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Abstract

We obtain a new version of closed graph theorem on product spaces.
Fernandez’s closed graph theorem for bilinear and multilinear map-
pings follows as a special case.
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1. Introduction

The classical closed graph theorem [1] says that, if X, Y are Banach spaces
(or Fréchet spaces) and f : X → Y a linear mapping with closed graph,
then f is continuous. As the closed graph theorem is a famous theorem,
there have been a lot of results on it. Especially, we can find many new
types of closed graph theorem recently, such as [2, 5, 6, 7, 8, 10, 11, 12].

But whether the closed graph theorem holds for mappings defined on
product spaces?

In the first years, people considered the bilinear mappings defined on
product spaces. P. J. Cohen [3], in 1974, gave us a negative answer for an
equivalent version of the above classical closed graph theorem. However, in
1996, C. S. Fernandez [4] showed the above classical closed graph theorem
holds for bilinear and multilinear mappings defined on product spaces.

In this paper, we will give another version of closed graph theorem for bi-
mappings and multi-mappings on product spaces, and show that the family
of bilinear (or multilinear) mappings with closed graph is just a subfamily
of bi-mappings (or multi-mappings) with closed graph. Especially, from
our results, the version of closed graph theorem in [11, 12] can easily be
obtained and the closed graph theorem in [4] is just a special case.

2. Main results

Definition 2.1. Let X1, X2 and Y be topological vector spaces. A map-
ping f : X1×X2 → Y is said to be a bi-mapping if for each x1, x1n, u

1
n ∈ X1

and x2, x2n, u
2
n ∈ X2 with n ∈N the following (1), (2) and (3) hold:

(1) if f(x1n, 0)→ 0 and f(u1n, 0)→ 0, then f(x1n + u1n, 0)→ 0;

if f(0, x2n)→ 0 and f(0, u2n)→ 0, then f(0, x2n + u2n)→ 0;

(2) if f(x1n − x1, 0)→ 0 and tn → t in the scalar field K, then

f(tnx
1
n − tx1, 0)→ 0;

if f(0, x2n − x2)→ 0 and tn → t in the scalar field K, then

f(0, tnx
2
n − tx2)→ 0;

(3) if x1n → x1 and x2n → x2, then

f(x1n, x
2
n)→ f(x1, x2)
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if and only if

f(x1n − x1, 0)→ 0 and f(0, x2n − x2)→ 0.

Note that a Fréchet space is a complete metrizable linear space. How-
ever, a Fréchet space is also a separated complete paranormed space [9].

Theorem 2.2. Let X1, X2 and Y be Fréchet spaces. If f : X1 ×X2 → Y
is a bi-mapping with closed graph, then f is continuous.

Proof. Let X1 = (X1, k · k1), X2 = (X2, k · k2) and Y = (Y, k · k) where
k·k1, k·k2 and k·k are paranorms [9] on X1, X2 and Y separatively. Define
a mapping

d : (X1 ×X2)× (X1 ×X2)→ R

by

d((x1, x2), (u1, u2)) = kx1 − u1k1 + kx2 − u2k2 + kf(x1, x2)− f(u1, u2)k

for all x1, u1 ∈ X1 and x2, u2 ∈ X2. It is easy to know d is a metric on
X1 ×X2.

Let {(x1n, x2n)} be Cauchy in (X1 ×X2, d). Then

d((x1n, x
2
n), (x

1
m, x

2
m)) = kx1n−x1mk1+kx2n−x2mk2+kf(x1n, x2n)−f(x1m, x2m)k→ 0

when n,m→ +∞. So {x1n}, {x2n} and {f(x1n, x2n)} are Cauchy in (X1, k·k1),
(X2, k · k2) and (Y, k · k) respectively. Since X1, X2 and Y are complete,
there exist x1 ∈ X1, x

2 ∈ X2 and y ∈ Y such that

kx1n − x1k1 → 0, kx2n − x2k2 → 0, kf(x1n, x2n)− yk→ 0.

But f has closed graph. Then y = f(x1, x2) and

d((x1n, x
2
n), (x

1, x2)) = kx1n − x1k1 + kx2n − x2k2 + kf(x1n, x2n)− f(x1, x2)k

= kx1n − x1k1 + kx2n − x2k2 + kf(x1n, x2n)− yk→ 0

when n→ +∞. Hence, (X1 ×X2, d) is a complete metric space.
Let (x1n, x

2
n)→ (x1, x2) and (u1n, u

2
n)→ (u1, u2) in (X1 ×X2, d). Then

d((x1n, x
2
n), (x

1, x2)) = kx1n−x1k1+kx2n−x2k2+kf(x1n, x2n)−f(x1, x2)k→ 0,

d((u1n, u
2
n), (u

1, u2)) = ku1n−u1k1+ku2n−u2k2+kf(u1n, u2n)−f(u1, u2)k→ 0
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when n→ +∞. As f is a bi-mapping, by (3),

kf(x1n − x1, 0)k→ 0, kf(0, x2n − x2)k→ 0,

and
kf(u1n − u1, 0)k→ 0, kf(0, u2n − u2)k→ 0.

And by (1),

kf(x1n + u1n − x1 − u1, 0)k→ 0, kf(0, x2n + u2n − x2 − u2)k→ 0.

Since

kx1n + u1n − x1 − u1k1 ≤ kx1n − x1k1 + ku1n − u1k1 → 0

and
kx2n + u2n − x2 − u2k2 ≤ kx2n − x2k2 + ku2n − u2k2 → 0,

by (3) again,

kf(x1n + u1n, x
2
n + u2n)− f(x1 + u1, x2 + u2)k→ 0.

Thus,
d((x1n + u1n, x

2
n + u2n), (x

1 + u1, x2 + u2))

= kx1n + u1n − x1 − u1k1 + kx2n + u2n − x2 − u2k2
+kf(x1n + u1n, x

2
n + u2n)− f(x1 + u1, x2 + u2)k→ 0

so the additive operation is continuous on (X1 ×X2, d).
Let (x1n, x

2
n)→ (x1, x2) in (X1×X2, d) and tn → t in the scalar field K.

Then

d((x1n, x
2
n), (x

1, x2)) = kx1n−x1k1+kx2n−x2k2+kf(x1n, x2n)−f(x1, x2)k→ 0

so

kx1n − x1k1 → 0, kx2n − x2k2 → 0, kf(x1n, x2n)− f(x1, x2)k→ 0.

By (3), kf(x1n − x1, 0)k→ 0 and kf(0, x2n − x2)k→ 0. And by (2),

kf(tnx1n − tx1, 0)k→ 0, kf(0, tnx2n − tx2)k→ 0.
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By (3) again,
f(tnx

1
n, tnx

2
n)→ f(tx1, tx2)

since ktnx1n − tx1k1 → 0 and ktnx2n − tx2k2 → 0. Hence,

d(tn(x
1
n, x

2
n), t(x

1, x2)) = ktnx1n − tx1k1 + ktnx2n − tx2k2

+kf(tnx1n, tnx2n)− f(tx1, tx2)k→ 0

so the scalar multiplication is also continuous in (X1 ×X2, d).

It follows that (X1×X2, d) is a complete metric vector space. Namely,
it is a Fréchet space. Let I(x1, x2) = (x1, x2) for each (x1, x2) ∈ X1 ×X2.
Then

I : (X1 ×X2, d)→ X1 ×X2

is continuous, one to one and surjective. By Banach open mapping theorem
[9], the inverse

I−1 : X1 ×X2 → (X1 ×X2, d)

is continuous too.

Let kx1n − x1k1 → 0 and kx2n − x2k2 → 0.

Then
(x1n, x

2
n) = I−1(x1n, x

2
n)→ I−1(x1, x2) = (x1, x2)

in (X1 ×X2, d) so

d((x1n, x
2
n), (x

1, x2)) = kx1n−x1k1+kx2n−x2k2+kf(x1n, x2n)−f(x1, x2)k→ 0.

Hence, kf(x1n, x2n)− f(x1, x2)k→ 0 so f(x1n, x
2
n)→ f(x1, x2) in Y . 2

Remark 2.3. If, in Theorem 2.2,X1, X2, Y are Banach spaces, then every
bilinear mapping f from X1 ×X2 to Y with closed graph is a bi-mapping
with closed graph. So the closed graph theorem for bilinear mappings [4]
is just a special case of Theorem 2.2.

Remark 2.4. For a weakly quasi-linear mapping f [12] from a Hausdorff
topological vector space X to a topological vector space Y , define g : X ×
Z → Y by g(x, z) = f(x) where Z is a topological vector space. Then g
is a bi-mapping from X × Z to Y , even g is with closed graph when f is
with closed graph. Hence, the result of closed graph theorem in [11, 12]
can immediately be obtained from Theorem 2.2.
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However, there are some bi-mappings which are not bilinear, not weakly
quasi-linear, and even continuous.

Example 2.5. Define f : R2 → R by f(x, u) = x2u2.
It is obvious that f satisfies the condition (1), (2) and the necessity of

(3) in Definition 2.1. Let

xn → x, un → u, f(xn − x, 0)→ 0, f(0, un − u)→ 0.

Then x2nu
2
n → x2u2 in real space R by the property of product limit.

So
f(xn, un) = x2nu

2
n → x2u2 = f(x, u)

in R. Hence, f is a bi-mapping on R2.
However, f is not bilinear, obviously. f is not weakly quasi-linear either.

Let

zn = (xn, un) = (n,
1

n2
)

and

z0n = (x
0
n, u

0
n) = (n

2,
1

n3
)

where n ∈ N. Obviously,

f(zn) = f(xn, un) = x2nu
2
n = n2 · 1

n4
→ 0

and

f(z0n) = f(x0n, u
0
n) = (x

0
n)
2(u0n)

2 = n4 · 1
n6
→ 0.

But

f(zn + z0n) = f((xn, un) + (x
0
n, u

0
n)) = f((xn + x0n), (un + u0n))

= (xn + x0n)
2(un + u0n)

2 = (xnun + xnu
0
n + x0nun + x0nu

0
n)
2

=

µ
n · 1

n2
+ n · 1

n3
+ n2 · 1

n2
+ n2 · 1

n3

¶2
→ 1 6= 0

so f is not weakly quasi-linear.

Remark 2.6. For n ≥ 2, define f : R2 → R by f(x, u) = xnun. Then f is
a bi-mapping, but not bilinear, not weakly quasi-linear, and even continu-
ous.
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Example 2.7. Define f : R2 → R by f(x, u) =
√
x2 + u2. Then f is a

bi-mapping, but not bilinear.

In the following, we will give some propositions which are helpful to our
knowledge of bi-mappings in further.

As in [12], denote by wql(X,Y ), the family of all weakly quasi-linear
mappings from the topological vector space X to the topological vector
space Y .

Proposition 2.8. LetX1,X2 and Y be Hausdorff topological vector spaces
and X1, X2 finite-dimensional. If g ∈ wql(X1, Y ) and h ∈ wql(X2, Y ), and
f : X1 ×X2 → Y is defined by

f(x, u) = αg(x) + βh(u), ∀x ∈ X1, u ∈ X2

for some α, β ∈ R, then f is a continuous bi-mapping, but not bilinear for
g or h is not linear.

Proof. As in [12], we know g(0) = 0, h(0) = 0 and g, h both are
continuous. So it is easy to know f is continuous and a bi-mapping for
g ∈ wql(X1, Y ) and h ∈ wql(X2, Y ). 2

Proposition 2.9. Let (X1, k·k1) and (X2, k·k2) be nontrivial paranormed
space [9]. Define f : X1 ×X2 → R by

f(x, u) = αkxk1 + βkuk2, ∀x ∈ X1, u ∈ X2.

Then f is a bi-mapping but f is not bilinear when k · k1 6= 0 or k · k2 6= 0.

Proof. Following the definition of paranorm [9], it is easy to know. 2

Proposition 2.10. Let ϕ : [0,+∞)→ (0,+∞) and ψ : [0,+∞)→ (0,+∞)
be continuous functions such that

0 < µ = inf
t≥0

ϕ(t) ≤ sup
t≥0

ϕ(t) =M < +∞.

0 < µ = inf
t≥0

ψ(t) ≤ sup
t≥0

ψ(t) =M < +∞.

Let (X1, k·k1), (X2, k·k2) be Fréchet spaces and Y topological vector spaces.
If g ∈ wql(X1, Y ) and h ∈ wql(X2, Y ) are continuous, and f : X1×X2 → Y
is defined by

f(x, u) = ϕ(kxk1) g(x) + ψ(kuk2)h(u), ∀x ∈ X1, u ∈ X2,

then f is a continuous bi-mapping, but not bilinear.
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Proof. We know k · k1 : X1 → R is continuous [9]. So ϕ(k · k1) g(·) :
X1 → Y is continuous for continuous mappings ϕ and g. As the same,
ψ(k · k2)h(·) : X2 → Y is continuous for continuous mappings ψ and h.
Then f is continuous on X1 ×X2.

As in [12], g(0) = h(0) = 0. Since 0 < µ ≤ ϕ(t) ≤ M < +∞ and
0 < µ ≤ ψ(t) ≤ M < +∞ for all t ≥ 0, ϕ(kxnk1) g(xn) → 0 if and only if
g(xn) → 0, ψ(kunk2)h(un) → 0 if and only if h(un) → 0. Thus, (1) and
(2) hold for f for g ∈ wql(X1, Y ), h ∈ wql(X2, Y ).

Also, for g(0) = h(0) = 0, g ∈ wql(X1, Y ) and h ∈ wql(X2, Y ), (3) hold
for f since f , g, h are continuous and ϕ, ψ are continous at 0. Thus, f is
a bi-mapping. 2

Proposition 2.11. Let X1, X2 and Y be metric linear spaces and f :
X1 ×X2 → Y a bi-mapping. If f satisfies

f(xn, 0)→ f(x, 0) =⇒ f(xn − x, 0)→ 0,

f(0, un)→ f(0, u) =⇒ f(0, un − u)→ 0,

and for each x ∈ X and u ∈ U , f(·, u) : X1 → Y , f(x, ·) : X2 → Y are
continuous, then f is continuous.

Proof. If xn → x in X1 and un → u in X2, then f(xn, 0) → f(x, 0)
and f(0, un) → f(0, u) so f(xn − x, 0) → 0, f(0, un − u) → 0 and then
f(xn, un)→ f(x, u) since f is a bi-mapping. Thus, f is continuous. 2

Proposition 2.12. Let X1, X2 and Y be topological vector spaces and f
a mapping from X1×X2 to Y . If f(·, 0) ∈ wql(X1, Y ), f(0, ·) ∈ wql(X2, Y )
and f is continuous, then f is a bi-mapping from X1 ×X2 to Y .

Proof. It is easy to know (1) and (2) hold for f since f(·, 0) ∈ wql(X1, Y ),
f(0, ·) ∈ wql(X2, Y ).

If xn → x inX1 and un → u inX2, then f(xn, un)→ f(x, u), f(xn, 0)→
f(x, 0) and f(0, un) → f(0, u) since f is continuous. So f(xn − x, 0) →
0, f(0, un − u)→ 0 since f(·, 0) ∈ wql(X1, Y ), f(0, ·) ∈ wql(X2, Y ). 2

Similarly, we can define multi-mappings on topological vector spaces
and obtain the multi-mappings version of closed graph theorem on product
spaces as follows.

Definition 2.13. Let X1, X2, · · ·, Xm and Y be topological vector spaces.
A mapping

f : X1 ×X2 × · · · ×Xm → Y
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is said to be a multi-mapping if for each xi, xin, u
i
n ∈ Xi with i = 1, 2, · · · ,m

and n ∈ N the following (1), (2) and (3) hold:

(1) if f(0, · · · , 0, xin, 0, · · · , 0)→ 0 and f(0, · · · , 0, uin, 0, · · · , 0)→ 0, then

f(0, · · · , 0, xin + uin, 0, · · · , 0)→ 0

where i = 1, 2, · · · ,m;

(2) if f(0, · · · , 0, xin − xi, 0, · · · , 0) → 0 and tn → t in the scalar field K,
then

f(0, · · · , 0, tnxin − txi, 0, · · · , 0)→ 0

where i = 1, 2, · · · ,m;

(3) if xin → xi, i = 1, 2, · · · ,m, then

f(x1n, x
2
n, · · · , xmn )→ f(x1, x2, · · · , xm)

if and only if

f(0, · · · , 0, xin − xi, 0, · · · , 0)→ 0 for all i = 1, 2, · · · ,m

Theorem 2.14. Let X1, X2, · · ·, Xm and Y be Fréchet spaces. If

f : X1 ×X2 × · · · ×Xm → Y

is a multi-mapping with closed graph, then f is continuous.

Remark 2.15. It is similar to Remark 2.3, we know Fernandez’s closed
graph theorem on product spaces for multilinear mappings in [4] is just a
special case of Theorem 2.14.
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