum f(t) ∼=

P2k−1
n=1

PM−1
m=0 cnmψnm(t) = CTψ(t) converges to the

solution x(t) of Equations (3.1) and (3.2).

Theorem 2. [24]
Suppose that the function f : [0, 1]→ R is m times continuously differ-

entiable, f ∈ Cm[0, 1], then CTψ approximate f with mean error bound as°°°f −CTψ
°°° ≤ 1

(m!2mk)
supx∈[0,1]

¯̄̄
f (m)(x)

¯̄̄
5. Illustrative Examples

This section will illustrate three numerical examples to show the efficiency
of Legendre wavelet approach discussed in [35].

Problem 1 :
Consider a time varying singular nonlinear system:⎡⎢⎢⎢⎣
0 1 0
0 0 t2

0 0 0

⎤⎥⎥⎥⎦ ẋ(t) =

⎡⎢⎢⎢⎣
tx1(t) + x2(t)
etx1(t)x2(t)

x2(t) (x1(t) + x3(t))

⎤⎥⎥⎥⎦ x(t) +
⎡⎢⎢⎢⎣

0
2t2e−t

0

⎤⎥⎥⎥⎦ ,

x(0) =

⎡⎢⎢⎢⎣
2
0
−2

⎤⎥⎥⎥⎦
The analytic solution x(t) for the above problem is given by

x(t) =

⎡⎢⎢⎢⎣
2e−t − 2te−t

t2e−t

−2e−t + 2te−t

⎤⎥⎥⎥⎦
The comparison between the Legendre wavelet solution and the analytic

solution for t ∈ [0, 4) is shown in Fig. 1 which shows that the Legendre
wavelet approach gives almost the same solution with the analytic method
given in [35].
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Figure 1 : Comparison between Exact solution and the Legendre wavelet
solution for problem 1.

Problem 2 :
Consider a time invariant singular nonlinear system defined from the

form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ẋ(t) +
⎡⎢⎢⎢⎢⎢⎣

x3(t)− x5(t)
x2(t) + x3(t)− x4(t)− x5(t)

(x1(t) + x2(t)− 1)2 − x3(t)
−x4(t)

−x2(t) (−x1(t)− x2(t))− x5(t)

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦,

x(0) =

⎡⎢⎢⎢⎢⎢⎣
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦
The comparison between the Haar wavelet solution and the Legendre

wavelet solution is tabulated in Table 5.1.

Problem 3 :
Consider a time−invariant singular nonlinear system defined from the

form:

Marisol
figu-1
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⎡⎢⎢⎢⎣
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦ ẋ(t) +

⎡⎢⎢⎢⎣
0 0 1
1 1 0
1 0 −3

⎤⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎣
0
0

(x3)
3(t)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎦ ,

x(0) =

⎡⎢⎢⎢⎣
2
−1
−2

⎤⎥⎥⎥⎦
The comparison between the Haar wavelet solution and the Legendre

wavelet solution is tabulated in Table 5.2.
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6. Conclusion

In this paper, Legendre wavelet method for the state analysis of time-
varying singular nonlinear systems is studied. The properties of Legendre
wavelets and its operational matrices are first presented and then are used
to convert into algebraic equations. Also the convergence and error anal-
ysis for the proposed technique have been discussed. Illustrative examples
have been given to demonstrate the validity and applicability of the tech-
nique. The efficiency of the proposed method has been compared with
Haar wavelet method and it is observed that the Legendre wavelet method
is more convenient than the Haar wavelet method in terms of applicability,
efficiency, accuracy, error, and computational effort.
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Table 5.1: Comparison between Haar and Legendre wavelets solution for
problem 2

Time Haar solution m=64 [35] Legendre Wavelet solution

x1(t) x2(t) x3(t) x4(t) x5(t) x1(t) x2(t) x3(t) x4(t) x5(t)

0 0.0000 0.0000 1.0000 0 0.0000 0.0000 0.0000 1.0000 0 0.0000

0.5 -0.3297 0.5768 0.5683 0 0.1425 -0.3299 0.5766 0.5682 0 0.1427

1.0 -0.4776 0.7999 0.4608 0 0.2578 -0.4774 0.7998 0.4609 0 0.2577

1.5 -0.5486 0.9019 0.4198 0 0.3186 -0.5485 0.9019 0.4197 0 0.3185

2.0 -0.5835 0.9510 0.4017 0 0.3495 -0.5834 0.9511 0.4015 0 0.3496

2.5 -0.6008 0.9751 0.3931 0 0.3650 -0.6006 0.9750 0.3930 0 0.3651

3.0 -0.6094 0.9871 0.3889 0 0.3728 -0.6096 0.9870 0.3887 0 0.3727

3.5 -0.6137 0.9931 0.3869 0 0.3767 -0.6135 0.9932 0.3868 0 0.3766

4.0 -0.6159 0.9961 0.3858 0 0.3787 -0.6157 0.9960 0.3859 0 0.3788

Table 5.2: Comparison between Haar and Legendre wavelets solution for
problem 3

Time Haar solution m=64 [35] Legendre Wavelet solution

x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

0 2.000 -1.0000 -2.0000 2.000 -1.0000 -2.0000

0.125 1.7517 -0.7517 -1.9719 1.7516 -0.7516 -1.9718

0.250 1.5071 -0.5071 -1.9431 1.5072 -0.5072 -1.9430

0.375 1.2660 -0.2660 -1.9135 1.2661 -0.2662 -1.9134

0.5 1.0287 -0.0287 -1.8832 1.0288 -0.0289 -1.8833

0.625 0.7953 0.2047 -1.8519 0.7952 0.2048 -1.8518

0.75 0.5658 0.4342 -1.8196 0.5657 0.4341 -1.8195

0.875 0.3404 0.6596 -1.7862 0.3403 0.6595 -1.7861

1.0 0.1193 0.8807 -1.7516 0.1194 0.8808 -1.7512




