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Abstract

Sufficient conditions for the boundedness and square integrabil-
ity of solutions and their derivatives of certain fourth order nonlin-
ear differential equation are given by means of the Lyapunov’s second
method. Our results obtained in this work, generalize existing results
on fourth order nonlinear differential equations in the literature. For
illustration, an example is also given.
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1. Introduction

During the past few years there has been many excellent results concerning
the boundedness of the solutions of nonlinear ordinary differential equa-
tions by the use of the Lyapunov’s method (Yoshizawa [27]). Today, this
method is widely recognized as an excellent tool not only in the study of
differential equations but also in the theory of control systems, dynamical
systems, systems with time lag, power system analysis, time varying non-
linear feedback systems, and so on. But, finding an appropriate Lyapunov
function for higher order differential equations is in general a difficult task.
Many works concerning have investigated the boundedness of solutions of
certain differential equations of the fourth order. We mention, the works of
Ezeilo [6], [7], Harrow [8], [9], Afuwape and Adesina [1], Tiryaki and Tunç
[17], Tunç [18], [19], [20], Tunç and Tiryaki [21] where the Lyapunov’s sec-
ond method was used.

In [12], Omeike by using the Cauchy formula for the particular solution
of nonlinear differential equations with constant coefficients, has proved
that the solution of the equation

x0000 + ax000 + bx00 + cx0 + h(x) = p(t),(1.1)

and its derivatives up to order three are bounded.

In [22], and [25] Tunç established sufficient conditions for the asymptotic
stability of the zero solution and the boundedness of the the following
equations

x0000 + a1x
000 + ψ(x, x0)x00 + a4x

0 + h(x) = 0,(1.2)

x0000 + a1x
000 + ψ(x, x0)x00 + g(x0) + a4x = 0,(1.3)

x0000 + ax000 + ψ(x, x0, x00) + g(x, x0) + h(x) = p(t).(1.4)

The problem related to the study of square integrability of solutions for
higher order nonlinear differential equations is also of great interest, but
it should be noted that only a few results are related to the fourth order
nonlinear differential equations. In 1989 Andres and Vlček [2], discussed
the square integrable solutions of (1.1).
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The purpose of this paper is to define a Lyapunov function and use
it to study the boundedness of solutions and we also study the square
integrability of solutions of the differential equation of the form

µ
g
³
x(t)

´
x00(t)

¶00
+ a (t)

µ
p
³
x(t)

´
x00(t)

¶0
+ b (t)

µ
q
³
x(t)

´
x0(t)

¶0

+c(t) f
³
x(t)

´
x0(t) + d (t)h

³
x(t)

´
= e(t),

(1.5)

where a(t), b(t), c(t), d(t), e(t), f(x), g(x), p(x), q(x) and h(x) are continuous
functions depending only on the arguments shown and p0(x) , q0(x) , f 0(x)
and h0(x) exist and are continuous.

Hence, the aim of this paper consists mainly in further extension of the
related existing results.

2. Assumptions and main results

We begin by presenting some sufficient assumptions which will be used in
equation (1.5), and suppose that there are positive constants

a0, b0, c0, d0, f0, g0, p0, q0, a1, b1, c1, d1, f1, g1, p1, q1,m,M, δ, η1, h0, δ0, such that
the following conditions are satisfied

i) 0 < a0 ≤ a (t) ≤ a1; 0 < b0 ≤ b (t) ≤ b1; 0 < c0 ≤ c (t) ≤ c1; 0 <
d0 ≤ d (t) ≤ d1 for t ≥ 0.

ii) 0 < f0 ≤ f (x) ≤ f1; g0 ≤ g (x) ≤ g1; 0 < p0 ≤ p (x) ≤ p1;
0 < q0 ≤ q (x) ≤ q1 for x ∈ R

and 0 < m < min
n
f0, p0, g0, 1

o
, M > max

n
f1, , g1, p1, 1

o
.

iii)
h(x)

x
≥ δ > 0 ( for x 6= 0) ; h (0) = 0.

iv)
h0
m
− a0mδ0

d1
≤ h0 (x) ≤ h0

2M
for x ∈ R.
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The following lemma will be needed in the proof of our results. [11] Let
h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t)− h0(x) ≥ 0 (δ(t) > 0), then

2δ(t)H(x) ≥ h2(x) where H(x) =

Z x

0
h(s)ds.

Before stating the theorem, we introduce the following notations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
κ1 =

a1h0d1M
2

c0m3
+

M3(c1 + δ0)

a0m2
+ a0a1m (M − 1) ,

κ2 =
2d1h0a0

c0 (M − 1)

µ
1

m
− 1

M

¶2
+ 2

c0M

a0
+ 2a1

d1h0M

c0m3
+

c0c1(M
2 + 2)mM

d1h0
.

In addition to conditions (i) ∼ (iv) being satisfied, assume that there
are positive constants η2, η3 and η4 such that the following conditions hold

H0) b0q0 > max

(
κ1, κ2

)
.

H1)

Z +∞

0

¡¯̄
a0 (t)

¯̄
+
¯̄
b0 (t)

¯̄
+
¯̄
c0 (t)

¯̄
+
¯̄
d0 (t)

¯̄¢
dt < η1.

H2)

Z +∞

−∞

¡¯̄
g0 (s)

¯̄
+
¯̄
p0 (s)

¯̄
+
¯̄
q0 (s)

¯̄
+
¯̄
f 0 (s)

¯̄¢
ds < η2.

H3)

Z +∞

0
|e (s)| ds < η3.

H4)
¯̄
g0(x)

¯̄
< η4, for all x.

Then any solution x(t) of (??) and its derivatives x0(t), x00(t) and x000(t)
are bounded and satisfyR∞

0

³
x2(s) + x02(s) + x002(s) + x0002(s)

´
ds <∞.

Proof. The equation (1.5) can be expressed as the following system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = y,
y0 = 1

g(x)z,

z0 = w,

w0 = −a(t)p(x)g(x)w +
³
a (t) p(x)θ1 − b(t) q(x)g(x) − a(t)g(x)θ2

´
z

−
µ
b(t)g2(x)θ3 + c (t) f (x)

¶
y − d (t)h (x) + e(t),

(2.1)

where

θ1 (t) =
g0 (x (t))

g2 (x (t))
x0 (t) , θ2 (t) =

p0 (x (t))

g2 (x (t))
x0 (t) , θ3 (t) =

q0 (x (t))

g2 (x (t))
x0 (t) ,

θ4 (t) =
f 0 (x (t))

g2 (x (t))
x0 (t) .

Boundedness of solutions: First we proof the boundedness of solutions.
The proof depend on the Lyapunov function W = W (t, x, y, z, w) defined
as

W = e
−1
η

Z t

0
(γ1(s) + γ2(s))ds

V,(2.2)

where
γ1 (t) =

¯̄
a0 (t)

¯̄
+
¯̄
b0 (t)

¯̄
+
¯̄
c0 (t)

¯̄
+
¯̄
d0 (t)

¯̄
, γ2(t) = |θ1(t)| + |θ2(t)| +

|θ3(t)|+ |θ4(t)|,
and

2V = 2V (t, x, y, z, w) = 2βd (t)H (x) + c (t) g (x) f (x) y2 + αb (t)
q(x)

g (x)
z2

+a(t) p(x)g(x)z
2 + 2βa (t) p(x)g(x)yz + [βb(t)q(x)− αh0d (t)] y

2 − β 1
g(x)z

2

+αw2 + 2d (t) g (x)h(x)y + 2αd(t)h (x) z + 2αc (t) f (x) yz + 2βyw +
2zw,

with α =
M

a0m
+ , β =

d1h0
c0m

+ . , η are positive constants to be

determined later in the proof. 2V can be rearranged in the form

2V = a (t) p(x)

Ã
w

a (t) p(x)
+ z + β

1

g (x)
y

!2
+ c (t) f (x)

Ã
d (t)h (x)

c (t) f (x)
+ y + αz

!2
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+ c(t) f (x)

"Ã
g (x)− 1

!
y + d(t)h(x)

c(t)f(x)

#2
+2 d (t)H (x)+V1+V2+V3,

such that

V1 = 2d (t)
R x
0 h (s)

Ã
d1h0
c0m
− 2 d(t)

c(t)f(x)h
0 (s)

!
ds,

V2 =

Ã
αb (t) q(x)g(x)−β

1
g(x)−α2c (t) f (x)+a (t) p(x)

Ã
1

g(x)−1
!!

z2

and

V3 =

Ã
βb (t) q(x)− αh0d (t)− β2a (t) p(x)

g2(x) − c (t) f(x)
¡
g2 (x)− 3g (x) + 2

¢!
y2

+

Ã
α− 1

a(t)p(x)

!
w2 + 2β

Ã
1− 1

g(x)

!
yw.

Now we will prove that V is positive definite. Take

< min

(
M

a0m
,
d1h0
c0m

,
m2(b0q0 − κ1)

M2(a1 +mMc1)

)
,(2.3)

then

M

a0m
< α < 2

M

a0m
,

d1h0
c0m

< β < 2
d1h0
c0m

.(2.4)

Conditions (i) ∼ (iv) and (H0) imply that

V1 ≥ 4d0
d1
c0m

Z x

0
h (s)

Ã
h0
2M
− h0 (s)

!
ds ≥ 0.

We can rewrite V2 as

V2 = α

Ã
b (t)

q(x)

g (x)
− β

a (t)

g (x)
− αc (t) f (x)− a (t) p(x)

α

Ã
1− 1

g (x)

!!
z2

+ β

Ã
α
a (t)

g (x)
− 1

g (x)

!
z2.

From conditions (i) ∼( iii) and inequalities (2.3),(2.4), it follows that

V2 ≥ α

Ã
b0q0
M
−
³d1h0
c0m

+
´a1
m
−
³ M

a0m
+

´
c1M − a1

a0m

M

³
M − 1

´!
z2

+ β

Ã
α
a0
M
− 1

m

!
z2
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≥ α

Ã
b0q0
M
− d1h0a1

c0m2
− c1M

2

a0m
− a1

a0m

M

³
M − 1

´
−

m

³
a1 + c1mM

´!
z2

≥ α

Mm

Ã
m(b0q0 − κ1)− M (a1 + c1mM)

!
z2 ≥ 0,

and

V3 ≥ β

Ã
b0q0 −

α

β
h0d1 − a1β

M

g2 (x)
− c1M(M

2 + 2)

β

!
y2 +

Ã
M − 1
a0m

!
w2

+2β

Ã
1− 1

g (x)

!
yw

≥ β

Ã
b0q0−2Ma0 c0−2a1

d1h0M
c0m3 − c0c1(M2+2)mM

d1h0

!
y2+

Ã
M−1
a0m

!
w2

+ 2β

Ã
1− 1

g(x)

!
yw

≥ ψ(y, ω),

such that

ψ(y, ω) = β
2d1h0a0

c0 (M − 1)

µ
1

m
− 1

M

¶2
y2+

Ã
M − 1
a0m

!
w2+2β

Ã
1− 1

g (x)

!
yw.

It is clear that ψ(y, ω) is positive definite. To show this we calculate
the discriminant

4 = β2
∙
1− 1

g (x)

¸2
− 2βd1h0

c0m

∙
1

M
− 1

m

¸2
.

Using condition (ii) we have

1

M
<

1

g(x)
<
1

m
, and

1

M
< 1 <

1

m
,

it follows that ¯̄̄̄
¯1− 1

g (x)

¯̄̄̄
¯ < 1

m
− 1

M
.

Using (2.4) we get

4 ≤ β

"
2d1h0
c0m

µ
1

M
− 1

m

¶2
− 2d1h0

c0m

µ
1

M
− 1

m

¶2#
= 0.
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Thus there exists positive number D0 such that

2V ≥ D0

³
y2 + z2 + w2 +H(x)

´
.(2.5)

By Lemma 2 and conditions (iii) and (H1) we get the existence of a
positive number D1 such that

2V ≥ D1
³
x2 + y2 + z2 + w2

´
,(2.6)

thus V is positive definite which implies that W is also positive definite.

Hence we can find positive definite functions U1(k) and U2(kXk) ( X =
(x, y, z, w) ) such that U1(kXk) ≤ V ≤ U2(kXk). By (ii) and (H2), we
get R t

0

³
γ1(s) + γ2(s)

´
ds ≤ η1 +

R α2(t)
α1(t)

|g0(u)|+|p0(u)|+|q0(u)|+|f 0(u)|
g2(u) du

≤ η1 +
1
m2

R+∞
−∞

³
|g0(s)|+ |p0(s)|+ |q0(s)|+ |f 0(s)|

´
ds

≤ η1 +
η2
m2 ,

(2.7)

with α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. By condition
(H1) and inequalities (2.2),(2.6) and (2) we have

W ≥ D2(x
2 + y2 + z2 + w2),(2.8)

where D2 =
D1

2
e−

1
η
(η1+

η2
m2
). Therefore we can find positive definite func-

tions W1(kXk) and W2(kXk) such that W1(kXk) ≤W ≤W2(kXk).

Next we show that Ẇ is negative definite functional. The derivative
of the function V, along any solution (x(t), y(t), z(t), w(t)) of system (2.1),
with respect to t is after elementary calculation

2.V(2.1) = −2 c (t) f(x)y2 + V4 + V5 + V6 + V7 + 2(βy + z + αw)e(t) + 2
∂V

∂t
,

where
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V4 = −2
µ
d1h0
c0m

c (t) f(x)− d (t) g (x)h0 (x)
¶
y2 − 2αd (t)

µ
h0
g (x)

− h0 (x)
¶
yz,

V5 = −2
³
b(t)q(x)
g(x) − αc (t) f(x)g(x) − βa (t) p(x)

g2(x)

´
z2,

V6 = −2
³
αa(t)p(x)

g(x) − 1
´
w2

and

V7 = θ1

µ
a (t) p(x)z2 − αb (t) q(x)z2 + c (t) f (x) g2 (x) y2 + βz2 + 2d (t) g2 (x)h (x) y

+2αa (t) p(x)zw

¶
− b(t)θ3g(x)

µ
αz2 + 2αg(x)zw + βg(x)y2 + 2g(x)yz

¶
−a(t)θ2g(x)

µ
z2 + 2αzw

¶
+ θ4

µ
c (t) g3 (x) y2 + 2αc (t) g2 (x) yz

¶
.

By conditions (i), (ii), (iv), (H0) and inequalities (2.3), (2.4) we get

V4 ≤ −2
Ã
d (t)h0 − d (t) g (x)h0 (x)

!
y2 − 2αd (t)

Ã
h0
g (x)

− h0 (x)

!
yz

≤ −2d (t)m
Ã

h0
g (x)

− h0 (x)

!"µ
y +

α

2m
z

¶2
−
µ

α

2m
z

¶2#

≤ α2

2m
d (t)

Ã
h0
m
− h0 (x)

!
z2.

Therefore,

V4+V5 ≤ −2
"
b0q0
M
−
³ M

a0m
+

´c1M
m
−
³d1h0
c0m

+
´a1M
m2
− α2

4m

³
a0δ0

´#
z2

≤ −2
"
b0q0
M
− M2

a0m2
c1 −

d1h0a1M

c0m3
− M2δ0

a0m2
− M

m

µ
a1
m
+ c1

¶#
z2

≤ − 2

Mm2

µ
m2(b0q0 − κ1)− M2 (a1 + c1m)

¶
z2 ≤ 0.

We have also,

V6 ≤ −2
µ
α
a0m

M
− 1

¶
w2 = −2 a0m

M
w2 ≤ 0.
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Putting

D3 = min

(
c0m,

a0m

M
,

1

Mm2

µ
m2(b0q0 − κ1)− M2 (a1 + c1mM)

¶)

we obtain

−2 c (t) f(x)y2 + V4 + V5 + V6 ≤ −2D3
³
y2 + z2 + w2

´
.

From Lemma (2.1) and inequalities (2.5), 2uv ≤ u2+ v2 we obtain the
following

V7 ≤ |θ1|
µ
a (t) p(x)z2+αb (t) q(x)z2+c (t) f (x) g2 (x) y2+βz2+d (t) g2 (x)

(h2 (x) + y2)

+ αa (t) p(x)(z2 +w2)

¶
+ |θ4|

µ
c (t) g3 (x) y2 + αc (t) g2 (x) (y2 + z2)

¶
+ b(t)|θ3|g(x)

µ
αz2 + αg(x)(z2 + w2) + βg(x)y2 + g(x)(y2 + z2)

¶
+ a(t)|θ2|g(x)

µ
z2 + α(z2 + w2)

¶
≤ 2K1

D0

³
|θ1|+ |θ2|+ |θ3|+ |θ4|

´
V, .

with K1 some positive constant. We get also,

2
∂V

∂t
= d0 (t)

h
2βH (x)− αh0y

2 + 2g (x)h (x) y + 2αh (x) z
i

+c0 (t)
h
g (x) f(x)y2 + 2αf(x)yz

i
+ b0 (t)

∙
α
q(x)

g (x)
z2 + βq(x)y2

¸
+a0 (t)

∙
p(x)

g (x)
z2 + 2β

p(x)

g (x)
yz

¸

≤ 2K2
D0

Ã
|a0 (t)|+ |b0 (t)|+ |c0 (t)|+ |d0 (t)|

!
V,

with K2 positive constant. Thus for
1

η
=

1

D0
max

n
K1,K2

o
we have

.V(2.1) ≤ −D3(y
2 + z2 + w2) +

1

η
(γ1(t) + γ2(t))V +

³
βy + z + αw

´
e(t).

(2.9)
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By condition (H1) and using the inequalities (2.7), (2.8), (2.9) together
with, 2uv ≤ u2 + v2, we obtain

.W(2.1) =
³
.V(??) − 1

η (γ1(t) + γ2(t))V
´
e
−1
η

Z t

0
(γ1(s) + γ2(s))ds

≤
µ
−D3

³
y2 + z2 + w2

´
+
³
βy+z+αw

´
e(t)

¶
e
−1
η

Z t

0
(γ1(s) + γ2(s))ds

(2.10)
≤ D4 (|y|+ |z|+ |w|) |e(t)|

≤ D4
¡
3 + y2 + z2 + w2

¢
|e(t)|

≤ D4
³
3 + 1

D2
W
´
|e(t)|

≤ 3D4|e(t)|+ D4
D2

W |e(t)|,

(2.11)

where D4 = max{α, β, 1}. Integrating (2) from 0 to t, using the condition
(H3) and the Gronwall inequality, we have

W(t,x,y,z,w) ≤W
³
0, x(0), y(0), z(0), w(0)

´
+ 3D4η3

+ D4
D2

R t
0 W

³
s, x(s), y(s), z(s), w(s)

´
|e(s)|ds

≤
µ
W
³
0, x(0), y(0), z(0), w(0)

´
+ 3D4η3

¶
e

D4
D2

Z t

0
|e(s)|ds

≤
µ
W
³
0, x(0), y(0), z(0), w(0)

´
+ 3D4η3

¶
e

D4
D2

η3
= λ1 <∞.

(2.12)

In view of inequalities (2.8) and (2.12), we get

(x2 + y2 + z2 +w2) ≤ 1

D2
W ≤ λ2

where λ2 =
λ1
D2
. From the above inequality it follows that

|x(t)| ≤
p
λ2, |y(t)| ≤

p
λ2, |z(t)| ≤

p
λ2, |w(t)| ≤

p
λ2 for all t ≥ 0.

(2.13)
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By using (2.13) and the condition (ii) and since x0 = y and x00 =
1

g(x)
z

we obtain

|x(t)| ≤
p
λ2, |x0(t)| ≤

p
λ2, |x00(t)| =

¯̄̄̄
1

g(x(t))
z(t)

¯̄̄̄
≤ 1

m

p
λ2 for all t ≥ 0.

(2.14)
On the other hand, conditions (ii), (H4) and (2.14), show that

|θ1(t)| =
¯̄̄̄
g0(x(t))

g2(x(t))
x0(t)

¯̄̄̄
<

η4
m2

p
λ2 for all t ≥ 0.(2.15)

According to (2.13),(2.15) and since x000(t) =
1

g(x(t))
w(t) − θ1(t)z(t),

we get

|x000(t)| ≤ 1

g(x(t))
|w(t)|+ |θ1(t)||z(t)| ≤

1

m

p
λ2 +

η4
m2

λ2 for all t ≥ 0.

(2.16)

Square integrable solutions: Now we proof the square integrability of
solutions and their derivatives. let ρ > 0, we define
Ft = F (t, x(t), y(t), z(t), w(t)) as

Ft =W + ρ

Z t

0

³
y2(s) + z2(s) + w2(s)

´
ds,

where W = W (t, x, y, z) is is defined as (2.2). Note that Ft is positive
definite since W is positive definite. From (2.10), and the estimate

e−
1
η
(η1+

η2
m2
) ≤ e−

1
η

R t
0
(γ1(s)+γ2(s))ds ≤ 1

we obtain

.Ft(2.1) ≤ −D3
µ
y2(t) + z2(t) + w2(t)

¶
e−

1
η
(η1+

η2
m2
)(2.17)
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+D4

µ
|y(t)|+ |z(t)|+ |w(t)|

¶
|e(t)|

+ρ

µ
y2(t) + z2(t) + w2(t)

¶
.

Choosing ρ = D3e
− 1
η
(η1+

η2
m2
)
we get

.Ft(??) ≤ D4

µ
3 +

1

D2
W

¶
|e(t)|

≤ 3D4|e(t)|+
D4

D2
Ft|e(t)|.(2.18)

Integrating (2.18) from 0 to t, using the condition (H3) and the Gron-
wall inequality, we have

Ft ≤ F0 + 3D4η3 +
D4
D2

R t
0 Fs|e(s)|ds

≤
µ
F0 + 3D4η3

¶
e

D4

D2

Z t

0
|e(s)|ds

≤
µ
F0 + 3D4η3

¶
e

D4

D2
η3
= λ3 <∞.

(2.19)

from the above it follows that,

lim
t→∞

Ft ≤ λ3,

hence Z ∞
0

y2(s)ds < λ3 ,

Z ∞
0

z2(s) < λ3 and

Z ∞
0

w2(s)ds < λ3.(2.20)

By using (2.20) and the condition (ii) and since x0 = y and x00 =
1

g(x)
z

we obtain

Z ∞
0

x02(s)ds ≤ λ3 ,

Z ∞
0

x002(s)ds ≤ 1

m

Z ∞
0

z2(s)ds ≤ λ3
m
= λ4.(2.21)

On the other hand, Combining the conditions (ii), (H4) and (??),
(2.14), gives
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θ21(t) =

∙
g0(x(t))

g2(x(t))
x0(t)

¸2
≤ η24

m4
λ3, for all t ≥ 0.

Using again inequality 2uv ≤ u2 + v2 we get

Z ∞
0

x0002(s)ds =
Z ∞
0

w2(s)

g2(x(s))
ds+

Z ∞
0

θ21(s)z
2(s)ds−2

Z ∞
0

θ1(s)

g(x(s))
z(s)w(s)ds

≤ 2 w2(s)
g2(x(s))ds+ 2

R∞
0 θ21(s)z

2(s)ds

≤ 2N
R∞
0 (z

2(s) +w2(s))ds ≤ 4Nλ3 = λ5,
(2.22)

where N =
1

m2
max

n
1,

η24
m2

λ3
o
. Next, multiply (??) by x(t) and integrate

by parts from 0 to t all the terms on the LHS of (??) we obtain

Z t

0
d(s)x(s)h(x(s))ds = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) +R0,(2.23)

where

I1(t) = −
µ
g0(x(t))x0(t)x00(t) + g(x(t))x000(t)

¶
x(t) + g(x(t))x00(t)x0(t) −R t

0 g(x(s))x
002(s)ds,

I2(t) = −a(t)p(x(t))x(t)x00(t)+
R t
0 a

0(s)p(x(s))x(s)x00(s)ds+
R t
0 a(s)p(x(s))x

0(s)x00(s)ds,
I3(t) = −b(t)q(x(t))x(t)x0(t)+

R t
0 b
0(s)q(x(s))x(s)x0(s)ds+

R t
0 b(s)q(x(s))x

02(s)ds,
I4(t) = −12c(t)f(x(t))x2(t)+

1
2

R t
0 c

0(s)f(x(s))x2(s)ds+1
2

R t
0 c(s)f

0(x(s))x0(s)x2(s)ds,

I5(t) =
R t
0 e(s)x(s)ds,

and

R0 =

Ã
g0(x(0))x0(0)x00(0) + g(x(0))x000(0)

!
x(0)

−g(x(0))x00(0)x0(0) + a(0)p(x(0))x(0)x00(0)

+b(0)q(x(0))x(0)x0(0) +
1

2
c(0)f(x(0))x2(0).
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From (2.14), (2.16), (2.21) and the conditions (i), (ii), (H1)∼ (H4), we
have

I1(t) ≤
µ
η4
m
λ
3
2
2 +M

³ 1
m

p
λ2 +

η4
m2

λ2
´¶p

λ2 +
M

m
λ2 +M

Z t

0
x002(s)ds,

I2(t) ≤ a1
M

m
λ2 +

M

m
λ2

Z t

0
|a0(s)|ds+ a1M

Z t

0
x0(s)x00(s)ds,

≤ a1
M

m
λ2 +

1

2
a1Mλ2 +

M

m
λ2

Z t

0
|a0(s)|ds,

I3(t) ≤ b1q1λ2 + q1λ2

Z t

0
|b0(s)|ds+ b1q1

Z t

0
x02(s)ds,

I4(t) ≤
1

2
c1Mλ2 +

1

2
Mλ2

Z t

0
|c0(s)|ds,+1

2
c1λ

3
2
2

Z t

0
|f 0(s)|ds,

and I5(t) ≤
p
λ2

Z t

0
|e(s)|ds.

Hence

lim
t→+∞

I1(t) ≤
µ
η4
m
λ
3
2
2 +M

³ 1
m

p
λ2 +

η4
m2

λ2
´¶p

λ2 +
M

m
λ2 +Mλ4 = R1,

lim
t→+∞

I2(t) ≤ a1
M

m
λ2 +

1

2
a1Mλ2 +

M

m
λ2η1 = R2,

lim
t→+∞

I3(t) ≤ b1q1λ2 + q1λ2η1 + b1q1λ3 = R3,

lim
t→+∞

I4(t) ≤
1

2
c1Mλ2 +

1

2
Mλ2η1 +

1

2
c1λ

3
2
2 η2 = R4, and lim

t→+∞
I5(t) ≤

p
λ2η3 = R5.

Thus

lim
t→+∞

³
I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

´
≤

5X
i=1

Ri <∞.(2.24)

Consequently, (2.23), (2.24) and condition (iii) givesZ ∞
0

x2(s)ds ≤ 1

d0δ

Z ∞
0

d(s)x(s)h(x(s))ds ≤ 1

d0δ

5X
i=0

Ri <∞.

The proof of the theorem is now completed. 2
If e(t) = 0, similarly to above proof, the inequality (2.10) becomes

.W(??) =

µ
.V(??) −

1

η
(γ1(t) + γ2(t))V

¶
e
−1
η

Z t

0
(γ1(s) + γ2(s))ds



56 Moussadek Remili and Mebrouk Rahmane

≤ −D3

³
y2 + z2 +w2

´
e
−1
η

Z t

0
(γ1(s) + γ2(s))ds

≤ −µ
³
y2 + z2 + w2

´
,

where µ = D3e
− 1
η
(η1+

η2
m2
). It is easy to see that the only solution of system

(2.1) for which .W(??)(t, x, y, z, w) = 0 is the solution x = y = z = w = 0.
Hence the trivial solution of equation (1.5) is uniformly asymptotically
stable, and the same conclusion as in the proof of Theorem 3.2 can be
drawn for the square integrability of solutions of equation (1.5).

3. Example

We consider the following fourth order non-autonomous differential equa-
tion

ÃÃ
x2 sinx+ 5x4 + 5

5 (1 + x4)

!
x00
!00
+
³
e−t sin t+ 2

´ÃÃx+ 4ex + 4e−x
4 (ex + e−x)

!
x00
!0

+
³
cos t+7t2+7

1+t2

´³³
sinx+6ex+6e−x

ex+e−x

´
x0
´0

+
¡
e−2t sin3 t+ 2

¢ ³
x cosx+5x4+5
5(1+x4)

´
x0 +

³
cos2 t+t2+1
10(1+t2)

´ ³
x

x2+1

´
= 2 sin t

t2+1 .(3.1)

(3.2)

Taking

g (x) =
x2 sinx+ 5x4 + 5

5 (1 + x4)
, p (x) =

x+ 4ex + 4e−x

4 (ex + e−x)
, q (x) =

sinx+ 6ex + 6e−x

ex + e−x
,

f (x) =
x cosx+ 5x4 + 5

5 (1 + x4)
, h (x) =

x

x2 + 1
, a (t) = e−t sin t + 2 , b (t) =

cos t+ 7t2 + 7

1 + t2
,

c (t) = e−2t sin3 t+ 2 , d (t) =
cos2 t+ t2 + 1

10 (1 + t2)
and e (t) =

2 sin t

t2 + 1
.

we have

m =
9

10
, M =

11

10
, q0 =

11

2
, q1 =

13

2
, h0 =

5

2
, δ0 =

5

3
, a0 =
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1 , a1 = 3 , b0 = 6 ,

b1 = 8 , c0 = 1 , c1 = 3 , d0 =
1

10
, d1 =

1

5
,

we find

h0
m
− a0mδ0

d1
= −4. 55 ≤ h0 (x) ≤ 1.1 ≤ h0

2M
,

and

κ1 =
a1h0d1M

2

c0m3
+

M3(c1 + δ0)

a0m2
+ a0a1m (M − 1) ≤ 10

κ2 =
2d1h0a0

c0 (M − 1)

µ
1

m
− 1

M

¶2
+ 2

c0M

a0
+ 2a1

d1h0M

c0m3
+

c0c1(M
2 + 2)mM

d1h0
≤ 27

AlsoZ +∞

−∞

¯̄
g0 (x)

¯̄
dx =

1

5

Z +∞

−∞

¯̄̄̄
¯−4x5 sinx+

¡
2x sinx+ x2 cosx

¢ ¡
x4 + 1

¢
(x4 + 1)2

¯̄̄̄
¯ dx

≤ 1

5

Z +∞

−∞

Ã
x2

x4 + 1
+

4x6

(x4 + 1)2
+

2x2

x4 + 1

!
dx =

3

5

√
2π,

Z +∞

−∞

¯̄
p0 (x)

¯̄
dx =

1

4

Z +∞

−∞

¯̄̄̄
¯ 1

ex + e−x
+ x

e−x − ex

(ex + e−x)2

¯̄̄̄
¯ dx

≤ 1

4

Z 0

−∞

Ã
1

ex + e−x
− x

e−x − ex

(ex + e−x)2

!
dx

+
1

4

Z +∞

0

Ã
1

ex + e−x
− x

e−x − ex

(ex + e−x)2

!
dx =

π

4
,

Z +∞

−∞

¯̄
q0 (x)

¯̄
dx =

1

5

Z +∞

−∞

¯̄̄̄
¯(ex + e−x) cosx− (ex − e−x) sinx

(ex + e−x)2

¯̄̄̄
¯ dx

≤ 1

5

Z +∞

−∞

Ã
1

ex + e−x
+

x

(ex + e−x)2
¡
ex − e−x

¢!
dx =

1

5
π,

Z +∞

−∞

¯̄
f 0 (x)

¯̄
dx =

1

5

Z +∞

−∞

¯̄̄̄
¯(cosx− x sinx)

¡
x4 + 1

¢
− 4x4 cosx

(x4 + 1)2

¯̄̄̄
¯ dx
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=
1

5

Z +∞

−∞

¯̄̄̄
¯ cosxx4 + 1

− 4x4 cosx

(x4 + 1)2
− x

sinx

x4 + 1

¯̄̄̄
¯ dx

≤ 1

5

Z +∞

−∞

Ã
5

x4 + 1
+

x2

x4 + 1

!
dx =

9

10

√
2π.

ThenZ +∞

−∞

¡¯̄
g0 (s)

¯̄
+
¯̄
p0 (s)

¯̄
+
¯̄
q0 (s)

¯̄
+
¯̄
f 0 (s)

¯̄¢
ds <∞,

¯̄
g0 (t)

¯̄
< 3,

and Z +∞

0
|e (t)| dt =

Z +∞

0

¯̄̄̄
2 sin t

t2 + 1

¯̄̄̄
dt ≤

Z +∞

0

2

t2 + 1
dt = π,

Z +∞

0

¯̄
a0 (t)

¯̄
dt =

Z +∞

0

¯̄̄
(cos t) e−t − (sin t) e−t

¯̄̄
dx ≤

Z +∞

0
2e−tdx = 2,Z +∞

0

¯̄
b0 (t)

¯̄
dt =

Z +∞

0

¯̄̄̄
¯ − sin t

t2 + 1
− 2t cos t

(t2 + 1)2

¯̄̄̄
¯ dx ≤

Z +∞

0

Ã
1

t2 + 1
+

2 |t|
(t2 + 1)2

!
dx

≤
R+∞
0

µ
1

t2+1 +
t2+1
(t2+1)2

¶
dx =

R+∞
0

2
t2+1dx = π,R+∞

0 |c0 (t)| dt =
R+∞
0 | c0 (t)| dx =

R+∞
0

¯̄
3
¡
cos t sin2 t

¢
e−2t − 2

¡
sin3 t

¢
e−2t

¯̄
dx

≤
R+∞
0 5e−2tdx = 5

2 ,R+∞
0 |d0 (t)| dt =

R+∞
0

¯̄̄̄
−2 (cos t) sin tt2+1 − 2t

cos2 t
(t2+1)2

¯̄̄̄
dx

≤
R+∞
0

µ
2

t2+1 +
2|t|

(t2+1)2

¶
dx ≤

R+∞
0

3
t2+1dx =

3π
2 .

Then Z +∞

0

¡¯̄
a0 (t)

¯̄
+
¯̄
b0 (t)

¯̄
+
¯̄
c0 (t)

¯̄
+
¯̄
d0 (t)

¯̄¢
dt < +∞.

Thus all the assumptions of Theorem (2) hold, this shows that every so-
lution x(t) of (??) and their derivatives x0(t), x00(t) and x000(t) are bounded
and square integrable.
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