Proyecciones Journal of Mathematics Vol. 34, N^o 1, pp. 15-24, March 2015. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172015000100002

On some maps concerning $g\beta\theta$ -open sets

Miguel Caldas Universidade Federal Fluminense, Brasil and Saeid Jafari College of Vestsjaelland South, Denmark Received : January 2014. Accepted : February 2015

Abstract

In this paper, we consider a new notion of $\beta\theta$ -open maps via the concept of $g\beta\theta$ -closed sets which we call approximately $\beta\theta$ -open maps. We study some of its fundamental properties. It turns out that we can use this notion to obtain a new characterization of $\beta\theta$ -T¹/₁ spaces.

1991 Math. Subject Classification : 54C10, 54D10.

Key Words and Phrases : Topological spaces, $g\beta\theta$ -closed sets, $\beta\theta$ -open sets, $\beta\theta$ -open maps, β -irresolute maps, $\beta\theta$ - $T_{\frac{1}{2}}$ spaces.

1. Introduction and Preliminaries

In 2003, T. Noiri [10] introduced a new class of sets called $\beta\theta$ -open in topological space. In M. Caldas [4, 5], a $\beta\theta$ -open function is defined as follows: A function $f: (X, \tau) \to (Y, \sigma)$ is $\beta\theta$ -open if f(A) is $\beta\theta$ -open in Y for

open set A of X, and weakly $\beta\theta$ -open functions which is independent with weakly open functions given by D.A. Rose [11]. In this direction, we introduce the notion of ap- $\beta\theta$ -open maps by using $g\beta\theta$ -closed sets and study some of their basic properties. Finally we characterize the class of $\beta\theta$ - $T_{\frac{1}{2}}$ spaces in terms of ap- $\beta\theta$ -open maps.

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply, Xand Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. Abd. El Monsef et al. [1] and Andrijević [2] introduced the notion of β -open set, which Andrijević called semipreopen, completely independent of each other. In this paper, we adopt the word β -open for the sake of clarity. A subset A of a topological space (X, τ) is called β -open if $A \subseteq Cl(Int(Cl(A)))$, where Cl(A) and Int(A) denote the closure and the interior of A, respectively. The complement of a β -open set is called β -closed. The family of all β -open sets of a space X is denoted by $\beta O(X, \tau)$ or $\beta O(X)$. We set $\beta O(X, x) = \{U : x \in U \in \beta O(X)\}$. The intersection of all β -closed sets containing A is called the β -closure of Aand is denoted by $\beta Cl(A)$. The β -interior of a subset $A \subset X$, denoted by $\beta Int(A)$, is the union of all β -open sets contained in A.

Now we recall the well-known notions given by T.Noiri [10] which will be used in the sequel.

Definition 1. [10]. Let A a subset of X. The β - θ -closure of A, denoted by $\beta Cl_{\theta}(A)$, is the set of all $x \in X$ such that $\beta Cl(O) \cap A \neq \emptyset$ for every $O \in \beta O(X, x)$. A subset A is called β - θ -closed if $A = \beta Cl_{\theta}(A)$. The set $\{x \in X \mid \beta Cl_{\theta}(O) \subset A \text{ for some } O \in \beta O(X, x)\}$ is called the β - θ -interior of A and is denoted by $\beta Int_{\theta}(A)$. A subset A is called β - θ -open if $A = \beta Int_{\theta}(A)$.

Theorem 1.1. [10]. For any subset A of X: (1) $\beta Cl_{\theta}(\beta Cl_{\theta}(A)) = \beta Cl_{\theta}(A)$. (2) $\beta Cl_{\theta}(A)$ is $\beta \theta$ -closed. (3) Intersection of arbitrary collection of $\beta \theta$ -closed set in X is $\beta \theta$ -closed. (4) $\beta Cl_{\theta}(A)$ is the intersection of all $\beta \theta$ -closed sets each containing A. (5) If $A \in \beta O(X)$ then, $\beta Cl(A) = \beta Cl_{\theta}(A)$.

A map $f: (X, \tau) \to (Y, \sigma)$ is called β -irresolute [10] if $f^{-1}(O)$ is β -open in (X, τ) for every $O \in \beta O(Y, \tau)$.

A map $f : (X, \tau) \to (Y, \sigma)$ is called pre- $\beta\theta$ -closed (resp. pre- $\beta\theta$ -open) [6, 7] if for every $\beta\theta$ -closed (resp. $\beta\theta$ -open) set B of $(X, \tau), f(B)$ is $\beta\theta$ closed (resp. $\beta\theta$ -open) in (Y, σ) .

For other advances on topological spaces obtained by our research group we recommend [3, 4, 8, 10].

2. Ap- $\beta\theta$ -open maps.

We introduce the following notion:

Definition 2. A subset A of a topological space (X, τ) is called generalized $\beta\theta$ -closed (briefly $g\beta\theta$ -closed) if $\beta Cl_{\theta}(A) \subset O$ whenever $A \subset O$ and $O \in \beta\theta O(X, \tau)$.

Lemma 2.1. (i) Every $\beta\theta$ -closed set is $g\beta\theta$ -closed. (ii) [10] Every $\beta\theta$ -closed set is β -closed. But not conversely.

Proof. (i) Let $A \subset X$ be $\beta\theta$ -closed. Then $A = \beta \operatorname{Cl}_{\theta}(A)$. Let $A \subset O$ and $O \in \beta\theta O(X, \tau)$. It follows that $\beta \operatorname{Cl}_{\theta}(A) \subset O$. This means that A is $g\beta\theta$ -closed.

(ii) See Remark 3.2 in [10].

Example 2.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. If $A = \{a, b\}$. Then $\beta Cl(A) = X$ and so A is not β -closed. Hence A is not $\beta\theta$ -closed. Since X is the only $\beta\theta$ -open containing A. A is $\beta\theta\theta$ -closed.

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. If $A = \{c\}$, then A is a β -closed set which is not $\beta\theta$ -closed.

Recall that, the complement of a generalized $\beta\theta$ -closed set is called generalized $\beta\theta$ -open (briefly $g\beta\theta$ -open).

Theorem 2.4. A set $A \subset (X, \tau)$ is $g\beta\theta$ -open if and only if $F \subset \beta Int_{\theta}(A)$ whenever F is $\beta\theta$ -closed in X and $F \subset A$.

Proof. Necessity. Let A be $g\beta\theta$ -open and $F \subset A$, where F is $\beta\theta$ -closed. It is obvious that A^c is contained in F^c . This implies that $\beta Cl_{\theta}(A^c) \subset F^c$. Hence $\beta Cl_{\theta}(A^c) = (\beta Int_{\theta}(A))^c \subset F^c$, i.e. $F \subset \beta Int_{\theta}(A)$.

Sufficiency. If F is a $\beta\theta$ -closed set with $F \subset \beta Int_{\theta}(A)$ whenever $F \subset A$, then it follows that $A^c \subset F^c$ and $(\beta Int_{\theta}(A))^c \subset F^c$ i.e., $\beta Cl_{\theta}(A^c) \subset F^c$. Therefore A^c is $g\beta\theta$ -closed and therefore A is $g\beta\theta$ -open. Hence the proof. \Box

Definition 3. A map $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately $\beta\theta$ open (briefly ap- $\beta\theta$ -open) if $\beta Cl_{\theta}(B) \subseteq f(A)$ whenever B is a $g\beta\theta$ -closed
subset of (Y, σ) , A is a $\beta\theta$ -open subset of (X, τ) and $B \subseteq f(A)$.

Theorem 2.5. $f: (X, \tau) \to (Y, \sigma)$ is ap- $\beta\theta$ -open if $f(O) \in \beta\theta C(Y, \sigma)$ for every $\beta\theta$ -open subset O of (X, τ) .

Proof. Let $B \subseteq f(A)$, where A is a $\beta\theta$ -open subset of (X, τ) and B is a $g\beta\theta$ -closed subset of (Y, σ) . Therefore $\beta Cl_{\theta}(B) \subseteq \beta Cl_{\theta}(f(A)) = f(A)$. Thus f is ap- $\beta\theta$ -open. \Box

Clearly pre- $\beta\theta$ -open maps are ap- $\beta\theta$ -open, but not conversely.

Example 2.6. Let $X = \{a, b\}$ be the Sierpinski space with the topology, $\tau = \{\emptyset, \{a\}, X\}$. Let $f : X \to X$ be defined by f(a) = b and f(b) = a. Since the image of every $\beta\theta$ -open set is $\beta\theta$ -closed, then f is ap- $\beta\theta$ -open. However $\{a\}$ is $\beta\theta$ -open in (X, τ) but $f(\{a\})$ is not $\beta\theta$ -open in (Y, σ) . Therefore fis not pre- $\beta\theta$ -open.

Remark 2.7. It is clear that the converse of Theorem 2.5 does not hold: Let (X, τ) be the topological space defined in Example 2.6. Then the identity map on (X, τ) is ap- $\beta\theta$ -open, but $f(a) \notin \beta\theta C(X, \tau)$ for $\{a\}$ a $\beta\theta$ -open set of (X, τ) .

In the following theorem, we show that under certain conditions the converse of Theorem 2.5 is true.

Theorem 2.8. Let $f: (X, \tau) \to (Y, \sigma)$ be a map. If the $\beta\theta$ -open and $\beta\theta$ closed sets of (Y, σ) coincide, then f is ap- $\beta\theta$ -open if and only if $f(A) \in \beta\theta C(Y, \sigma)$ for every $\beta\theta$ -open subset A of (X, τ) .

Proof. Suppose that f is ap- $\beta\theta$ -open. Let A be an arbitrary subset of (Y, σ) such that $A \subseteq Q$ where $Q \in \beta\theta O(Y, \sigma)$. Then by hypothesis

 $\beta Cl_{\theta}(A) \subseteq \beta Cl_{\theta}(Q) = Q$. Therefore all subset of (Y, σ) are $g\beta\theta$ -closed and hence all are $g\beta\theta$ -open. So for any $O \in \beta\theta O(X, \tau), f(O)$ is $g\beta\theta$ closed in (Y, σ) . Since f is ap- $\beta\theta$ -open $\beta Cl_{\theta}(f(O)) \subseteq f(O)$. Therefore $\beta Cl_{\theta}(f(O)) = f(O)$, i.e., f(O) is $\beta\theta$ -closed in (Y, σ) . The converse is obvious by Theorem 2.5. \Box

As an immediate consequence of Theorem 2.8, we have the following:

Corollary 2.9. Let $f : (X, \tau) \to (Y, \sigma)$ be a map. If the $\beta\theta$ -closed and $\beta\theta$ -open sets of (Y, σ) coincide, then f is ap- $\beta\theta$ -open if and only if, f is pre- $\beta\theta$ -open.

Definition 4. A map $f : (X, \tau) \to (Y, \sigma)$ is called contra pre- $\beta\theta$ -open if f(O) is $\beta\theta$ -closed in (Y, σ) for each set $O \in \beta\theta O(X, \tau)$.

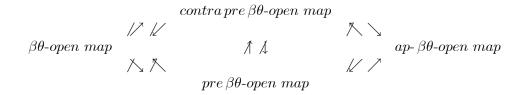
Remark 2.10. In fact contra pre- $\beta\theta$ -open maps and pre- $\beta\theta$ -open are independent notions.

Example 2.6 above shows that contra-pre- $\beta\theta$ -openness does not imply pre- $\beta\theta$ -openness while the converse is shown in the following example.

Example 2.11. The identity map on the same topological space (X, τ) where $\tau = \{\emptyset, \{a\}, X\}$ is an example of a pre- $\beta\theta$ -open map which is not contra pre- $\beta\theta$ -open.

Remark 2.12. By Theorem 2.5 and Remark 2.7, we have that every contra pre- $\beta\theta$ -open map is ap- $\beta\theta$ -open, the converse does not hold.

The following diagram holds :



The next theorem establishes conditions under which the inverse map of every $g\beta\theta$ -open set from codomain is a $g\beta\theta$ -open set. **Theorem 2.13.** If a map $f : (X, \tau) \to (Y, \sigma)$ is surjective β -irresolute and ap- $\beta\theta$ -open, then $f^{-1}(A)$ is $g\beta\theta$ -open whenever A is $g\beta\theta$ -open subset of (Y, σ) .

Proof. Let A be a $g\beta\theta$ -open subset of (Y, σ) . Suppose that $F \subseteq f^{-1}(A)$, where $F \in \beta\theta C(X, \tau)$. Taking complements we obtain $f^{-1}(A^c) \subseteq F^c$ or $A^c \subseteq f(F^c)$. Since f is an ap- $\beta\theta$ -open and $(\beta Int_{\theta}(A))^c = \beta Cl_{\theta}(A^c) \subseteq$ $f(F^c)$. It follows that $(f^{-1}(\beta Int_{\theta}(A)))^c \subseteq F^c$ and hence $F \subseteq f^{-1}(\beta Int_{\theta}(A))$. Since f is β -irresolute $f^{-1}(\beta Int_{\theta}(A))$ is $\beta\theta$ -open. Thus, we have $F \subseteq$ $f^{-1}(\beta Int_{\theta}(A)) = \beta Int_{\theta}(f^{-1}(\beta Int_{\theta}(A))) \subseteq \beta Int_{\theta}(f^{-1}(A))$. This implies that $f^{-1}(A)$ is $g\beta\theta$ -open in (X, τ) . \Box

A map $f : (X, \tau) \to (Y, \sigma)$ is called $g\beta\theta$ -irresolute if $f^{-1}(O)$ is $g\beta\theta$ closed in (X, τ) for every $g\beta\theta$ -closed in (Y, σ) .

Theorem 2.14. Let $f: (X, \tau) \to (Y, \sigma)$, $g: (Y, \sigma) \to (Z, \gamma)$ be two maps such that $g \circ f: (X, \tau) \to (Z, \gamma)$. Then

(i) $g \circ f$ is ap- $\beta \theta$ -open, if f is pre- $\beta \theta$ -open and g is ap- $\beta \theta$ -open.

(ii) $g \circ f$ is ap- $\beta\theta$ -open, if f is ap- $\beta\theta$ -open and g is bijective pre- $\beta\theta$ -closed and $g\beta\theta$ -irresolute.

Proof. (i) Suppose that A is an arbitrary $\beta\theta$ -open subset in (X, τ) and B a $g\beta\theta$ -closed subset of (Z, γ) for which $B \subseteq g \circ f(A)$. Then f(A) is $\beta\theta$ -open in (Y, σ) since f is pre- $\beta\theta$ -open. Since g is ap- $\beta\theta$ -open, $\beta Cl_{\theta}(B) \subseteq g(f(A))$. This implies that $g \circ f$ is ap- $\beta\theta$ -open.

(ii) Let A be an arbitrary $\beta\theta$ -open subset of (X, τ) and B a $g\beta\theta$ -closed subset of (Z, γ) for which $B \subseteq g \circ f(A)$. Hence $g^{-1}(B) \subseteq f(A)$. Then $\beta Cl_{\theta}(g^{-1}(B)) \subseteq f(A)$ because $g^{-1}(B)$ is $g\beta\theta$ -closed and f is ap- $\beta\theta$ -open. Hence we have,

 $\beta Cl_{\theta}(B) \subseteq \beta Cl_{\theta}(gg^{-1}(B)) \subseteq g(\beta Cl_{\theta}(g^{-1}(B))) \subseteq g(f(A)) = (g \circ f)(A).$ This implies that $g \circ f$ is ap- $\beta \theta$ -open. \Box

Now we state the following two theorems whose proof are straightforward and hence omitted.

Theorem 2.15. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be two maps such that

 $g \circ f : (X, \tau) \to (Z, \gamma)$. Then,

(i) $g \circ f$ is contra pre $\beta \theta$ -open, if f is pre $\beta \theta$ -open and g is contra pre $\beta \theta$ -open.

(ii) $g \circ f$ is contra pre $\beta\theta$ -open, if f is contra pre $\beta\theta$ -open and g is pre $\beta\theta$ -closed.

Theorem 2.16. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be two maps such that $g \circ f : (X, \tau) \to (Z, \gamma)$ is contra pre $\beta\theta$ -open. (i) If f is a β -irresolute surjection, then g is contra pre $\beta\theta$ -open. (ii) If g is a β -irresolute injection, then f is contra pre $\beta\theta$ -open.

Definition 5. Let (X, τ) and (Y, σ) be topological spaces. A map f: $(X, \tau) \to (Y, \sigma)$ is said to have an $\beta\theta$ -closed graph if its $Gr(f) = \{(x, y) : y = f(x), x \in X\}$ is $\beta\theta$ -closed in the product space $(X \times Y, \tau_p)$, where τ_p denotes the product topology.

We say that the product space $X = X_1 \times ... \times X_n$ has Property $P_{\beta\theta}$ if A_i is a $\beta\theta$ -open set in a topological spaces X_i , for i = 1, 2, ..., n, then $A_1 \times ... \times A_n$ is also $\beta\theta$ -open in the product space $X = X_1 \times ... \times X_n$.

It is well-known that the graph Gr(f) of f is a closed set of $X \times Y$, whenever f is continuous and Y is Hausdorff. The following theorem is a modification of this fact, i.e., we give a condition under which a contra pre $\beta\theta$ -open map has $\beta\theta$ -closed graph.

Theorem 2.17. If $f : (X, \tau) \to (Y, \sigma)$ is a contra pre $\beta\theta$ -open map with $\beta\theta$ -closed fibers, then the graph Gr(f) of f is $\beta\theta$ -closed in the product space $X \times Y$, which have the property $P_{\beta\theta}$.

Proof. Let $(x, y) \in X \times Y \setminus Gr(f)$. Then $x \in (f^{-1}\{y\})^c$. Since fibers are $\beta\theta$ -closed, there is an $\beta\theta$ -open set O for which $x \in O \subseteq (f^{-1}\{y\})^c$. Set $A = (f(O))^c$. Then A is an $\beta\theta$ -open set in Y containing y, since f is contra pre $\beta\theta$ -open. Therefore, we obtain that $(x, y) \in O \times A \subseteq X \times Y \setminus Gr(f)$, where $O \times A \in \beta\theta O(X \times Y, \tau_p)$. This implies that $X \times Y \setminus Gr(f)$ is $\beta\theta$ -open in $X \times Y$. Hence Gr(f) is a $\beta\theta$ -closed set of $X \times Y$. \Box

3. A characterization of $\beta\theta$ - $T_{\frac{1}{2}}$ spaces

Lemma 3.1. Let A be a $g\beta\theta$ -closed subset of (X, τ) . Then $\beta Cl_{\theta}(A) \setminus A$ does not contain a nonempty $\beta\theta$ -closed set.

Proof. Let F be a $\beta\theta$ -closed set such that $F \subset \beta Cl_{\theta}(A) \setminus A$. Clearly $A \subset F^c$, where A is $g\beta\theta$ -closed and F^c is $\beta\theta$ -open. Thus $\beta Cl_{\theta}(A) \subset F^c$, or equivalently $F \subset (\beta Cl_{\theta}(A))^c$. Since by assumption $F \subset \beta Cl_{\theta}(A)$, then $F \subset (\beta Cl_{\theta}(A))^c \cap \beta Cl_{\theta}(A) = \emptyset$. This shows that F coincides with the void-set. \Box

Definition 6. A topological space (X, τ) is $\beta \theta T_{\frac{1}{2}}$ if every $g\beta \theta$ -closed set is $\beta \theta$ -closed.

Theorem 3.2. For a topological space (X, τ) the following conditions are equivalent:

(i) X is βθ-T¹/₂,
(ii) For each x ∈ X, {x} is βθ-closed or βθ-open.

Proof. (i) \Rightarrow (ii): Suppose that for some $x \in X$, $\{x\}$ is not $\beta\theta$ -closed. Then $\{x\}^c$ is not $\beta\theta$ -open. Since X is the only $\beta\theta$ -open containing $\{x\}^c$, the set $\{x\}^c$ is $g\beta\theta$ -closed and so it is $\beta\theta$ -closed in the $\beta\theta$ - $T_{\frac{1}{2}}$ space (X, τ) . Therefore $\{x\}^c$ is $\beta\theta$ -closed or equivalently $\{x\}$ is $\beta\theta$ -open.

 $(ii) \Rightarrow (i)$: Let $A \subset X$ be $g\beta\theta$ -closed. Let $x \in \beta Cl_{\theta}(A)$. We will show that $x \in A$. By the hypothesis, the singleton $\{x\}$ is either $\beta\theta$ -closed or $\beta\theta$ -open. We consider these two cases.

Case 1. $\{x\}$ is $\beta\theta$ -closed: Then if $x \notin A$, there exists a $\beta\theta$ -closed set in $\beta Cl_{\theta}(A) - A$. By Lemma 3.1 $x \in A$.

Case 2. $\{x\}$ is $\beta\theta$ -open: Since $x \in \beta Cl_{\theta}(A)$, then $\{x\} \cap A \neq \emptyset$. Thus $x \in A$.

Hence in both cases, we have $x \in A$, i.e., $\beta Cl_{\theta}(A) \subset A$ or equivalently A is $\beta\theta$ -closed since the inclusion $A \subset \beta Cl_{\theta}(A)$ is trivial. \Box

In the following theorem, we give a new characterization of $\beta \theta - T_{\frac{1}{2}}$ spaces by using the notion of ap- $\beta \theta$ -open maps.

Theorem 3.3. Let (Y, σ) be a topological space. Then the following statements are equivalent.

(i) (Y, σ) is a $\beta \theta$ - $T_{\frac{1}{2}}$ space,

(ii) For every space (X, τ) and every map $f : (X, \tau) \to (Y, \sigma)$, f is ap- $\beta \theta$ -open.

Proof. $(i) \to (ii)$: Let B be a $g\beta\theta$ -closed subset of (Y, σ) and suppose that $B \subseteq f(A)$ where $A \in \beta\theta O(X, \tau)$. Since (Y, σ) is a $\beta\theta$ - $T_{\frac{1}{2}}$ space, B is $\beta\theta$ -closed (i.e., $B = \beta Cl_{\theta}(B)$). Therefore $\beta Cl_{\theta}(B) \subseteq f(A)$. Then f is ap- $\beta\theta$ -open.

 $(ii) \to (i)$: Let *B* be a g $\beta\theta$ -closed subset of (Y, σ) and let *X* be the set *Y* with the topology $\tau = \{\emptyset, B, X\}$. Finally let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. By assumption *f* is ap- $\beta\theta$ -open. Since *B* is g $\beta\theta$ -closed in (Y, σ) and $\beta\theta$ -open in (X, τ) and $B \subseteq f(B)$, it follows that $\beta Cl_{\theta}(B) \subseteq$

f(B) = B. Hence B is $\beta\theta$ -closed in (Y, σ) . Therefore (Y, σ) is a $\beta\theta$ - $T_{\frac{1}{2}}$ space. \Box

References

- M. E. Abd. El-Monsef, S. N. EL-Deeb and R. A. Mahmoud: β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, pp. 77-90, (1983).
- [2] D. Andrijević: Semi-preopen sets, Mat. Vesnik 38, pp. 24-32, (1986).
- [3] M. Caldas: Other characterizations of β - θ - R_0 topological spaces, Tamkang Jour. of Math., 44, pp. 303-311, (2013).
- [4] M. Caldas: On β-θ-generalized closed sets snd θ-β-generalized continuity in topolological spaces, J. Adv. Math. Studies, 4, pp. 13-24, (2011).
- [5] M. Caldas, Weakly sp-θ-closed functions and semipre-Hausdorff spaces, Creative Math. Inform., 20, 2, pp. 112-123, (2011).
- [6] M. Caldas, Functions with strongly β-θ-closed graphs, J. Adv. Studies Topology, 3, pp. 1-6, (2012).
- [7] M. Caldas, On characterizations of weak θ-β-openness, Antartica J. Math., 9(3), pp. 195-203, (2012).
- [8] M. Caldas, On contra βθ-continuous functions, Proyecciones Journal Math. 39, 4, pp. 333-342, (2013).
- [9] S. Jafari and T. Noiri: On β-quasi irresolute functions, Mem. Fac. Sci. Kochi Uni.(math), 21, pp. 53-62, (2000).
- [10] T. Noiri, Weak and strong forms of β-irresolute functions, Acta Math. Hungar., 99, pp. 315-328, (2003).
- [11] D.A. Rose: On weak openess and almost openness, Internat. J. Math. and Math. Sci., 7, pp. 35-40, (1984).

M. Caldas Departamento de Matematica Aplicada Universidade Federal Fluminense Rua Mario Santos Braga ,s/n?, CEP: 24020-140 , Niteroi , RJ BRASIL e-mail: gmamccs@vm.uff.br

and

S. Jafari

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK e-mail: jafari@stofanet.dk